numam-dpdk/drivers/net/bnxt/bnxt_hwrm.c
Santosh Shukla ca241d9a09 net/bnxt: use I/O device memory read/write API
Replace the raw I/O device memory read/write access with eal abstraction
for I/O device memory read/write access to fix portability issues across
different architectures.

CC: Stephen Hurd <stephen.hurd@broadcom.com>
CC: Ajit Khaparde <ajit.khaparde@broadcom.com>
Signed-off-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Signed-off-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
2017-01-18 17:18:27 +01:00

1535 lines
40 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) Broadcom Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Broadcom Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_version.h>
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_rxq.h"
#include "bnxt_rxr.h"
#include "bnxt_ring.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
#include <rte_io.h>
#define HWRM_CMD_TIMEOUT 2000
/*
* HWRM Functions (sent to HWRM)
* These are named bnxt_hwrm_*() and return -1 if bnxt_hwrm_send_message()
* fails (ie: a timeout), and a positive non-zero HWRM error code if the HWRM
* command was failed by the ChiMP.
*/
static int bnxt_hwrm_send_message_locked(struct bnxt *bp, void *msg,
uint32_t msg_len)
{
unsigned int i;
struct input *req = msg;
struct output *resp = bp->hwrm_cmd_resp_addr;
uint32_t *data = msg;
uint8_t *bar;
uint8_t *valid;
/* Write request msg to hwrm channel */
for (i = 0; i < msg_len; i += 4) {
bar = (uint8_t *)bp->bar0 + i;
rte_write32(*data, bar);
data++;
}
/* Zero the rest of the request space */
for (; i < bp->max_req_len; i += 4) {
bar = (uint8_t *)bp->bar0 + i;
rte_write32(0, bar);
}
/* Ring channel doorbell */
bar = (uint8_t *)bp->bar0 + 0x100;
rte_write32(1, bar);
/* Poll for the valid bit */
for (i = 0; i < HWRM_CMD_TIMEOUT; i++) {
/* Sanity check on the resp->resp_len */
rte_rmb();
if (resp->resp_len && resp->resp_len <=
bp->max_resp_len) {
/* Last byte of resp contains the valid key */
valid = (uint8_t *)resp + resp->resp_len - 1;
if (*valid == HWRM_RESP_VALID_KEY)
break;
}
rte_delay_us(600);
}
if (i >= HWRM_CMD_TIMEOUT) {
RTE_LOG(ERR, PMD, "Error sending msg %x\n",
req->req_type);
goto err_ret;
}
return 0;
err_ret:
return -1;
}
static int bnxt_hwrm_send_message(struct bnxt *bp, void *msg, uint32_t msg_len)
{
int rc;
rte_spinlock_lock(&bp->hwrm_lock);
rc = bnxt_hwrm_send_message_locked(bp, msg, msg_len);
rte_spinlock_unlock(&bp->hwrm_lock);
return rc;
}
#define HWRM_PREP(req, type, cr, resp) \
memset(bp->hwrm_cmd_resp_addr, 0, bp->max_resp_len); \
req.req_type = rte_cpu_to_le_16(HWRM_##type); \
req.cmpl_ring = rte_cpu_to_le_16(cr); \
req.seq_id = rte_cpu_to_le_16(bp->hwrm_cmd_seq++); \
req.target_id = rte_cpu_to_le_16(0xffff); \
req.resp_addr = rte_cpu_to_le_64(bp->hwrm_cmd_resp_dma_addr)
#define HWRM_CHECK_RESULT \
{ \
if (rc) { \
RTE_LOG(ERR, PMD, "%s failed rc:%d\n", \
__func__, rc); \
return rc; \
} \
if (resp->error_code) { \
rc = rte_le_to_cpu_16(resp->error_code); \
RTE_LOG(ERR, PMD, "%s error %d\n", __func__, rc); \
return rc; \
} \
}
int bnxt_hwrm_cfa_l2_clear_rx_mask(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_cfa_l2_set_rx_mask_input req = {.req_type = 0 };
struct hwrm_cfa_l2_set_rx_mask_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, CFA_L2_SET_RX_MASK, -1, resp);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.mask = 0;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_cfa_l2_set_rx_mask_input req = {.req_type = 0 };
struct hwrm_cfa_l2_set_rx_mask_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t mask = 0;
HWRM_PREP(req, CFA_L2_SET_RX_MASK, -1, resp);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
/* FIXME add multicast flag, when multicast adding options is supported
* by ethtool.
*/
if (vnic->flags & BNXT_VNIC_INFO_PROMISC)
mask = HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_PROMISCUOUS;
if (vnic->flags & BNXT_VNIC_INFO_ALLMULTI)
mask = HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_ALL_MCAST;
req.mask = rte_cpu_to_le_32(HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_BCAST |
mask);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
int bnxt_hwrm_clear_filter(struct bnxt *bp,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_l2_filter_free_input req = {.req_type = 0 };
struct hwrm_cfa_l2_filter_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, CFA_L2_FILTER_FREE, -1, resp);
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
filter->fw_l2_filter_id = -1;
return 0;
}
int bnxt_hwrm_set_filter(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_l2_filter_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
HWRM_PREP(req, CFA_L2_FILTER_ALLOC, -1, resp);
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR)
memcpy(req.l2_addr, filter->l2_addr,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK)
memcpy(req.l2_addr_mask, filter->l2_addr_mask,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN)
req.l2_ovlan = filter->l2_ovlan;
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK)
req.l2_ovlan_mask = filter->l2_ovlan_mask;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
filter->fw_l2_filter_id = rte_le_to_cpu_64(resp->l2_filter_id);
return rc;
}
int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, void *fwd_cmd)
{
int rc;
struct hwrm_exec_fwd_resp_input req = {.req_type = 0 };
struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, EXEC_FWD_RESP, -1, resp);
memcpy(req.encap_request, fwd_cmd,
sizeof(req.encap_request));
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
int bnxt_hwrm_func_qcaps(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_qcaps_input req = {.req_type = 0 };
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_QCAPS, -1, resp);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
bp->max_ring_grps = rte_le_to_cpu_32(resp->max_hw_ring_grps);
if (BNXT_PF(bp)) {
struct bnxt_pf_info *pf = &bp->pf;
pf->fw_fid = rte_le_to_cpu_32(resp->fid);
pf->port_id = resp->port_id;
memcpy(pf->mac_addr, resp->mac_address, ETHER_ADDR_LEN);
pf->max_rsscos_ctx = rte_le_to_cpu_16(resp->max_rsscos_ctx);
pf->max_cp_rings = rte_le_to_cpu_16(resp->max_cmpl_rings);
pf->max_tx_rings = rte_le_to_cpu_16(resp->max_tx_rings);
pf->max_rx_rings = rte_le_to_cpu_16(resp->max_rx_rings);
pf->max_l2_ctx = rte_le_to_cpu_16(resp->max_l2_ctxs);
pf->max_vnics = rte_le_to_cpu_16(resp->max_vnics);
pf->first_vf_id = rte_le_to_cpu_16(resp->first_vf_id);
pf->max_vfs = rte_le_to_cpu_16(resp->max_vfs);
} else {
struct bnxt_vf_info *vf = &bp->vf;
vf->fw_fid = rte_le_to_cpu_32(resp->fid);
memcpy(vf->mac_addr, &resp->mac_address, ETHER_ADDR_LEN);
vf->max_rsscos_ctx = rte_le_to_cpu_16(resp->max_rsscos_ctx);
vf->max_cp_rings = rte_le_to_cpu_16(resp->max_cmpl_rings);
vf->max_tx_rings = rte_le_to_cpu_16(resp->max_tx_rings);
vf->max_rx_rings = rte_le_to_cpu_16(resp->max_rx_rings);
vf->max_l2_ctx = rte_le_to_cpu_16(resp->max_l2_ctxs);
vf->max_vnics = rte_le_to_cpu_16(resp->max_vnics);
}
return rc;
}
int bnxt_hwrm_func_reset(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_reset_input req = {.req_type = 0 };
struct hwrm_func_reset_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_RESET, -1, resp);
req.enables = rte_cpu_to_le_32(0);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
int bnxt_hwrm_func_driver_register(struct bnxt *bp, uint32_t flags,
uint32_t *vf_req_fwd)
{
int rc;
struct hwrm_func_drv_rgtr_input req = {.req_type = 0 };
struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (bp->flags & BNXT_FLAG_REGISTERED)
return 0;
HWRM_PREP(req, FUNC_DRV_RGTR, -1, resp);
req.flags = flags;
req.enables = HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_VER |
HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_ASYNC_EVENT_FWD;
req.ver_maj = RTE_VER_YEAR;
req.ver_min = RTE_VER_MONTH;
req.ver_upd = RTE_VER_MINOR;
memcpy(req.vf_req_fwd, vf_req_fwd, sizeof(req.vf_req_fwd));
req.async_event_fwd[0] |= rte_cpu_to_le_32(0x1); /* TODO: Use MACRO */
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
bp->flags |= BNXT_FLAG_REGISTERED;
return rc;
}
int bnxt_hwrm_ver_get(struct bnxt *bp)
{
int rc = 0;
struct hwrm_ver_get_input req = {.req_type = 0 };
struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t my_version;
uint32_t fw_version;
uint16_t max_resp_len;
char type[RTE_MEMZONE_NAMESIZE];
HWRM_PREP(req, VER_GET, -1, resp);
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
req.hwrm_intf_min = HWRM_VERSION_MINOR;
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
/*
* Hold the lock since we may be adjusting the response pointers.
*/
rte_spinlock_lock(&bp->hwrm_lock);
rc = bnxt_hwrm_send_message_locked(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
RTE_LOG(INFO, PMD, "%d.%d.%d:%d.%d.%d\n",
resp->hwrm_intf_maj, resp->hwrm_intf_min,
resp->hwrm_intf_upd,
resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld);
RTE_LOG(INFO, PMD, "Driver HWRM version: %d.%d.%d\n",
HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, HWRM_VERSION_UPDATE);
my_version = HWRM_VERSION_MAJOR << 16;
my_version |= HWRM_VERSION_MINOR << 8;
my_version |= HWRM_VERSION_UPDATE;
fw_version = resp->hwrm_intf_maj << 16;
fw_version |= resp->hwrm_intf_min << 8;
fw_version |= resp->hwrm_intf_upd;
if (resp->hwrm_intf_maj != HWRM_VERSION_MAJOR) {
RTE_LOG(ERR, PMD, "Unsupported firmware API version\n");
rc = -EINVAL;
goto error;
}
if (my_version != fw_version) {
RTE_LOG(INFO, PMD, "BNXT Driver/HWRM API mismatch.\n");
if (my_version < fw_version) {
RTE_LOG(INFO, PMD,
"Firmware API version is newer than driver.\n");
RTE_LOG(INFO, PMD,
"The driver may be missing features.\n");
} else {
RTE_LOG(INFO, PMD,
"Firmware API version is older than driver.\n");
RTE_LOG(INFO, PMD,
"Not all driver features may be functional.\n");
}
}
if (bp->max_req_len > resp->max_req_win_len) {
RTE_LOG(ERR, PMD, "Unsupported request length\n");
rc = -EINVAL;
}
bp->max_req_len = resp->max_req_win_len;
max_resp_len = resp->max_resp_len;
if (bp->max_resp_len != max_resp_len) {
sprintf(type, "bnxt_hwrm_%04x:%02x:%02x:%02x",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function);
rte_free(bp->hwrm_cmd_resp_addr);
bp->hwrm_cmd_resp_addr = rte_malloc(type, max_resp_len, 0);
if (bp->hwrm_cmd_resp_addr == NULL) {
rc = -ENOMEM;
goto error;
}
bp->hwrm_cmd_resp_dma_addr =
rte_malloc_virt2phy(bp->hwrm_cmd_resp_addr);
bp->max_resp_len = max_resp_len;
}
error:
rte_spinlock_unlock(&bp->hwrm_lock);
return rc;
}
int bnxt_hwrm_func_driver_unregister(struct bnxt *bp, uint32_t flags)
{
int rc;
struct hwrm_func_drv_unrgtr_input req = {.req_type = 0 };
struct hwrm_func_drv_unrgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (!(bp->flags & BNXT_FLAG_REGISTERED))
return 0;
HWRM_PREP(req, FUNC_DRV_UNRGTR, -1, resp);
req.flags = flags;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
bp->flags &= ~BNXT_FLAG_REGISTERED;
return rc;
}
static int bnxt_hwrm_port_phy_cfg(struct bnxt *bp, struct bnxt_link_info *conf)
{
int rc = 0;
struct hwrm_port_phy_cfg_input req = {0};
struct hwrm_port_phy_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
HWRM_PREP(req, PORT_PHY_CFG, -1, resp);
if (conf->link_up) {
req.flags = rte_cpu_to_le_32(conf->phy_flags);
req.force_link_speed = rte_cpu_to_le_16(conf->link_speed);
/*
* Note, ChiMP FW 20.2.1 and 20.2.2 return an error when we set
* any auto mode, even "none".
*/
if (!conf->link_speed) {
req.auto_mode |= conf->auto_mode;
enables = HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_MODE;
req.auto_link_speed_mask = conf->auto_link_speed_mask;
enables |=
HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_LINK_SPEED_MASK;
req.auto_link_speed = bp->link_info.auto_link_speed;
enables |=
HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_LINK_SPEED;
}
req.auto_duplex = conf->duplex;
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_DUPLEX;
req.auto_pause = conf->auto_pause;
req.force_pause = conf->force_pause;
/* Set force_pause if there is no auto or if there is a force */
if (req.auto_pause && !req.force_pause)
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_PAUSE;
else
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_FORCE_PAUSE;
req.enables = rte_cpu_to_le_32(enables);
} else {
req.flags =
rte_cpu_to_le_32(HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE_LINK_DOWN);
RTE_LOG(INFO, PMD, "Force Link Down\n");
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
static int bnxt_hwrm_port_phy_qcfg(struct bnxt *bp,
struct bnxt_link_info *link_info)
{
int rc = 0;
struct hwrm_port_phy_qcfg_input req = {0};
struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, PORT_PHY_QCFG, -1, resp);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
link_info->phy_link_status = resp->link;
if (link_info->phy_link_status != HWRM_PORT_PHY_QCFG_OUTPUT_LINK_NO_LINK) {
link_info->link_up = 1;
link_info->link_speed = rte_le_to_cpu_16(resp->link_speed);
} else {
link_info->link_up = 0;
link_info->link_speed = 0;
}
link_info->duplex = resp->duplex;
link_info->pause = resp->pause;
link_info->auto_pause = resp->auto_pause;
link_info->force_pause = resp->force_pause;
link_info->auto_mode = resp->auto_mode;
link_info->support_speeds = rte_le_to_cpu_16(resp->support_speeds);
link_info->auto_link_speed = rte_le_to_cpu_16(resp->auto_link_speed);
link_info->preemphasis = rte_le_to_cpu_32(resp->preemphasis);
link_info->phy_ver[0] = resp->phy_maj;
link_info->phy_ver[1] = resp->phy_min;
link_info->phy_ver[2] = resp->phy_bld;
return rc;
}
int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
{
int rc = 0;
struct hwrm_queue_qportcfg_input req = {.req_type = 0 };
struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, QUEUE_QPORTCFG, -1, resp);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
#define GET_QUEUE_INFO(x) \
bp->cos_queue[x].id = resp->queue_id##x; \
bp->cos_queue[x].profile = resp->queue_id##x##_service_profile
GET_QUEUE_INFO(0);
GET_QUEUE_INFO(1);
GET_QUEUE_INFO(2);
GET_QUEUE_INFO(3);
GET_QUEUE_INFO(4);
GET_QUEUE_INFO(5);
GET_QUEUE_INFO(6);
GET_QUEUE_INFO(7);
return rc;
}
int bnxt_hwrm_ring_alloc(struct bnxt *bp,
struct bnxt_ring *ring,
uint32_t ring_type, uint32_t map_index,
uint32_t stats_ctx_id)
{
int rc = 0;
struct hwrm_ring_alloc_input req = {.req_type = 0 };
struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_ALLOC, -1, resp);
req.enables = rte_cpu_to_le_32(0);
req.page_tbl_addr = rte_cpu_to_le_64(ring->bd_dma);
req.fbo = rte_cpu_to_le_32(0);
/* Association of ring index with doorbell index */
req.logical_id = rte_cpu_to_le_16(map_index);
switch (ring_type) {
case HWRM_RING_ALLOC_INPUT_RING_TYPE_TX:
req.queue_id = bp->cos_queue[0].id;
/* FALLTHROUGH */
case HWRM_RING_ALLOC_INPUT_RING_TYPE_RX:
req.ring_type = ring_type;
req.cmpl_ring_id =
rte_cpu_to_le_16(bp->grp_info[map_index].cp_fw_ring_id);
req.length = rte_cpu_to_le_32(ring->ring_size);
req.stat_ctx_id = rte_cpu_to_le_16(stats_ctx_id);
req.enables = rte_cpu_to_le_32(rte_le_to_cpu_32(req.enables) |
HWRM_RING_ALLOC_INPUT_ENABLES_STAT_CTX_ID_VALID);
break;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_CMPL:
req.ring_type = ring_type;
/*
* TODO: Some HWRM versions crash with
* HWRM_RING_ALLOC_INPUT_INT_MODE_POLL
*/
req.int_mode = HWRM_RING_ALLOC_INPUT_INT_MODE_MSIX;
req.length = rte_cpu_to_le_32(ring->ring_size);
break;
default:
RTE_LOG(ERR, PMD, "hwrm alloc invalid ring type %d\n",
ring_type);
return -1;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc || resp->error_code) {
if (rc == 0 && resp->error_code)
rc = rte_le_to_cpu_16(resp->error_code);
switch (ring_type) {
case HWRM_RING_FREE_INPUT_RING_TYPE_CMPL:
RTE_LOG(ERR, PMD,
"hwrm_ring_alloc cp failed. rc:%d\n", rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_RX:
RTE_LOG(ERR, PMD,
"hwrm_ring_alloc rx failed. rc:%d\n", rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_TX:
RTE_LOG(ERR, PMD,
"hwrm_ring_alloc tx failed. rc:%d\n", rc);
return rc;
default:
RTE_LOG(ERR, PMD, "Invalid ring. rc:%d\n", rc);
return rc;
}
}
ring->fw_ring_id = rte_le_to_cpu_16(resp->ring_id);
return rc;
}
int bnxt_hwrm_ring_free(struct bnxt *bp,
struct bnxt_ring *ring, uint32_t ring_type)
{
int rc;
struct hwrm_ring_free_input req = {.req_type = 0 };
struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_FREE, -1, resp);
req.ring_type = ring_type;
req.ring_id = rte_cpu_to_le_16(ring->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc || resp->error_code) {
if (rc == 0 && resp->error_code)
rc = rte_le_to_cpu_16(resp->error_code);
switch (ring_type) {
case HWRM_RING_FREE_INPUT_RING_TYPE_CMPL:
RTE_LOG(ERR, PMD, "hwrm_ring_free cp failed. rc:%d\n",
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_RX:
RTE_LOG(ERR, PMD, "hwrm_ring_free rx failed. rc:%d\n",
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_TX:
RTE_LOG(ERR, PMD, "hwrm_ring_free tx failed. rc:%d\n",
rc);
return rc;
default:
RTE_LOG(ERR, PMD, "Invalid ring, rc:%d\n", rc);
return rc;
}
}
return 0;
}
int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp, unsigned int idx)
{
int rc = 0;
struct hwrm_ring_grp_alloc_input req = {.req_type = 0 };
struct hwrm_ring_grp_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_GRP_ALLOC, -1, resp);
req.cr = rte_cpu_to_le_16(bp->grp_info[idx].cp_fw_ring_id);
req.rr = rte_cpu_to_le_16(bp->grp_info[idx].rx_fw_ring_id);
req.ar = rte_cpu_to_le_16(bp->grp_info[idx].ag_fw_ring_id);
req.sc = rte_cpu_to_le_16(bp->grp_info[idx].fw_stats_ctx);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
bp->grp_info[idx].fw_grp_id =
rte_le_to_cpu_16(resp->ring_group_id);
return rc;
}
int bnxt_hwrm_ring_grp_free(struct bnxt *bp, unsigned int idx)
{
int rc;
struct hwrm_ring_grp_free_input req = {.req_type = 0 };
struct hwrm_ring_grp_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_GRP_FREE, -1, resp);
req.ring_group_id = rte_cpu_to_le_16(bp->grp_info[idx].fw_grp_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
bp->grp_info[idx].fw_grp_id = INVALID_HW_RING_ID;
return rc;
}
int bnxt_hwrm_stat_clear(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
int rc = 0;
struct hwrm_stat_ctx_clr_stats_input req = {.req_type = 0 };
struct hwrm_stat_ctx_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_CLR_STATS, -1, resp);
if (cpr->hw_stats_ctx_id == (uint32_t)HWRM_NA_SIGNATURE)
return rc;
req.stat_ctx_id = rte_cpu_to_le_16(cpr->hw_stats_ctx_id);
req.seq_id = rte_cpu_to_le_16(bp->hwrm_cmd_seq++);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr, unsigned int idx)
{
int rc;
struct hwrm_stat_ctx_alloc_input req = {.req_type = 0 };
struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_ALLOC, -1, resp);
req.update_period_ms = rte_cpu_to_le_32(1000);
req.seq_id = rte_cpu_to_le_16(bp->hwrm_cmd_seq++);
req.stats_dma_addr =
rte_cpu_to_le_64(cpr->hw_stats_map);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
cpr->hw_stats_ctx_id = rte_le_to_cpu_16(resp->stat_ctx_id);
bp->grp_info[idx].fw_stats_ctx = cpr->hw_stats_ctx_id;
return rc;
}
int bnxt_hwrm_stat_ctx_free(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr, unsigned int idx)
{
int rc;
struct hwrm_stat_ctx_free_input req = {.req_type = 0 };
struct hwrm_stat_ctx_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_FREE, -1, resp);
req.stat_ctx_id = rte_cpu_to_le_16(cpr->hw_stats_ctx_id);
req.seq_id = rte_cpu_to_le_16(bp->hwrm_cmd_seq++);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
cpr->hw_stats_ctx_id = HWRM_NA_SIGNATURE;
bp->grp_info[idx].fw_stats_ctx = cpr->hw_stats_ctx_id;
return rc;
}
int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0, i, j;
struct hwrm_vnic_alloc_input req = { 0 };
struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
/* map ring groups to this vnic */
for (i = vnic->start_grp_id, j = 0; i <= vnic->end_grp_id; i++, j++) {
if (bp->grp_info[i].fw_grp_id == (uint16_t)HWRM_NA_SIGNATURE) {
RTE_LOG(ERR, PMD,
"Not enough ring groups avail:%x req:%x\n", j,
(vnic->end_grp_id - vnic->start_grp_id) + 1);
break;
}
vnic->fw_grp_ids[j] = bp->grp_info[i].fw_grp_id;
}
vnic->fw_rss_cos_lb_ctx = (uint16_t)HWRM_NA_SIGNATURE;
vnic->ctx_is_rss_cos_lb = HW_CONTEXT_NONE;
HWRM_PREP(req, VNIC_ALLOC, -1, resp);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
vnic->fw_vnic_id = rte_le_to_cpu_16(resp->vnic_id);
return rc;
}
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_cfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_CFG, -1, resp);
/* Only RSS support for now TBD: COS & LB */
req.enables =
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_ENABLES_DFLT_RING_GRP |
HWRM_VNIC_CFG_INPUT_ENABLES_RSS_RULE |
HWRM_VNIC_CFG_INPUT_ENABLES_MRU);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.dflt_ring_grp =
rte_cpu_to_le_16(bp->grp_info[vnic->start_grp_id].fw_grp_id);
req.rss_rule = rte_cpu_to_le_16(vnic->fw_rss_cos_lb_ctx);
req.cos_rule = rte_cpu_to_le_16(0xffff);
req.lb_rule = rte_cpu_to_le_16(0xffff);
req.mru = rte_cpu_to_le_16(bp->eth_dev->data->mtu + ETHER_HDR_LEN +
ETHER_CRC_LEN + VLAN_TAG_SIZE);
if (vnic->func_default)
req.flags = 1;
if (vnic->vlan_strip)
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_VLAN_STRIP_MODE);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_RSS_COS_LB_CTX_ALLOC, -1, resp);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
vnic->fw_rss_cos_lb_ctx = rte_le_to_cpu_16(resp->rss_cos_lb_ctx_id);
return rc;
}
int bnxt_hwrm_vnic_ctx_free(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cos_lb_ctx_free_output *resp =
bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_RSS_COS_LB_CTX_FREE, -1, resp);
req.rss_cos_lb_ctx_id = rte_cpu_to_le_16(vnic->fw_rss_cos_lb_ctx);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
return rc;
}
int bnxt_hwrm_vnic_free(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_free_input req = {.req_type = 0 };
struct hwrm_vnic_free_output *resp = bp->hwrm_cmd_resp_addr;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
return rc;
HWRM_PREP(req, VNIC_FREE, -1, resp);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
vnic->fw_vnic_id = INVALID_HW_RING_ID;
return rc;
}
int bnxt_hwrm_vnic_rss_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_RSS_CFG, -1, resp);
req.hash_type = rte_cpu_to_le_32(vnic->hash_type);
req.ring_grp_tbl_addr =
rte_cpu_to_le_64(vnic->rss_table_dma_addr);
req.hash_key_tbl_addr =
rte_cpu_to_le_64(vnic->rss_hash_key_dma_addr);
req.rss_ctx_idx = rte_cpu_to_le_16(vnic->fw_rss_cos_lb_ctx);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
return rc;
}
/*
* HWRM utility functions
*/
int bnxt_clear_all_hwrm_stat_ctxs(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq;
struct bnxt_rx_queue *rxq;
struct bnxt_cp_ring_info *cpr;
if (i >= bp->rx_cp_nr_rings) {
txq = bp->tx_queues[i - bp->rx_cp_nr_rings];
cpr = txq->cp_ring;
} else {
rxq = bp->rx_queues[i];
cpr = rxq->cp_ring;
}
rc = bnxt_hwrm_stat_clear(bp, cpr);
if (rc)
return rc;
}
return 0;
}
int bnxt_free_all_hwrm_stat_ctxs(struct bnxt *bp)
{
int rc;
unsigned int i;
struct bnxt_cp_ring_info *cpr;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
unsigned int idx = i + 1;
if (i >= bp->rx_cp_nr_rings)
cpr = bp->tx_queues[i - bp->rx_cp_nr_rings]->cp_ring;
else
cpr = bp->rx_queues[i]->cp_ring;
if (cpr->hw_stats_ctx_id != HWRM_NA_SIGNATURE) {
rc = bnxt_hwrm_stat_ctx_free(bp, cpr, idx);
if (rc)
return rc;
}
}
return 0;
}
int bnxt_alloc_all_hwrm_stat_ctxs(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq;
struct bnxt_rx_queue *rxq;
struct bnxt_cp_ring_info *cpr;
unsigned int idx = i + 1;
if (i >= bp->rx_cp_nr_rings) {
txq = bp->tx_queues[i - bp->rx_cp_nr_rings];
cpr = txq->cp_ring;
} else {
rxq = bp->rx_queues[i];
cpr = rxq->cp_ring;
}
rc = bnxt_hwrm_stat_ctx_alloc(bp, cpr, idx);
if (rc)
return rc;
}
return rc;
}
int bnxt_free_all_hwrm_ring_grps(struct bnxt *bp)
{
uint16_t i;
uint32_t rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
unsigned int idx = i + 1;
if (bp->grp_info[idx].fw_grp_id == INVALID_HW_RING_ID) {
RTE_LOG(ERR, PMD,
"Attempt to free invalid ring group %d\n",
idx);
continue;
}
rc = bnxt_hwrm_ring_grp_free(bp, idx);
if (rc)
return rc;
}
return rc;
}
static void bnxt_free_cp_ring(struct bnxt *bp,
struct bnxt_cp_ring_info *cpr, unsigned int idx)
{
struct bnxt_ring *cp_ring = cpr->cp_ring_struct;
bnxt_hwrm_ring_free(bp, cp_ring,
HWRM_RING_FREE_INPUT_RING_TYPE_CMPL);
cp_ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[idx].cp_fw_ring_id = INVALID_HW_RING_ID;
memset(cpr->cp_desc_ring, 0, cpr->cp_ring_struct->ring_size *
sizeof(*cpr->cp_desc_ring));
cpr->cp_raw_cons = 0;
}
int bnxt_free_all_hwrm_rings(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq = bp->tx_queues[i];
struct bnxt_tx_ring_info *txr = txq->tx_ring;
struct bnxt_ring *ring = txr->tx_ring_struct;
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
unsigned int idx = bp->rx_cp_nr_rings + i + 1;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_TX);
ring->fw_ring_id = INVALID_HW_RING_ID;
memset(txr->tx_desc_ring, 0,
txr->tx_ring_struct->ring_size *
sizeof(*txr->tx_desc_ring));
memset(txr->tx_buf_ring, 0,
txr->tx_ring_struct->ring_size *
sizeof(*txr->tx_buf_ring));
txr->tx_prod = 0;
txr->tx_cons = 0;
}
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID)
bnxt_free_cp_ring(bp, cpr, idx);
}
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
struct bnxt_rx_queue *rxq = bp->rx_queues[i];
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct bnxt_ring *ring = rxr->rx_ring_struct;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
unsigned int idx = i + 1;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_RX);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[idx].rx_fw_ring_id = INVALID_HW_RING_ID;
memset(rxr->rx_desc_ring, 0,
rxr->rx_ring_struct->ring_size *
sizeof(*rxr->rx_desc_ring));
memset(rxr->rx_buf_ring, 0,
rxr->rx_ring_struct->ring_size *
sizeof(*rxr->rx_buf_ring));
rxr->rx_prod = 0;
}
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID)
bnxt_free_cp_ring(bp, cpr, idx);
}
/* Default completion ring */
{
struct bnxt_cp_ring_info *cpr = bp->def_cp_ring;
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID)
bnxt_free_cp_ring(bp, cpr, 0);
}
return rc;
}
int bnxt_alloc_all_hwrm_ring_grps(struct bnxt *bp)
{
uint16_t i;
uint32_t rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
unsigned int idx = i + 1;
if (bp->grp_info[idx].cp_fw_ring_id == INVALID_HW_RING_ID ||
bp->grp_info[idx].rx_fw_ring_id == INVALID_HW_RING_ID)
continue;
rc = bnxt_hwrm_ring_grp_alloc(bp, idx);
if (rc)
return rc;
}
return rc;
}
void bnxt_free_hwrm_resources(struct bnxt *bp)
{
/* Release memzone */
rte_free(bp->hwrm_cmd_resp_addr);
bp->hwrm_cmd_resp_addr = NULL;
bp->hwrm_cmd_resp_dma_addr = 0;
}
int bnxt_alloc_hwrm_resources(struct bnxt *bp)
{
struct rte_pci_device *pdev = bp->pdev;
char type[RTE_MEMZONE_NAMESIZE];
sprintf(type, "bnxt_hwrm_%04x:%02x:%02x:%02x", pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
bp->max_req_len = HWRM_MAX_REQ_LEN;
bp->max_resp_len = HWRM_MAX_RESP_LEN;
bp->hwrm_cmd_resp_addr = rte_malloc(type, bp->max_resp_len, 0);
if (bp->hwrm_cmd_resp_addr == NULL)
return -ENOMEM;
bp->hwrm_cmd_resp_dma_addr =
rte_malloc_virt2phy(bp->hwrm_cmd_resp_addr);
rte_spinlock_init(&bp->hwrm_lock);
return 0;
}
int bnxt_clear_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) {
rc = bnxt_hwrm_clear_filter(bp, filter);
if (rc)
break;
}
return rc;
}
int bnxt_set_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) {
rc = bnxt_hwrm_set_filter(bp, vnic, filter);
if (rc)
break;
}
return rc;
}
void bnxt_free_all_hwrm_resources(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic;
unsigned int i;
if (bp->vnic_info == NULL)
return;
vnic = &bp->vnic_info[0];
bnxt_hwrm_cfa_l2_clear_rx_mask(bp, vnic);
/* VNIC resources */
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
bnxt_clear_hwrm_vnic_filters(bp, vnic);
bnxt_hwrm_vnic_ctx_free(bp, vnic);
bnxt_hwrm_vnic_free(bp, vnic);
}
/* Ring resources */
bnxt_free_all_hwrm_rings(bp);
bnxt_free_all_hwrm_ring_grps(bp);
bnxt_free_all_hwrm_stat_ctxs(bp);
}
static uint16_t bnxt_parse_eth_link_duplex(uint32_t conf_link_speed)
{
uint8_t hw_link_duplex = HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH;
if ((conf_link_speed & ETH_LINK_SPEED_FIXED) == ETH_LINK_SPEED_AUTONEG)
return HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH;
switch (conf_link_speed) {
case ETH_LINK_SPEED_10M_HD:
case ETH_LINK_SPEED_100M_HD:
return HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_HALF;
}
return hw_link_duplex;
}
static uint16_t bnxt_parse_eth_link_speed(uint32_t conf_link_speed)
{
uint16_t eth_link_speed = 0;
if (conf_link_speed == ETH_LINK_SPEED_AUTONEG)
return ETH_LINK_SPEED_AUTONEG;
switch (conf_link_speed & ~ETH_LINK_SPEED_FIXED) {
case ETH_LINK_SPEED_100M:
case ETH_LINK_SPEED_100M_HD:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_100MB;
break;
case ETH_LINK_SPEED_1G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_1GB;
break;
case ETH_LINK_SPEED_2_5G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_2_5GB;
break;
case ETH_LINK_SPEED_10G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_10GB;
break;
case ETH_LINK_SPEED_20G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_20GB;
break;
case ETH_LINK_SPEED_25G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_25GB;
break;
case ETH_LINK_SPEED_40G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_40GB;
break;
case ETH_LINK_SPEED_50G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_50GB;
break;
default:
RTE_LOG(ERR, PMD,
"Unsupported link speed %d; default to AUTO\n",
conf_link_speed);
break;
}
return eth_link_speed;
}
#define BNXT_SUPPORTED_SPEEDS (ETH_LINK_SPEED_100M | ETH_LINK_SPEED_100M_HD | \
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G | \
ETH_LINK_SPEED_10G | ETH_LINK_SPEED_20G | ETH_LINK_SPEED_25G | \
ETH_LINK_SPEED_40G | ETH_LINK_SPEED_50G)
static int bnxt_valid_link_speed(uint32_t link_speed, uint8_t port_id)
{
uint32_t one_speed;
if (link_speed == ETH_LINK_SPEED_AUTONEG)
return 0;
if (link_speed & ETH_LINK_SPEED_FIXED) {
one_speed = link_speed & ~ETH_LINK_SPEED_FIXED;
if (one_speed & (one_speed - 1)) {
RTE_LOG(ERR, PMD,
"Invalid advertised speeds (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
if ((one_speed & BNXT_SUPPORTED_SPEEDS) != one_speed) {
RTE_LOG(ERR, PMD,
"Unsupported advertised speed (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
} else {
if (!(link_speed & BNXT_SUPPORTED_SPEEDS)) {
RTE_LOG(ERR, PMD,
"Unsupported advertised speeds (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
}
return 0;
}
static uint16_t bnxt_parse_eth_link_speed_mask(uint32_t link_speed)
{
uint16_t ret = 0;
if (link_speed == ETH_LINK_SPEED_AUTONEG)
link_speed = BNXT_SUPPORTED_SPEEDS;
if (link_speed & ETH_LINK_SPEED_100M)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100MB;
if (link_speed & ETH_LINK_SPEED_100M_HD)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100MB;
if (link_speed & ETH_LINK_SPEED_1G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_1GB;
if (link_speed & ETH_LINK_SPEED_2_5G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_2_5GB;
if (link_speed & ETH_LINK_SPEED_10G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_10GB;
if (link_speed & ETH_LINK_SPEED_20G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_20GB;
if (link_speed & ETH_LINK_SPEED_25G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_25GB;
if (link_speed & ETH_LINK_SPEED_40G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_40GB;
if (link_speed & ETH_LINK_SPEED_50G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_50GB;
return ret;
}
static uint32_t bnxt_parse_hw_link_speed(uint16_t hw_link_speed)
{
uint32_t eth_link_speed = ETH_SPEED_NUM_NONE;
switch (hw_link_speed) {
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB:
eth_link_speed = ETH_SPEED_NUM_100M;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_1GB:
eth_link_speed = ETH_SPEED_NUM_1G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_2_5GB:
eth_link_speed = ETH_SPEED_NUM_2_5G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_10GB:
eth_link_speed = ETH_SPEED_NUM_10G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_20GB:
eth_link_speed = ETH_SPEED_NUM_20G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_25GB:
eth_link_speed = ETH_SPEED_NUM_25G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_40GB:
eth_link_speed = ETH_SPEED_NUM_40G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_50GB:
eth_link_speed = ETH_SPEED_NUM_50G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_2GB:
default:
RTE_LOG(ERR, PMD, "HWRM link speed %d not defined\n",
hw_link_speed);
break;
}
return eth_link_speed;
}
static uint16_t bnxt_parse_hw_link_duplex(uint16_t hw_link_duplex)
{
uint16_t eth_link_duplex = ETH_LINK_FULL_DUPLEX;
switch (hw_link_duplex) {
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH:
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_FULL:
eth_link_duplex = ETH_LINK_FULL_DUPLEX;
break;
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_HALF:
eth_link_duplex = ETH_LINK_HALF_DUPLEX;
break;
default:
RTE_LOG(ERR, PMD, "HWRM link duplex %d not defined\n",
hw_link_duplex);
break;
}
return eth_link_duplex;
}
int bnxt_get_hwrm_link_config(struct bnxt *bp, struct rte_eth_link *link)
{
int rc = 0;
struct bnxt_link_info *link_info = &bp->link_info;
rc = bnxt_hwrm_port_phy_qcfg(bp, link_info);
if (rc) {
RTE_LOG(ERR, PMD,
"Get link config failed with rc %d\n", rc);
goto exit;
}
if (link_info->link_up)
link->link_speed =
bnxt_parse_hw_link_speed(link_info->link_speed);
else
link->link_speed = ETH_LINK_SPEED_10M;
link->link_duplex = bnxt_parse_hw_link_duplex(link_info->duplex);
link->link_status = link_info->link_up;
link->link_autoneg = link_info->auto_mode ==
HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE ?
ETH_LINK_SPEED_FIXED : ETH_LINK_SPEED_AUTONEG;
exit:
return rc;
}
int bnxt_set_hwrm_link_config(struct bnxt *bp, bool link_up)
{
int rc = 0;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_link_info link_req;
uint16_t speed;
if (BNXT_NPAR_PF(bp) || BNXT_VF(bp))
return 0;
rc = bnxt_valid_link_speed(dev_conf->link_speeds,
bp->eth_dev->data->port_id);
if (rc)
goto error;
memset(&link_req, 0, sizeof(link_req));
link_req.link_up = link_up;
if (!link_up)
goto port_phy_cfg;
speed = bnxt_parse_eth_link_speed(dev_conf->link_speeds);
link_req.phy_flags = HWRM_PORT_PHY_CFG_INPUT_FLAGS_RESET_PHY;
if (speed == 0) {
link_req.phy_flags |=
HWRM_PORT_PHY_CFG_INPUT_FLAGS_RESTART_AUTONEG;
link_req.auto_mode =
HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_SPEED_MASK;
link_req.auto_link_speed_mask =
bnxt_parse_eth_link_speed_mask(dev_conf->link_speeds);
} else {
link_req.phy_flags |= HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE;
link_req.link_speed = speed;
RTE_LOG(INFO, PMD, "Set Link Speed %x\n", speed);
}
link_req.duplex = bnxt_parse_eth_link_duplex(dev_conf->link_speeds);
link_req.auto_pause = bp->link_info.auto_pause;
link_req.force_pause = bp->link_info.force_pause;
port_phy_cfg:
rc = bnxt_hwrm_port_phy_cfg(bp, &link_req);
if (rc) {
RTE_LOG(ERR, PMD,
"Set link config failed with rc %d\n", rc);
}
rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
error:
return rc;
}
/* JIRA 22088 */
int bnxt_hwrm_func_qcfg(struct bnxt *bp)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, FUNC_QCFG, -1, resp);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT;
if (BNXT_VF(bp)) {
struct bnxt_vf_info *vf = &bp->vf;
/* Hard Coded.. 0xfff VLAN ID mask */
vf->vlan = rte_le_to_cpu_16(resp->vlan) & 0xfff;
}
switch (resp->port_partition_type) {
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR1_0:
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR1_5:
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR2_0:
bp->port_partition_type = resp->port_partition_type;
break;
default:
bp->port_partition_type = 0;
break;
}
return rc;
}