numam-dpdk/drivers/net/nfp/nfp_nspu.c
Alejandro Lucero fee720e929 net/nfp: fix null pointer check
First, the received pointer was not checked before. Then the pointer
from malloc was not the one used in the existing check.

Coverity issue: 195027
Fixes: ad60bca34899 ("net/nfp: read PF port MAC addr using NSP")

Signed-off-by: Alejandro Lucero <alejandro.lucero@netronome.com>
2017-11-10 09:31:24 +00:00

640 lines
16 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <rte_log.h>
#include <rte_byteorder.h>
#include "nfp_nfpu.h"
#define CFG_EXP_BAR_ADDR_SZ 1
#define CFG_EXP_BAR_MAP_TYPE 1
#define EXP_BAR_TARGET_SHIFT 23
#define EXP_BAR_LENGTH_SHIFT 27 /* 0=32, 1=64 bit increment */
#define EXP_BAR_MAP_TYPE_SHIFT 29 /* Bulk BAR map */
/* NFP target for NSP access */
#define NFP_NSP_TARGET 7
/* Expansion BARs for mapping PF vnic BARs */
#define NFP_NET_PF_CFG_EXP_BAR 6
#define NFP_NET_PF_HW_QUEUES_EXP_BAR 5
/*
* This is an NFP internal address used for configuring properly an NFP
* expansion BAR.
*/
#define MEM_CMD_BASE_ADDR 0x8100000000
/* NSP interface registers */
#define NSP_BASE (MEM_CMD_BASE_ADDR + 0x22100)
#define NSP_STATUS 0x00
#define NSP_COMMAND 0x08
#define NSP_BUFFER 0x10
#define NSP_DEFAULT_BUF 0x18
#define NSP_DEFAULT_BUF_CFG 0x20
#define NSP_MAGIC 0xab10
#define NSP_STATUS_MAGIC(x) (((x) >> 48) & 0xffff)
#define NSP_STATUS_MAJOR(x) (int)(((x) >> 44) & 0xf)
#define NSP_STATUS_MINOR(x) (int)(((x) >> 32) & 0xfff)
/* NSP commands */
#define NSP_CMD_RESET 1
#define NSP_CMD_FW_LOAD 6
#define NSP_CMD_READ_ETH_TABLE 7
#define NSP_CMD_WRITE_ETH_TABLE 8
#define NSP_CMD_GET_SYMBOL 14
#define NSP_BUFFER_CFG_SIZE_MASK (0xff)
#define NSP_REG_ADDR(d, off, reg) ((uint8_t *)(d)->mem_base + (off) + (reg))
#define NSP_REG_VAL(p) (*(uint64_t *)(p))
/*
* An NFP expansion BAR is configured for allowing access to a specific NFP
* target:
*
* IN:
* desc: struct with basic NSP addresses to work with
* expbar: NFP PF expansion BAR index to configure
* tgt: NFP target to configure access
* addr: NFP target address
*
* OUT:
* pcie_offset: NFP PCI BAR offset to work with
*/
static void
nfp_nspu_mem_bar_cfg(nspu_desc_t *desc, int expbar, int tgt,
uint64_t addr, uint64_t *pcie_offset)
{
uint64_t x, y, barsz;
uint32_t *expbar_ptr;
barsz = desc->barsz;
/*
* NFP CPP address to configure. This comes from NFP 6000
* datasheet document based on Bulk mapping.
*/
x = (addr >> (barsz - 3)) << (21 - (40 - (barsz - 3)));
x |= CFG_EXP_BAR_MAP_TYPE << EXP_BAR_MAP_TYPE_SHIFT;
x |= CFG_EXP_BAR_ADDR_SZ << EXP_BAR_LENGTH_SHIFT;
x |= tgt << EXP_BAR_TARGET_SHIFT;
/* Getting expansion bar configuration register address */
expbar_ptr = (uint32_t *)desc->cfg_base;
/* Each physical PCI BAR has 8 NFP expansion BARs */
expbar_ptr += (desc->pcie_bar * 8) + expbar;
/* Writing to the expansion BAR register */
*expbar_ptr = (uint32_t)x;
/* Getting the pcie offset to work with from userspace */
y = addr & ((uint64_t)(1 << (barsz - 3)) - 1);
*pcie_offset = y;
}
/*
* Configuring an expansion bar for accessing NSP userspace interface. This
* function configures always the same expansion bar, which implies access to
* previously configured NFP target is lost.
*/
static void
nspu_xlate(nspu_desc_t *desc, uint64_t addr, uint64_t *pcie_offset)
{
nfp_nspu_mem_bar_cfg(desc, desc->exp_bar, NFP_NSP_TARGET, addr,
pcie_offset);
}
int
nfp_nsp_get_abi_version(nspu_desc_t *desc, int *major, int *minor)
{
uint64_t pcie_offset;
uint64_t nsp_reg;
nspu_xlate(desc, NSP_BASE, &pcie_offset);
nsp_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, pcie_offset, NSP_STATUS));
if (NSP_STATUS_MAGIC(nsp_reg) != NSP_MAGIC)
return -1;
*major = NSP_STATUS_MAJOR(nsp_reg);
*minor = NSP_STATUS_MINOR(nsp_reg);
return 0;
}
int
nfp_nspu_init(nspu_desc_t *desc, int nfp, int pcie_bar, size_t pcie_barsz,
int exp_bar, void *exp_bar_cfg_base, void *exp_bar_mmap)
{
uint64_t offset, buffaddr;
uint64_t nsp_reg;
desc->nfp = nfp;
desc->pcie_bar = pcie_bar;
desc->exp_bar = exp_bar;
desc->barsz = pcie_barsz;
desc->windowsz = 1 << (desc->barsz - 3);
desc->cfg_base = exp_bar_cfg_base;
desc->mem_base = exp_bar_mmap;
nspu_xlate(desc, NSP_BASE, &offset);
/*
* Other NSPU clients can use other buffers. Let's tell NSPU we use the
* default buffer.
*/
buffaddr = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_DEFAULT_BUF));
NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_BUFFER)) = buffaddr;
/* NFP internal addresses are 40 bits. Clean all other bits here */
buffaddr = buffaddr & (((uint64_t)1 << 40) - 1);
desc->bufaddr = buffaddr;
/* Lets get information about the buffer */
nsp_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_DEFAULT_BUF_CFG));
/* Buffer size comes in MBs. Coversion to bytes */
desc->buf_size = ((size_t)nsp_reg & NSP_BUFFER_CFG_SIZE_MASK) << 20;
return 0;
}
#define NSPU_NFP_BUF(addr, base, off) \
(*(uint64_t *)((uint8_t *)(addr)->mem_base + ((base) | (off))))
#define NSPU_HOST_BUF(base, off) (*(uint64_t *)((uint8_t *)(base) + (off)))
static int
nspu_buff_write(nspu_desc_t *desc, void *buffer, size_t size)
{
uint64_t pcie_offset, pcie_window_base, pcie_window_offset;
uint64_t windowsz = desc->windowsz;
uint64_t buffaddr, j, i = 0;
int ret = 0;
if (size > desc->buf_size)
return -1;
buffaddr = desc->bufaddr;
windowsz = desc->windowsz;
while (i < size) {
/* Expansion bar reconfiguration per window size */
nspu_xlate(desc, buffaddr + i, &pcie_offset);
pcie_window_base = pcie_offset & (~(windowsz - 1));
pcie_window_offset = pcie_offset & (windowsz - 1);
for (j = pcie_window_offset; ((j < windowsz) && (i < size));
j += 8) {
NSPU_NFP_BUF(desc, pcie_window_base, j) =
NSPU_HOST_BUF(buffer, i);
i += 8;
}
}
return ret;
}
static int
nspu_buff_read(nspu_desc_t *desc, void *buffer, size_t size)
{
uint64_t pcie_offset, pcie_window_base, pcie_window_offset;
uint64_t windowsz, i = 0, j;
uint64_t buffaddr;
int ret = 0;
if (size > desc->buf_size)
return -1;
buffaddr = desc->bufaddr;
windowsz = desc->windowsz;
while (i < size) {
/* Expansion bar reconfiguration per window size */
nspu_xlate(desc, buffaddr + i, &pcie_offset);
pcie_window_base = pcie_offset & (~(windowsz - 1));
pcie_window_offset = pcie_offset & (windowsz - 1);
for (j = pcie_window_offset; ((j < windowsz) && (i < size));
j += 8) {
NSPU_HOST_BUF(buffer, i) =
NSPU_NFP_BUF(desc, pcie_window_base, j);
i += 8;
}
}
return ret;
}
static int
nspu_command(nspu_desc_t *desc, uint16_t cmd, int read, int write,
void *buffer, size_t rsize, size_t wsize)
{
uint64_t status, cmd_reg;
uint64_t offset;
int retry = 0;
int retries = 120;
int ret = 0;
/* Same expansion BAR is used for different things */
nspu_xlate(desc, NSP_BASE, &offset);
status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
while ((status & 0x1) && (retry < retries)) {
status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
retry++;
sleep(1);
}
if (retry == retries)
return -1;
if (write) {
ret = nspu_buff_write(desc, buffer, wsize);
if (ret)
return ret;
/* Expansion BAR changes when writing the buffer */
nspu_xlate(desc, NSP_BASE, &offset);
}
NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_COMMAND)) =
(uint64_t)wsize << 32 | (uint64_t)cmd << 16 | 1;
retry = 0;
cmd_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_COMMAND));
while ((cmd_reg & 0x1) && (retry < retries)) {
cmd_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_COMMAND));
retry++;
sleep(1);
}
if (retry == retries)
return -1;
retry = 0;
status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
while ((status & 0x1) && (retry < retries)) {
status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
retry++;
sleep(1);
}
if (retry == retries)
return -1;
ret = status & (0xff << 8);
if (ret)
return ret;
if (read) {
ret = nspu_buff_read(desc, buffer, rsize);
if (ret)
return ret;
}
return ret;
}
static int
nfp_fw_reset(nspu_desc_t *nspu_desc)
{
int res;
res = nspu_command(nspu_desc, NSP_CMD_RESET, 0, 0, 0, 0, 0);
if (res < 0)
RTE_LOG(INFO, PMD, "fw reset failed: error %d", res);
return res;
}
#define DEFAULT_FW_PATH "/lib/firmware/netronome"
#define DEFAULT_FW_FILENAME "nic_dpdk_default.nffw"
static int
nfp_fw_upload(nspu_desc_t *nspu_desc)
{
int fw_f;
char *fw_buf;
char filename[100];
struct stat file_stat;
off_t fsize, bytes;
ssize_t size;
int ret;
size = nspu_desc->buf_size;
sprintf(filename, "%s/%s", DEFAULT_FW_PATH, DEFAULT_FW_FILENAME);
fw_f = open(filename, O_RDONLY);
if (fw_f < 0) {
RTE_LOG(INFO, PMD, "Firmware file %s/%s not found.",
DEFAULT_FW_PATH, DEFAULT_FW_FILENAME);
return -ENOENT;
}
if (fstat(fw_f, &file_stat) < 0) {
RTE_LOG(INFO, PMD, "Firmware file %s/%s size is unknown",
DEFAULT_FW_PATH, DEFAULT_FW_FILENAME);
close(fw_f);
return -ENOENT;
}
fsize = file_stat.st_size;
RTE_LOG(DEBUG, PMD, "Firmware file with size: %" PRIu64 "\n",
(uint64_t)fsize);
if (fsize > (off_t)size) {
RTE_LOG(INFO, PMD, "fw file too big: %" PRIu64
" bytes (%" PRIu64 " max)",
(uint64_t)fsize, (uint64_t)size);
close(fw_f);
return -EINVAL;
}
fw_buf = malloc((size_t)size);
if (!fw_buf) {
RTE_LOG(INFO, PMD, "malloc failed for fw buffer");
close(fw_f);
return -ENOMEM;
}
memset(fw_buf, 0, size);
bytes = read(fw_f, fw_buf, fsize);
if (bytes != fsize) {
RTE_LOG(INFO, PMD, "Reading fw to buffer failed.\n"
"Just %" PRIu64 " of %" PRIu64 " bytes read.",
(uint64_t)bytes, (uint64_t)fsize);
free(fw_buf);
close(fw_f);
return -EIO;
}
ret = nspu_command(nspu_desc, NSP_CMD_FW_LOAD, 0, 1, fw_buf, 0, bytes);
free(fw_buf);
close(fw_f);
return ret;
}
/* Firmware symbol descriptor size */
#define NFP_SYM_DESC_LEN 40
#define SYMBOL_DATA(b, off) (*(int64_t *)((b) + (off)))
#define SYMBOL_UDATA(b, off) (*(uint64_t *)((b) + (off)))
/* Firmware symbols contain information about how to access what they
* represent. It can be as simple as an numeric variable declared at a
* specific NFP memory, but it can also be more complex structures and
* related to specific hardware functionalities or components. Target,
* domain and address allow to create the BAR window for accessing such
* hw object and size defines the length to map.
*
* A vNIC is a network interface implemented inside the NFP and using a
* subset of device PCI BARs. Specific firmware symbols allow to map those
* vNIC bars by host drivers like the NFP PMD.
*
* Accessing what the symbol represents implies to map the access through
* a PCI BAR window. NFP expansion BARs are used in this regard through
* the NSPU interface.
*/
static int
nfp_nspu_set_bar_from_symbl(nspu_desc_t *desc, const char *symbl,
uint32_t expbar, uint64_t *pcie_offset,
ssize_t *size)
{
int64_t type;
int64_t target;
int64_t domain;
uint64_t addr;
char *sym_buf;
int ret = 0;
sym_buf = malloc(desc->buf_size);
if (!sym_buf)
return -ENOMEM;
strncpy(sym_buf, symbl, strlen(symbl));
ret = nspu_command(desc, NSP_CMD_GET_SYMBOL, 1, 1, sym_buf,
NFP_SYM_DESC_LEN, strlen(symbl));
if (ret) {
RTE_LOG(DEBUG, PMD, "symbol resolution (%s) failed\n", symbl);
goto clean;
}
/* Reading symbol information */
type = SYMBOL_DATA(sym_buf, 0);
target = SYMBOL_DATA(sym_buf, 8);
domain = SYMBOL_DATA(sym_buf, 16);
addr = SYMBOL_UDATA(sym_buf, 24);
*size = (ssize_t)SYMBOL_UDATA(sym_buf, 32);
if (type != 1) {
RTE_LOG(INFO, PMD, "wrong symbol type\n");
ret = -EINVAL;
goto clean;
}
if (!(target == 7 || target == -7)) {
RTE_LOG(INFO, PMD, "wrong symbol target\n");
ret = -EINVAL;
goto clean;
}
if (domain == 8 || domain == 9) {
RTE_LOG(INFO, PMD, "wrong symbol domain\n");
ret = -EINVAL;
goto clean;
}
/* Adjusting address based on symbol location */
if ((domain >= 24) && (domain < 28) && (target == 7)) {
addr = 1ULL << 37 | addr | ((uint64_t)domain & 0x3) << 35;
} else {
addr = 1ULL << 39 | addr | ((uint64_t)domain & 0x3f) << 32;
if (target == -7)
target = 7;
}
/* Configuring NFP expansion bar for mapping specific PCI BAR window */
nfp_nspu_mem_bar_cfg(desc, expbar, target, addr, pcie_offset);
/* This is the PCI BAR offset to use by the host */
*pcie_offset |= ((expbar & 0x7) << (desc->barsz - 3));
clean:
free(sym_buf);
return ret;
}
int
nfp_nsp_fw_setup(nspu_desc_t *desc, const char *sym, uint64_t *pcie_offset)
{
ssize_t bar0_sym_size;
/* If the symbol resolution works, it implies a firmware app
* is already there.
*/
if (!nfp_nspu_set_bar_from_symbl(desc, sym, NFP_NET_PF_CFG_EXP_BAR,
pcie_offset, &bar0_sym_size))
return 0;
/* No firmware app detected or not the right one */
RTE_LOG(INFO, PMD, "No firmware detected. Resetting NFP...\n");
if (nfp_fw_reset(desc) < 0) {
RTE_LOG(ERR, PMD, "nfp fw reset failed\n");
return -ENODEV;
}
RTE_LOG(INFO, PMD, "Reset done.\n");
RTE_LOG(INFO, PMD, "Uploading firmware...\n");
if (nfp_fw_upload(desc) < 0) {
RTE_LOG(ERR, PMD, "nfp fw upload failed\n");
return -ENODEV;
}
RTE_LOG(INFO, PMD, "Done.\n");
/* Now the symbol should be there */
if (nfp_nspu_set_bar_from_symbl(desc, sym, NFP_NET_PF_CFG_EXP_BAR,
pcie_offset, &bar0_sym_size)) {
RTE_LOG(ERR, PMD, "nfp PF BAR symbol resolution failed\n");
return -ENODEV;
}
return 0;
}
int
nfp_nsp_map_ctrl_bar(nspu_desc_t *desc, uint64_t *pcie_offset)
{
ssize_t bar0_sym_size;
if (nfp_nspu_set_bar_from_symbl(desc, "_pf0_net_bar0",
NFP_NET_PF_CFG_EXP_BAR,
pcie_offset, &bar0_sym_size))
return -ENODEV;
return 0;
}
/*
* This is a hardcoded fixed NFP internal CPP bus address for the hw queues unit
* inside the PCIE island.
*/
#define NFP_CPP_PCIE_QUEUES ((uint64_t)(1ULL << 39) | 0x80000 | \
((uint64_t)0x4 & 0x3f) << 32)
/* Configure a specific NFP expansion bar for accessing the vNIC rx/tx BARs */
void
nfp_nsp_map_queues_bar(nspu_desc_t *desc, uint64_t *pcie_offset)
{
nfp_nspu_mem_bar_cfg(desc, NFP_NET_PF_HW_QUEUES_EXP_BAR, 0,
NFP_CPP_PCIE_QUEUES, pcie_offset);
/* This is the pcie offset to use by the host */
*pcie_offset |= ((NFP_NET_PF_HW_QUEUES_EXP_BAR & 0x7) << (27 - 3));
}
int
nfp_nsp_eth_config(nspu_desc_t *desc, int port, int up)
{
union eth_table_entry *entries, *entry;
int modified;
int ret, idx;
int i;
idx = port;
RTE_LOG(INFO, PMD, "Hw ethernet port %d configure...\n", port);
rte_spinlock_lock(&desc->nsp_lock);
entries = malloc(NSP_ETH_TABLE_SIZE);
if (!entries) {
rte_spinlock_unlock(&desc->nsp_lock);
return -ENOMEM;
}
ret = nspu_command(desc, NSP_CMD_READ_ETH_TABLE, 1, 0, entries,
NSP_ETH_TABLE_SIZE, 0);
if (ret) {
rte_spinlock_unlock(&desc->nsp_lock);
return ret;
}
entry = entries;
for (i = 0; i < NSP_ETH_MAX_COUNT; i++) {
/* ports in use do not appear sequentially in the table */
if (!(entry->port & NSP_ETH_PORT_LANES_MASK)) {
/* entry not in use */
entry++;
continue;
}
if (idx == 0)
break;
idx--;
entry++;
}
if (i == NSP_ETH_MAX_COUNT) {
rte_spinlock_unlock(&desc->nsp_lock);
return -EINVAL;
}
if (up && !(entry->state & NSP_ETH_STATE_CONFIGURED)) {
entry->control |= NSP_ETH_STATE_CONFIGURED;
modified = 1;
}
if (!up && (entry->state & NSP_ETH_STATE_CONFIGURED)) {
entry->control &= ~NSP_ETH_STATE_CONFIGURED;
modified = 1;
}
if (modified) {
ret = nspu_command(desc, NSP_CMD_WRITE_ETH_TABLE, 0, 1, entries,
0, NSP_ETH_TABLE_SIZE);
if (!ret)
RTE_LOG(INFO, PMD,
"Hw ethernet port %d configure done\n", port);
else
RTE_LOG(INFO, PMD,
"Hw ethernet port %d configure failed\n", port);
}
rte_spinlock_unlock(&desc->nsp_lock);
return ret;
}
int
nfp_nsp_eth_read_table(nspu_desc_t *desc, union eth_table_entry **table)
{
int ret;
if (!table)
return -EINVAL;
RTE_LOG(INFO, PMD, "Reading hw ethernet table...\n");
/* port 0 allocates the eth table and read it using NSPU */
*table = malloc(NSP_ETH_TABLE_SIZE);
if (!*table)
return -ENOMEM;
ret = nspu_command(desc, NSP_CMD_READ_ETH_TABLE, 1, 0, *table,
NSP_ETH_TABLE_SIZE, 0);
if (ret)
return ret;
RTE_LOG(INFO, PMD, "Done\n");
return 0;
}