numam-dpdk/lib/librte_hash/rte_hash.c
Sergio Gonzalez Monroy fdf20fa7be add prefix to cache line macros
CACHE_LINE_SIZE is a macro defined in machine/param.h in FreeBSD and
conflicts with DPDK macro version.
Adding RTE_ prefix to avoid conflicts.
CACHE_LINE_MASK and CACHE_LINE_ROUNDUP are also prefixed.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
[Thomas: updated on HEAD, including PPC]
2014-11-27 16:21:11 +01:00

484 lines
14 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_memory.h> /* for definition of RTE_CACHE_LINE_SIZE */
#include <rte_log.h>
#include <rte_memcpy.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_cpuflags.h>
#include <rte_log.h>
#include <rte_rwlock.h>
#include <rte_spinlock.h>
#include "rte_hash.h"
TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
/* Macro to enable/disable run-time checking of function parameters */
#if defined(RTE_LIBRTE_HASH_DEBUG)
#define RETURN_IF_TRUE(cond, retval) do { \
if (cond) return (retval); \
} while (0)
#else
#define RETURN_IF_TRUE(cond, retval)
#endif
/* Hash function used if none is specified */
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC rte_jhash
#endif
/* Signature bucket size is a multiple of this value */
#define SIG_BUCKET_ALIGNMENT 16
/* Stoered key size is a multiple of this value */
#define KEY_ALIGNMENT 16
/* The high bit is always set in real signatures */
#define NULL_SIGNATURE 0
/* Returns a pointer to the first signature in specified bucket. */
static inline hash_sig_t *
get_sig_tbl_bucket(const struct rte_hash *h, uint32_t bucket_index)
{
return (hash_sig_t *)
&(h->sig_tbl[bucket_index * h->sig_tbl_bucket_size]);
}
/* Returns a pointer to the first key in specified bucket. */
static inline uint8_t *
get_key_tbl_bucket(const struct rte_hash *h, uint32_t bucket_index)
{
return (uint8_t *) &(h->key_tbl[bucket_index * h->bucket_entries *
h->key_tbl_key_size]);
}
/* Returns a pointer to a key at a specific position in a specified bucket. */
static inline void *
get_key_from_bucket(const struct rte_hash *h, uint8_t *bkt, uint32_t pos)
{
return (void *) &bkt[pos * h->key_tbl_key_size];
}
/* Does integer division with rounding-up of result. */
static inline uint32_t
div_roundup(uint32_t numerator, uint32_t denominator)
{
return (numerator + denominator - 1) / denominator;
}
/* Increases a size (if needed) to a multiple of alignment. */
static inline uint32_t
align_size(uint32_t val, uint32_t alignment)
{
return alignment * div_roundup(val, alignment);
}
/* Returns the index into the bucket of the first occurrence of a signature. */
static inline int
find_first(uint32_t sig, const uint32_t *sig_bucket, uint32_t num_sigs)
{
uint32_t i;
for (i = 0; i < num_sigs; i++) {
if (sig == sig_bucket[i])
return i;
}
return -1;
}
struct rte_hash *
rte_hash_find_existing(const char *name)
{
struct rte_hash *h = NULL;
struct rte_tailq_entry *te;
struct rte_hash_list *hash_list;
/* check that we have an initialised tail queue */
if ((hash_list =
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_HASH, rte_hash_list)) == NULL) {
rte_errno = E_RTE_NO_TAILQ;
return NULL;
}
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
TAILQ_FOREACH(te, hash_list, next) {
h = (struct rte_hash *) te->data;
if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
break;
}
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return h;
}
struct rte_hash *
rte_hash_create(const struct rte_hash_parameters *params)
{
struct rte_hash *h = NULL;
struct rte_tailq_entry *te;
uint32_t num_buckets, sig_bucket_size, key_size,
hash_tbl_size, sig_tbl_size, key_tbl_size, mem_size;
char hash_name[RTE_HASH_NAMESIZE];
struct rte_hash_list *hash_list;
/* check that we have an initialised tail queue */
if ((hash_list =
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_HASH, rte_hash_list)) == NULL) {
rte_errno = E_RTE_NO_TAILQ;
return NULL;
}
/* Check for valid parameters */
if ((params == NULL) ||
(params->entries > RTE_HASH_ENTRIES_MAX) ||
(params->bucket_entries > RTE_HASH_BUCKET_ENTRIES_MAX) ||
(params->entries < params->bucket_entries) ||
!rte_is_power_of_2(params->entries) ||
!rte_is_power_of_2(params->bucket_entries) ||
(params->key_len == 0) ||
(params->key_len > RTE_HASH_KEY_LENGTH_MAX)) {
rte_errno = EINVAL;
RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
return NULL;
}
snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
/* Calculate hash dimensions */
num_buckets = params->entries / params->bucket_entries;
sig_bucket_size = align_size(params->bucket_entries *
sizeof(hash_sig_t), SIG_BUCKET_ALIGNMENT);
key_size = align_size(params->key_len, KEY_ALIGNMENT);
hash_tbl_size = align_size(sizeof(struct rte_hash), RTE_CACHE_LINE_SIZE);
sig_tbl_size = align_size(num_buckets * sig_bucket_size,
RTE_CACHE_LINE_SIZE);
key_tbl_size = align_size(num_buckets * key_size *
params->bucket_entries, RTE_CACHE_LINE_SIZE);
/* Total memory required for hash context */
mem_size = hash_tbl_size + sig_tbl_size + key_tbl_size;
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* guarantee there's no existing */
TAILQ_FOREACH(te, hash_list, next) {
h = (struct rte_hash *) te->data;
if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
break;
}
if (te != NULL)
goto exit;
te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
goto exit;
}
h = (struct rte_hash *)rte_zmalloc_socket(hash_name, mem_size,
RTE_CACHE_LINE_SIZE, params->socket_id);
if (h == NULL) {
RTE_LOG(ERR, HASH, "memory allocation failed\n");
rte_free(te);
goto exit;
}
/* Setup hash context */
snprintf(h->name, sizeof(h->name), "%s", params->name);
h->entries = params->entries;
h->bucket_entries = params->bucket_entries;
h->key_len = params->key_len;
h->hash_func_init_val = params->hash_func_init_val;
h->num_buckets = num_buckets;
h->bucket_bitmask = h->num_buckets - 1;
h->sig_msb = 1 << (sizeof(hash_sig_t) * 8 - 1);
h->sig_tbl = (uint8_t *)h + hash_tbl_size;
h->sig_tbl_bucket_size = sig_bucket_size;
h->key_tbl = h->sig_tbl + sig_tbl_size;
h->key_tbl_key_size = key_size;
h->hash_func = (params->hash_func == NULL) ?
DEFAULT_HASH_FUNC : params->hash_func;
te->data = (void *) h;
TAILQ_INSERT_TAIL(hash_list, te, next);
exit:
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
return h;
}
void
rte_hash_free(struct rte_hash *h)
{
struct rte_tailq_entry *te;
struct rte_hash_list *hash_list;
if (h == NULL)
return;
/* check that we have an initialised tail queue */
if ((hash_list =
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_HASH, rte_hash_list)) == NULL) {
rte_errno = E_RTE_NO_TAILQ;
return;
}
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* find out tailq entry */
TAILQ_FOREACH(te, hash_list, next) {
if (te->data == (void *) h)
break;
}
if (te == NULL) {
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
return;
}
TAILQ_REMOVE(hash_list, te, next);
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
rte_free(h);
rte_free(te);
}
static inline int32_t
__rte_hash_add_key_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
hash_sig_t *sig_bucket;
uint8_t *key_bucket;
uint32_t bucket_index, i;
int32_t pos;
/* Get the hash signature and bucket index */
sig |= h->sig_msb;
bucket_index = sig & h->bucket_bitmask;
sig_bucket = get_sig_tbl_bucket(h, bucket_index);
key_bucket = get_key_tbl_bucket(h, bucket_index);
/* Check if key is already present in the hash */
for (i = 0; i < h->bucket_entries; i++) {
if ((sig == sig_bucket[i]) &&
likely(memcmp(key, get_key_from_bucket(h, key_bucket, i),
h->key_len) == 0)) {
return bucket_index * h->bucket_entries + i;
}
}
/* Check if any free slot within the bucket to add the new key */
pos = find_first(NULL_SIGNATURE, sig_bucket, h->bucket_entries);
if (unlikely(pos < 0))
return -ENOSPC;
/* Add the new key to the bucket */
sig_bucket[pos] = sig;
rte_memcpy(get_key_from_bucket(h, key_bucket, pos), key, h->key_len);
return bucket_index * h->bucket_entries + pos;
}
int32_t
rte_hash_add_key_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_add_key_with_hash(h, key, sig);
}
int32_t
rte_hash_add_key(const struct rte_hash *h, const void *key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key));
}
static inline int32_t
__rte_hash_del_key_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
hash_sig_t *sig_bucket;
uint8_t *key_bucket;
uint32_t bucket_index, i;
/* Get the hash signature and bucket index */
sig = sig | h->sig_msb;
bucket_index = sig & h->bucket_bitmask;
sig_bucket = get_sig_tbl_bucket(h, bucket_index);
key_bucket = get_key_tbl_bucket(h, bucket_index);
/* Check if key is already present in the hash */
for (i = 0; i < h->bucket_entries; i++) {
if ((sig == sig_bucket[i]) &&
likely(memcmp(key, get_key_from_bucket(h, key_bucket, i),
h->key_len) == 0)) {
sig_bucket[i] = NULL_SIGNATURE;
return bucket_index * h->bucket_entries + i;
}
}
return -ENOENT;
}
int32_t
rte_hash_del_key_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_del_key_with_hash(h, key, sig);
}
int32_t
rte_hash_del_key(const struct rte_hash *h, const void *key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
}
static inline int32_t
__rte_hash_lookup_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
hash_sig_t *sig_bucket;
uint8_t *key_bucket;
uint32_t bucket_index, i;
/* Get the hash signature and bucket index */
sig |= h->sig_msb;
bucket_index = sig & h->bucket_bitmask;
sig_bucket = get_sig_tbl_bucket(h, bucket_index);
key_bucket = get_key_tbl_bucket(h, bucket_index);
/* Check if key is already present in the hash */
for (i = 0; i < h->bucket_entries; i++) {
if ((sig == sig_bucket[i]) &&
likely(memcmp(key, get_key_from_bucket(h, key_bucket, i),
h->key_len) == 0)) {
return bucket_index * h->bucket_entries + i;
}
}
return -ENOENT;
}
int32_t
rte_hash_lookup_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_lookup_with_hash(h, key, sig);
}
int32_t
rte_hash_lookup(const struct rte_hash *h, const void *key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key));
}
int
rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
uint32_t num_keys, int32_t *positions)
{
uint32_t i, j, bucket_index;
hash_sig_t sigs[RTE_HASH_LOOKUP_BULK_MAX];
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
(positions == NULL)), -EINVAL);
/* Get the hash signature and bucket index */
for (i = 0; i < num_keys; i++) {
sigs[i] = h->hash_func(keys[i], h->key_len,
h->hash_func_init_val) | h->sig_msb;
bucket_index = sigs[i] & h->bucket_bitmask;
/* Pre-fetch relevant buckets */
rte_prefetch1((void *) get_sig_tbl_bucket(h, bucket_index));
rte_prefetch1((void *) get_key_tbl_bucket(h, bucket_index));
}
/* Check if key is already present in the hash */
for (i = 0; i < num_keys; i++) {
bucket_index = sigs[i] & h->bucket_bitmask;
hash_sig_t *sig_bucket = get_sig_tbl_bucket(h, bucket_index);
uint8_t *key_bucket = get_key_tbl_bucket(h, bucket_index);
positions[i] = -ENOENT;
for (j = 0; j < h->bucket_entries; j++) {
if ((sigs[i] == sig_bucket[j]) &&
likely(memcmp(keys[i],
get_key_from_bucket(h, key_bucket, j),
h->key_len) == 0)) {
positions[i] = bucket_index *
h->bucket_entries + j;
break;
}
}
}
return 0;
}