d9623c4fa0
This patch enables fm10k TSO feature for both non-tunneling packet and tunneling packet. Signed-off-by: Wang Xiao W <xiao.w.wang@intel.com> Acked-by: Michael Qiu <michael.qiu@intel.com>
503 lines
14 KiB
C
503 lines
14 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_ethdev.h>
|
|
#include <rte_common.h>
|
|
#include "fm10k.h"
|
|
#include "base/fm10k_type.h"
|
|
|
|
#ifdef RTE_PMD_PACKET_PREFETCH
|
|
#define rte_packet_prefetch(p) rte_prefetch1(p)
|
|
#else
|
|
#define rte_packet_prefetch(p) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef RTE_LIBRTE_FM10K_DEBUG_RX
|
|
static inline void dump_rxd(union fm10k_rx_desc *rxd)
|
|
{
|
|
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
|
|
PMD_RX_LOG(DEBUG, "| GLORT | PKT HDR & TYPE |");
|
|
PMD_RX_LOG(DEBUG, "| 0x%08x | 0x%08x |", rxd->d.glort,
|
|
rxd->d.data);
|
|
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
|
|
PMD_RX_LOG(DEBUG, "| VLAN & LEN | STATUS |");
|
|
PMD_RX_LOG(DEBUG, "| 0x%08x | 0x%08x |", rxd->d.vlan_len,
|
|
rxd->d.staterr);
|
|
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
|
|
PMD_RX_LOG(DEBUG, "| RESERVED | RSS_HASH |");
|
|
PMD_RX_LOG(DEBUG, "| 0x%08x | 0x%08x |", 0, rxd->d.rss);
|
|
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
|
|
PMD_RX_LOG(DEBUG, "| TIME TAG |");
|
|
PMD_RX_LOG(DEBUG, "| 0x%016"PRIx64" |", rxd->q.timestamp);
|
|
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
rx_desc_to_ol_flags(struct rte_mbuf *m, const union fm10k_rx_desc *d)
|
|
{
|
|
static const uint32_t
|
|
ptype_table[FM10K_RXD_PKTTYPE_MASK >> FM10K_RXD_PKTTYPE_SHIFT]
|
|
__rte_cache_aligned = {
|
|
[FM10K_PKTTYPE_OTHER] = RTE_PTYPE_L2_ETHER,
|
|
[FM10K_PKTTYPE_IPV4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4,
|
|
[FM10K_PKTTYPE_IPV4_EX] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT,
|
|
[FM10K_PKTTYPE_IPV6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6,
|
|
[FM10K_PKTTYPE_IPV6_EX] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6_EXT,
|
|
[FM10K_PKTTYPE_IPV4 | FM10K_PKTTYPE_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
|
|
[FM10K_PKTTYPE_IPV6 | FM10K_PKTTYPE_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
|
|
[FM10K_PKTTYPE_IPV4 | FM10K_PKTTYPE_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
|
|
[FM10K_PKTTYPE_IPV6 | FM10K_PKTTYPE_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
|
|
};
|
|
|
|
m->packet_type = ptype_table[(d->w.pkt_info & FM10K_RXD_PKTTYPE_MASK)
|
|
>> FM10K_RXD_PKTTYPE_SHIFT];
|
|
|
|
if (d->w.pkt_info & FM10K_RXD_RSSTYPE_MASK)
|
|
m->ol_flags |= PKT_RX_RSS_HASH;
|
|
|
|
if (unlikely((d->d.staterr &
|
|
(FM10K_RXD_STATUS_IPCS | FM10K_RXD_STATUS_IPE)) ==
|
|
(FM10K_RXD_STATUS_IPCS | FM10K_RXD_STATUS_IPE)))
|
|
m->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
|
|
if (unlikely((d->d.staterr &
|
|
(FM10K_RXD_STATUS_L4CS | FM10K_RXD_STATUS_L4E)) ==
|
|
(FM10K_RXD_STATUS_L4CS | FM10K_RXD_STATUS_L4E)))
|
|
m->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
|
|
if (d->d.staterr & FM10K_RXD_STATUS_VEXT)
|
|
m->ol_flags |= PKT_RX_VLAN_PKT;
|
|
|
|
if (unlikely(d->d.staterr & FM10K_RXD_STATUS_HBO))
|
|
m->ol_flags |= PKT_RX_HBUF_OVERFLOW;
|
|
|
|
if (unlikely(d->d.staterr & FM10K_RXD_STATUS_RXE))
|
|
m->ol_flags |= PKT_RX_RECIP_ERR;
|
|
}
|
|
|
|
uint16_t
|
|
fm10k_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
union fm10k_rx_desc desc;
|
|
struct fm10k_rx_queue *q = rx_queue;
|
|
uint16_t count = 0;
|
|
int alloc = 0;
|
|
uint16_t next_dd;
|
|
int ret;
|
|
|
|
next_dd = q->next_dd;
|
|
|
|
nb_pkts = RTE_MIN(nb_pkts, q->alloc_thresh);
|
|
for (count = 0; count < nb_pkts; ++count) {
|
|
mbuf = q->sw_ring[next_dd];
|
|
desc = q->hw_ring[next_dd];
|
|
if (!(desc.d.staterr & FM10K_RXD_STATUS_DD))
|
|
break;
|
|
#ifdef RTE_LIBRTE_FM10K_DEBUG_RX
|
|
dump_rxd(&desc);
|
|
#endif
|
|
rte_pktmbuf_pkt_len(mbuf) = desc.w.length;
|
|
rte_pktmbuf_data_len(mbuf) = desc.w.length;
|
|
|
|
mbuf->ol_flags = 0;
|
|
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
|
|
rx_desc_to_ol_flags(mbuf, &desc);
|
|
#endif
|
|
|
|
mbuf->hash.rss = desc.d.rss;
|
|
|
|
rx_pkts[count] = mbuf;
|
|
if (++next_dd == q->nb_desc) {
|
|
next_dd = 0;
|
|
alloc = 1;
|
|
}
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_prefetch0(q->sw_ring[next_dd]);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((next_dd & 0x3) == 0) {
|
|
rte_prefetch0(&q->hw_ring[next_dd]);
|
|
rte_prefetch0(&q->sw_ring[next_dd]);
|
|
}
|
|
}
|
|
|
|
q->next_dd = next_dd;
|
|
|
|
if ((q->next_dd > q->next_trigger) || (alloc == 1)) {
|
|
ret = rte_mempool_get_bulk(q->mp,
|
|
(void **)&q->sw_ring[q->next_alloc],
|
|
q->alloc_thresh);
|
|
|
|
if (unlikely(ret != 0)) {
|
|
uint8_t port = q->port_id;
|
|
PMD_RX_LOG(ERR, "Failed to alloc mbuf");
|
|
/*
|
|
* Need to restore next_dd if we cannot allocate new
|
|
* buffers to replenish the old ones.
|
|
*/
|
|
q->next_dd = (q->next_dd + q->nb_desc - count) %
|
|
q->nb_desc;
|
|
rte_eth_devices[port].data->rx_mbuf_alloc_failed++;
|
|
return 0;
|
|
}
|
|
|
|
for (; q->next_alloc <= q->next_trigger; ++q->next_alloc) {
|
|
mbuf = q->sw_ring[q->next_alloc];
|
|
|
|
/* setup static mbuf fields */
|
|
fm10k_pktmbuf_reset(mbuf, q->port_id);
|
|
|
|
/* write descriptor */
|
|
desc.q.pkt_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
|
|
desc.q.hdr_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
|
|
q->hw_ring[q->next_alloc] = desc;
|
|
}
|
|
FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_trigger);
|
|
q->next_trigger += q->alloc_thresh;
|
|
if (q->next_trigger >= q->nb_desc) {
|
|
q->next_trigger = q->alloc_thresh - 1;
|
|
q->next_alloc = 0;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
uint16_t
|
|
fm10k_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
union fm10k_rx_desc desc;
|
|
struct fm10k_rx_queue *q = rx_queue;
|
|
uint16_t count = 0;
|
|
uint16_t nb_rcv, nb_seg;
|
|
int alloc = 0;
|
|
uint16_t next_dd;
|
|
struct rte_mbuf *first_seg = q->pkt_first_seg;
|
|
struct rte_mbuf *last_seg = q->pkt_last_seg;
|
|
int ret;
|
|
|
|
next_dd = q->next_dd;
|
|
nb_rcv = 0;
|
|
|
|
nb_seg = RTE_MIN(nb_pkts, q->alloc_thresh);
|
|
for (count = 0; count < nb_seg; count++) {
|
|
mbuf = q->sw_ring[next_dd];
|
|
desc = q->hw_ring[next_dd];
|
|
if (!(desc.d.staterr & FM10K_RXD_STATUS_DD))
|
|
break;
|
|
#ifdef RTE_LIBRTE_FM10K_DEBUG_RX
|
|
dump_rxd(&desc);
|
|
#endif
|
|
|
|
if (++next_dd == q->nb_desc) {
|
|
next_dd = 0;
|
|
alloc = 1;
|
|
}
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_prefetch0(q->sw_ring[next_dd]);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((next_dd & 0x3) == 0) {
|
|
rte_prefetch0(&q->hw_ring[next_dd]);
|
|
rte_prefetch0(&q->sw_ring[next_dd]);
|
|
}
|
|
|
|
/* Fill data length */
|
|
rte_pktmbuf_data_len(mbuf) = desc.w.length;
|
|
|
|
/*
|
|
* If this is the first buffer of the received packet,
|
|
* set the pointer to the first mbuf of the packet and
|
|
* initialize its context.
|
|
* Otherwise, update the total length and the number of segments
|
|
* of the current scattered packet, and update the pointer to
|
|
* the last mbuf of the current packet.
|
|
*/
|
|
if (!first_seg) {
|
|
first_seg = mbuf;
|
|
first_seg->pkt_len = desc.w.length;
|
|
} else {
|
|
first_seg->pkt_len =
|
|
(uint16_t)(first_seg->pkt_len +
|
|
rte_pktmbuf_data_len(mbuf));
|
|
first_seg->nb_segs++;
|
|
last_seg->next = mbuf;
|
|
}
|
|
|
|
/*
|
|
* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (!(desc.d.staterr & FM10K_RXD_STATUS_EOP)) {
|
|
last_seg = mbuf;
|
|
continue;
|
|
}
|
|
|
|
first_seg->ol_flags = 0;
|
|
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
|
|
rx_desc_to_ol_flags(first_seg, &desc);
|
|
#endif
|
|
first_seg->hash.rss = desc.d.rss;
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_packet_prefetch((char *)first_seg->buf_addr +
|
|
first_seg->data_off);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rcv++] = first_seg;
|
|
|
|
/*
|
|
* Setup receipt context for a new packet.
|
|
*/
|
|
first_seg = NULL;
|
|
}
|
|
|
|
q->next_dd = next_dd;
|
|
|
|
if ((q->next_dd > q->next_trigger) || (alloc == 1)) {
|
|
ret = rte_mempool_get_bulk(q->mp,
|
|
(void **)&q->sw_ring[q->next_alloc],
|
|
q->alloc_thresh);
|
|
|
|
if (unlikely(ret != 0)) {
|
|
uint8_t port = q->port_id;
|
|
PMD_RX_LOG(ERR, "Failed to alloc mbuf");
|
|
/*
|
|
* Need to restore next_dd if we cannot allocate new
|
|
* buffers to replenish the old ones.
|
|
*/
|
|
q->next_dd = (q->next_dd + q->nb_desc - count) %
|
|
q->nb_desc;
|
|
rte_eth_devices[port].data->rx_mbuf_alloc_failed++;
|
|
return 0;
|
|
}
|
|
|
|
for (; q->next_alloc <= q->next_trigger; ++q->next_alloc) {
|
|
mbuf = q->sw_ring[q->next_alloc];
|
|
|
|
/* setup static mbuf fields */
|
|
fm10k_pktmbuf_reset(mbuf, q->port_id);
|
|
|
|
/* write descriptor */
|
|
desc.q.pkt_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
|
|
desc.q.hdr_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
|
|
q->hw_ring[q->next_alloc] = desc;
|
|
}
|
|
FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_trigger);
|
|
q->next_trigger += q->alloc_thresh;
|
|
if (q->next_trigger >= q->nb_desc) {
|
|
q->next_trigger = q->alloc_thresh - 1;
|
|
q->next_alloc = 0;
|
|
}
|
|
}
|
|
|
|
q->pkt_first_seg = first_seg;
|
|
q->pkt_last_seg = last_seg;
|
|
|
|
return nb_rcv;
|
|
}
|
|
|
|
static inline void tx_free_descriptors(struct fm10k_tx_queue *q)
|
|
{
|
|
uint16_t next_rs, count = 0;
|
|
|
|
next_rs = fifo_peek(&q->rs_tracker);
|
|
if (!(q->hw_ring[next_rs].flags & FM10K_TXD_FLAG_DONE))
|
|
return;
|
|
|
|
/* the DONE flag is set on this descriptor so remove the ID
|
|
* from the RS bit tracker and free the buffers */
|
|
fifo_remove(&q->rs_tracker);
|
|
|
|
/* wrap around? if so, free buffers from last_free up to but NOT
|
|
* including nb_desc */
|
|
if (q->last_free > next_rs) {
|
|
count = q->nb_desc - q->last_free;
|
|
while (q->last_free < q->nb_desc) {
|
|
rte_pktmbuf_free_seg(q->sw_ring[q->last_free]);
|
|
q->sw_ring[q->last_free] = NULL;
|
|
++q->last_free;
|
|
}
|
|
q->last_free = 0;
|
|
}
|
|
|
|
/* adjust free descriptor count before the next loop */
|
|
q->nb_free += count + (next_rs + 1 - q->last_free);
|
|
|
|
/* free buffers from last_free, up to and including next_rs */
|
|
while (q->last_free <= next_rs) {
|
|
rte_pktmbuf_free_seg(q->sw_ring[q->last_free]);
|
|
q->sw_ring[q->last_free] = NULL;
|
|
++q->last_free;
|
|
}
|
|
|
|
if (q->last_free == q->nb_desc)
|
|
q->last_free = 0;
|
|
}
|
|
|
|
static inline void tx_xmit_pkt(struct fm10k_tx_queue *q, struct rte_mbuf *mb)
|
|
{
|
|
uint16_t last_id;
|
|
uint8_t flags, hdrlen;
|
|
|
|
/* always set the LAST flag on the last descriptor used to
|
|
* transmit the packet */
|
|
flags = FM10K_TXD_FLAG_LAST;
|
|
last_id = q->next_free + mb->nb_segs - 1;
|
|
if (last_id >= q->nb_desc)
|
|
last_id = last_id - q->nb_desc;
|
|
|
|
/* but only set the RS flag on the last descriptor if rs_thresh
|
|
* descriptors will be used since the RS flag was last set */
|
|
if ((q->nb_used + mb->nb_segs) >= q->rs_thresh) {
|
|
flags |= FM10K_TXD_FLAG_RS;
|
|
fifo_insert(&q->rs_tracker, last_id);
|
|
q->nb_used = 0;
|
|
} else {
|
|
q->nb_used = q->nb_used + mb->nb_segs;
|
|
}
|
|
|
|
q->nb_free -= mb->nb_segs;
|
|
|
|
q->hw_ring[q->next_free].flags = 0;
|
|
/* set checksum flags on first descriptor of packet. SCTP checksum
|
|
* offload is not supported, but we do not explicitly check for this
|
|
* case in favor of greatly simplified processing. */
|
|
if (mb->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
|
|
q->hw_ring[q->next_free].flags |= FM10K_TXD_FLAG_CSUM;
|
|
|
|
/* set vlan if requested */
|
|
if (mb->ol_flags & PKT_TX_VLAN_PKT)
|
|
q->hw_ring[q->next_free].vlan = mb->vlan_tci;
|
|
|
|
q->sw_ring[q->next_free] = mb;
|
|
q->hw_ring[q->next_free].buffer_addr =
|
|
rte_cpu_to_le_64(MBUF_DMA_ADDR(mb));
|
|
q->hw_ring[q->next_free].buflen =
|
|
rte_cpu_to_le_16(rte_pktmbuf_data_len(mb));
|
|
|
|
if (mb->ol_flags & PKT_TX_TCP_SEG) {
|
|
hdrlen = mb->outer_l2_len + mb->outer_l3_len + mb->l2_len +
|
|
mb->l3_len + mb->l4_len;
|
|
if (q->hw_ring[q->next_free].flags & FM10K_TXD_FLAG_FTAG)
|
|
hdrlen += sizeof(struct fm10k_ftag);
|
|
|
|
if (likely((hdrlen >= FM10K_TSO_MIN_HEADERLEN) &&
|
|
(hdrlen <= FM10K_TSO_MAX_HEADERLEN) &&
|
|
(mb->tso_segsz >= FM10K_TSO_MINMSS))) {
|
|
q->hw_ring[q->next_free].mss = mb->tso_segsz;
|
|
q->hw_ring[q->next_free].hdrlen = hdrlen;
|
|
}
|
|
}
|
|
|
|
if (++q->next_free == q->nb_desc)
|
|
q->next_free = 0;
|
|
|
|
/* fill up the rings */
|
|
for (mb = mb->next; mb != NULL; mb = mb->next) {
|
|
q->sw_ring[q->next_free] = mb;
|
|
q->hw_ring[q->next_free].buffer_addr =
|
|
rte_cpu_to_le_64(MBUF_DMA_ADDR(mb));
|
|
q->hw_ring[q->next_free].buflen =
|
|
rte_cpu_to_le_16(rte_pktmbuf_data_len(mb));
|
|
q->hw_ring[q->next_free].flags = 0;
|
|
if (++q->next_free == q->nb_desc)
|
|
q->next_free = 0;
|
|
}
|
|
|
|
q->hw_ring[last_id].flags |= flags;
|
|
}
|
|
|
|
uint16_t
|
|
fm10k_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct fm10k_tx_queue *q = tx_queue;
|
|
struct rte_mbuf *mb;
|
|
uint16_t count;
|
|
|
|
for (count = 0; count < nb_pkts; ++count) {
|
|
mb = tx_pkts[count];
|
|
|
|
/* running low on descriptors? try to free some... */
|
|
if (q->nb_free < q->free_thresh)
|
|
tx_free_descriptors(q);
|
|
|
|
/* make sure there are enough free descriptors to transmit the
|
|
* entire packet before doing anything */
|
|
if (q->nb_free < mb->nb_segs)
|
|
break;
|
|
|
|
/* sanity check to make sure the mbuf is valid */
|
|
if ((mb->nb_segs == 0) ||
|
|
((mb->nb_segs > 1) && (mb->next == NULL)))
|
|
break;
|
|
|
|
/* process the packet */
|
|
tx_xmit_pkt(q, mb);
|
|
}
|
|
|
|
/* update the tail pointer if any packets were processed */
|
|
if (likely(count > 0))
|
|
FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_free);
|
|
|
|
return count;
|
|
}
|