numam-dpdk/lib/librte_acl/acl_run.c
Konstantin Ananyev dc276b5780 acl: new library
The ACL library is used to perform an N-tuple search over a set of rules with
multiple categories and find the best match for each category.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Tested-by: Waterman Cao <waterman.cao@intel.com>
Acked-by: Pablo de Lara Guarch <pablo.de.lara.guarch@intel.com>
[Thomas: some code-style changes]
2014-06-14 01:29:45 +02:00

945 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_acl.h>
#include "acl_vect.h"
#include "acl.h"
#define MAX_SEARCHES_SSE8 8
#define MAX_SEARCHES_SSE4 4
#define MAX_SEARCHES_SSE2 2
#define MAX_SEARCHES_SCALAR 2
#define GET_NEXT_4BYTES(prm, idx) \
(*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
#define SCALAR_QRANGE_MULT 0x01010101
#define SCALAR_QRANGE_MASK 0x7f7f7f7f
#define SCALAR_QRANGE_MIN 0x80808080
enum {
SHUFFLE32_SLOT1 = 0xe5,
SHUFFLE32_SLOT2 = 0xe6,
SHUFFLE32_SLOT3 = 0xe7,
SHUFFLE32_SWAP64 = 0x4e,
};
/*
* Structure to manage N parallel trie traversals.
* The runtime trie traversal routines can process 8, 4, or 2 tries
* in parallel. Each packet may require multiple trie traversals (up to 4).
* This structure is used to fill the slots (0 to n-1) for parallel processing
* with the trie traversals needed for each packet.
*/
struct acl_flow_data {
uint32_t num_packets;
/* number of packets processed */
uint32_t started;
/* number of trie traversals in progress */
uint32_t trie;
/* current trie index (0 to N-1) */
uint32_t cmplt_size;
uint32_t total_packets;
uint32_t categories;
/* number of result categories per packet. */
/* maximum number of packets to process */
const uint64_t *trans;
const uint8_t **data;
uint32_t *results;
struct completion *last_cmplt;
struct completion *cmplt_array;
};
/*
* Structure to maintain running results for
* a single packet (up to 4 tries).
*/
struct completion {
uint32_t *results; /* running results. */
int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
uint32_t count; /* num of remaining tries */
/* true for allocated struct */
} __attribute__((aligned(XMM_SIZE)));
/*
* One parms structure for each slot in the search engine.
*/
struct parms {
const uint8_t *data;
/* input data for this packet */
const uint32_t *data_index;
/* data indirection for this trie */
struct completion *cmplt;
/* completion data for this packet */
};
/*
* Define an global idle node for unused engine slots
*/
static const uint32_t idle[UINT8_MAX + 1];
static const rte_xmm_t mm_type_quad_range = {
.u32 = {
RTE_ACL_NODE_QRANGE,
RTE_ACL_NODE_QRANGE,
RTE_ACL_NODE_QRANGE,
RTE_ACL_NODE_QRANGE,
},
};
static const rte_xmm_t mm_type_quad_range64 = {
.u32 = {
RTE_ACL_NODE_QRANGE,
RTE_ACL_NODE_QRANGE,
0,
0,
},
};
static const rte_xmm_t mm_shuffle_input = {
.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
};
static const rte_xmm_t mm_shuffle_input64 = {
.u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
};
static const rte_xmm_t mm_ones_16 = {
.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
};
static const rte_xmm_t mm_bytes = {
.u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
};
static const rte_xmm_t mm_bytes64 = {
.u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
};
static const rte_xmm_t mm_match_mask = {
.u32 = {
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
},
};
static const rte_xmm_t mm_match_mask64 = {
.u32 = {
RTE_ACL_NODE_MATCH,
0,
RTE_ACL_NODE_MATCH,
0,
},
};
static const rte_xmm_t mm_index_mask = {
.u32 = {
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
},
};
static const rte_xmm_t mm_index_mask64 = {
.u32 = {
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
0,
0,
},
};
/*
* Allocate a completion structure to manage the tries for a packet.
*/
static inline struct completion *
alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
uint32_t *results)
{
uint32_t n;
for (n = 0; n < size; n++) {
if (p[n].count == 0) {
/* mark as allocated and set number of tries. */
p[n].count = tries;
p[n].results = results;
return &(p[n]);
}
}
/* should never get here */
return NULL;
}
/*
* Resolve priority for a single result trie.
*/
static inline void
resolve_single_priority(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p)
{
if (parms[n].cmplt->count == ctx->num_tries ||
parms[n].cmplt->priority[0] <=
p[transition].priority[0]) {
parms[n].cmplt->priority[0] = p[transition].priority[0];
parms[n].cmplt->results[0] = p[transition].results[0];
}
parms[n].cmplt->count--;
}
/*
* Resolve priority for multiple results. This consists comparing
* the priority of the current traversal with the running set of
* results for the packet. For each result, keep a running array of
* the result (rule number) and its priority for each category.
*/
static inline void
resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms, const struct rte_acl_match_results *p,
uint32_t categories)
{
uint32_t x;
xmm_t results, priority, results1, priority1, selector;
xmm_t *saved_results, *saved_priority;
for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
saved_priority =
(xmm_t *)(&parms[n].cmplt->priority[x]);
/* get results and priorities for completed trie */
results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
/* get running best results and their priorities */
results1 = MM_LOADU(saved_results);
priority1 = MM_LOADU(saved_priority);
/* select results that are highest priority */
selector = MM_CMPGT32(priority1, priority);
results = MM_BLENDV8(results, results1, selector);
priority = MM_BLENDV8(priority, priority1, selector);
}
/* save running best results and their priorities */
MM_STOREU(saved_results, results);
MM_STOREU(saved_priority, priority);
}
/* Count down completed tries for this search request */
parms[n].cmplt->count--;
}
/*
* Routine to fill a slot in the parallel trie traversal array (parms) from
* the list of packets (flows).
*/
static inline uint64_t
acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
const struct rte_acl_ctx *ctx)
{
uint64_t transition;
/* if there are any more packets to process */
if (flows->num_packets < flows->total_packets) {
parms[n].data = flows->data[flows->num_packets];
parms[n].data_index = ctx->trie[flows->trie].data_index;
/* if this is the first trie for this packet */
if (flows->trie == 0) {
flows->last_cmplt = alloc_completion(flows->cmplt_array,
flows->cmplt_size, ctx->num_tries,
flows->results +
flows->num_packets * flows->categories);
}
/* set completion parameters and starting index for this slot */
parms[n].cmplt = flows->last_cmplt;
transition =
flows->trans[parms[n].data[*parms[n].data_index++] +
ctx->trie[flows->trie].root_index];
/*
* if this is the last trie for this packet,
* then setup next packet.
*/
flows->trie++;
if (flows->trie >= ctx->num_tries) {
flows->trie = 0;
flows->num_packets++;
}
/* keep track of number of active trie traversals */
flows->started++;
/* no more tries to process, set slot to an idle position */
} else {
transition = ctx->idle;
parms[n].data = (const uint8_t *)idle;
parms[n].data_index = idle;
}
return transition;
}
/*
* Detect matches. If a match node transition is found, then this trie
* traversal is complete and fill the slot with the next trie
* to be processed.
*/
static inline uint64_t
acl_match_check_transition(uint64_t transition, int slot,
const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows)
{
const struct rte_acl_match_results *p;
p = (const struct rte_acl_match_results *)
(flows->trans + ctx->match_index);
if (transition & RTE_ACL_NODE_MATCH) {
/* Remove flags from index and decrement active traversals */
transition &= RTE_ACL_NODE_INDEX;
flows->started--;
/* Resolve priorities for this trie and running results */
if (flows->categories == 1)
resolve_single_priority(transition, slot, ctx,
parms, p);
else
resolve_priority(transition, slot, ctx, parms, p,
flows->categories);
/* Fill the slot with the next trie or idle trie */
transition = acl_start_next_trie(flows, parms, slot, ctx);
} else if (transition == ctx->idle) {
/* reset indirection table for idle slots */
parms[slot].data_index = idle;
}
return transition;
}
/*
* Extract transitions from an XMM register and check for any matches
*/
static void
acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
struct parms *parms, struct acl_flow_data *flows)
{
uint64_t transition1, transition2;
/* extract transition from low 64 bits. */
transition1 = MM_CVT64(*indicies);
/* extract transition from high 64 bits. */
*indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
transition2 = MM_CVT64(*indicies);
transition1 = acl_match_check_transition(transition1, slot, ctx,
parms, flows);
transition2 = acl_match_check_transition(transition2, slot + 1, ctx,
parms, flows);
/* update indicies with new transitions. */
*indicies = MM_SET64(transition2, transition1);
}
/*
* Check for a match in 2 transitions (contained in SSE register)
*/
static inline void
acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
{
xmm_t temp;
temp = MM_AND(match_mask, *indicies);
while (!MM_TESTZ(temp, temp)) {
acl_process_matches(indicies, slot, ctx, parms, flows);
temp = MM_AND(match_mask, *indicies);
}
}
/*
* Check for any match in 4 transitions (contained in 2 SSE registers)
*/
static inline void
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
xmm_t match_mask)
{
xmm_t temp;
/* put low 32 bits of each transition into one register */
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
0x88);
/* test for match node */
temp = MM_AND(match_mask, temp);
while (!MM_TESTZ(temp, temp)) {
acl_process_matches(indicies1, slot, ctx, parms, flows);
acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
(__m128)*indicies2,
0x88);
temp = MM_AND(match_mask, temp);
}
}
/*
* Calculate the address of the next transition for
* all types of nodes. Note that only DFA nodes and range
* nodes actually transition to another node. Match
* nodes don't move.
*/
static inline xmm_t
acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
xmm_t *indicies1, xmm_t *indicies2)
{
xmm_t addr, node_types, temp;
/*
* Note that no transition is done for a match
* node and therefore a stream freezes when
* it reaches a match.
*/
/* Shuffle low 32 into temp and high 32 into indicies2 */
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
0x88);
*indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
(__m128)*indicies2, 0xdd);
/* Calc node type and node addr */
node_types = MM_ANDNOT(index_mask, temp);
addr = MM_AND(index_mask, temp);
/*
* Calc addr for DFAs - addr = dfa_index + input_byte
*/
/* mask for DFA type (0) nodes */
temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
/* add input byte to DFA position */
temp = MM_AND(temp, bytes);
temp = MM_AND(temp, next_input);
addr = MM_ADD32(addr, temp);
/*
* Calc addr for Range nodes -> range_index + range(input)
*/
node_types = MM_CMPEQ32(node_types, type_quad_range);
/*
* Calculate number of range boundaries that are less than the
* input value. Range boundaries for each node are in signed 8 bit,
* ordered from -128 to 127 in the indicies2 register.
* This is effectively a popcnt of bytes that are greater than the
* input byte.
*/
/* shuffle input byte to all 4 positions of 32 bit value */
temp = MM_SHUFFLE8(next_input, shuffle_input);
/* check ranges */
temp = MM_CMPGT8(temp, *indicies2);
/* convert -1 to 1 (bytes greater than input byte */
temp = MM_SIGN8(temp, temp);
/* horizontal add pairs of bytes into words */
temp = MM_MADD8(temp, temp);
/* horizontal add pairs of words into dwords */
temp = MM_MADD16(temp, ones_16);
/* mask to range type nodes */
temp = MM_AND(temp, node_types);
/* add index into node position */
return MM_ADD32(addr, temp);
}
/*
* Process 4 transitions (in 2 SIMD registers) in parallel
*/
static inline xmm_t
transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
{
xmm_t addr;
uint64_t trans0, trans2;
/* Calculate the address (array index) for all 4 transitions. */
addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
bytes, type_quad_range, indicies1, indicies2);
/* Gather 64 bit transitions and pack back into 2 registers. */
trans0 = trans[MM_CVT32(addr)];
/* get slot 2 */
/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
trans2 = trans[MM_CVT32(addr)];
/* get slot 1 */
/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
*indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
/* get slot 3 */
/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
*indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
return MM_SRL32(next_input, 8);
}
static inline void
acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
uint32_t data_num, uint32_t categories, const uint64_t *trans)
{
flows->num_packets = 0;
flows->started = 0;
flows->trie = 0;
flows->last_cmplt = NULL;
flows->cmplt_array = cmplt;
flows->total_packets = data_num;
flows->categories = categories;
flows->cmplt_size = cmplt_size;
flows->data = data;
flows->results = results;
flows->trans = trans;
}
/*
* Execute trie traversal with 8 traversals in parallel
*/
static inline void
search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE8];
struct completion cmplt[MAX_SEARCHES_SSE8];
struct parms parms[MAX_SEARCHES_SSE8];
xmm_t input0, input1;
xmm_t indicies1, indicies2, indicies3, indicies4;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
/*
* indicies1 contains index_array[0,1]
* indicies2 contains index_array[2,3]
* indicies3 contains index_array[4,5]
* indicies4 contains index_array[6,7]
*/
indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indicies1, &indicies2, mm_match_mask.m);
acl_match_check_x4(4, ctx, parms, &flows,
&indicies3, &indicies4, mm_match_mask.m);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
0);
input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
0);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
/* Process the 4 bytes of input on each stream. */
input0 = transition4(mm_index_mask.m, input0,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input1 = transition4(mm_index_mask.m, input1,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies3, &indicies4);
input0 = transition4(mm_index_mask.m, input0,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input1 = transition4(mm_index_mask.m, input1,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies3, &indicies4);
input0 = transition4(mm_index_mask.m, input0,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input1 = transition4(mm_index_mask.m, input1,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies3, &indicies4);
input0 = transition4(mm_index_mask.m, input0,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input1 = transition4(mm_index_mask.m, input1,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies3, &indicies4);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indicies1, &indicies2, mm_match_mask.m);
acl_match_check_x4(4, ctx, parms, &flows,
&indicies3, &indicies4, mm_match_mask.m);
}
}
/*
* Execute trie traversal with 4 traversals in parallel
*/
static inline void
search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, int total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE4];
struct completion cmplt[MAX_SEARCHES_SSE4];
struct parms parms[MAX_SEARCHES_SSE4];
xmm_t input, indicies1, indicies2;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indicies1, &indicies2, mm_match_mask.m);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
/* Process the 4 bytes of input on each stream. */
input = transition4(mm_index_mask.m, input,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input = transition4(mm_index_mask.m, input,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input = transition4(mm_index_mask.m, input,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
input = transition4(mm_index_mask.m, input,
mm_shuffle_input.m, mm_ones_16.m,
mm_bytes.m, mm_type_quad_range.m,
flows.trans, &indicies1, &indicies2);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indicies1, &indicies2, mm_match_mask.m);
}
}
static inline xmm_t
transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
const uint64_t *trans, xmm_t *indicies1)
{
uint64_t t;
xmm_t addr, indicies2;
indicies2 = MM_XOR(ones_16, ones_16);
addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
bytes, type_quad_range, indicies1, &indicies2);
/* Gather 64 bit transitions and pack 2 per register. */
t = trans[MM_CVT32(addr)];
/* get slot 1 */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
*indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
return MM_SRL32(next_input, 8);
}
/*
* Execute trie traversal with 2 traversals in parallel.
*/
static inline void
search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE2];
struct completion cmplt[MAX_SEARCHES_SSE2];
struct parms parms[MAX_SEARCHES_SSE2];
xmm_t input, indicies;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
indicies = MM_LOADU((xmm_t *) &index_array[0]);
/* Check for any matches. */
acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
/* Process the 4 bytes of input on each stream. */
input = transition2(mm_index_mask64.m, input,
mm_shuffle_input64.m, mm_ones_16.m,
mm_bytes64.m, mm_type_quad_range64.m,
flows.trans, &indicies);
input = transition2(mm_index_mask64.m, input,
mm_shuffle_input64.m, mm_ones_16.m,
mm_bytes64.m, mm_type_quad_range64.m,
flows.trans, &indicies);
input = transition2(mm_index_mask64.m, input,
mm_shuffle_input64.m, mm_ones_16.m,
mm_bytes64.m, mm_type_quad_range64.m,
flows.trans, &indicies);
input = transition2(mm_index_mask64.m, input,
mm_shuffle_input64.m, mm_ones_16.m,
mm_bytes64.m, mm_type_quad_range64.m,
flows.trans, &indicies);
/* Check for any matches. */
acl_match_check_x2(0, ctx, parms, &flows, &indicies,
mm_match_mask64.m);
}
}
/*
* When processing the transition, rather than using if/else
* construct, the offset is calculated for DFA and QRANGE and
* then conditionally added to the address based on node type.
* This is done to avoid branch mis-predictions. Since the
* offset is rather simple calculation it is more efficient
* to do the calculation and do a condition move rather than
* a conditional branch to determine which calculation to do.
*/
static inline uint32_t
scan_forward(uint32_t input, uint32_t max)
{
return (input == 0) ? max : rte_bsf32(input);
}
static inline uint64_t
scalar_transition(const uint64_t *trans_table, uint64_t transition,
uint8_t input)
{
uint32_t addr, index, ranges, x, a, b, c;
/* break transition into component parts */
ranges = transition >> (sizeof(index) * CHAR_BIT);
/* calc address for a QRANGE node */
c = input * SCALAR_QRANGE_MULT;
a = ranges | SCALAR_QRANGE_MIN;
index = transition & ~RTE_ACL_NODE_INDEX;
a -= (c & SCALAR_QRANGE_MASK);
b = c & SCALAR_QRANGE_MIN;
addr = transition ^ index;
a &= SCALAR_QRANGE_MIN;
a ^= (ranges ^ b) & (a ^ b);
x = scan_forward(a, 32) >> 3;
addr += (index == RTE_ACL_NODE_DFA) ? input : x;
/* pickup next transition */
transition = *(trans_table + addr);
return transition;
}
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
int n;
uint64_t transition0, transition1;
uint32_t input0, input1;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SCALAR];
struct completion cmplt[MAX_SEARCHES_SCALAR];
struct parms parms[MAX_SEARCHES_SCALAR];
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
transition0 = index_array[0];
transition1 = index_array[1];
while (flows.started > 0) {
input0 = GET_NEXT_4BYTES(parms, 0);
input1 = GET_NEXT_4BYTES(parms, 1);
for (n = 0; n < 4; n++) {
if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
transition0 = scalar_transition(flows.trans,
transition0, (uint8_t)input0);
input0 >>= CHAR_BIT;
if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
transition1 = scalar_transition(flows.trans,
transition1, (uint8_t)input1);
input1 >>= CHAR_BIT;
}
if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
transition0 = acl_match_check_transition(transition0,
0, ctx, parms, &flows);
transition1 = acl_match_check_transition(transition1,
1, ctx, parms, &flows);
}
}
return 0;
}
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
if (likely(num >= MAX_SEARCHES_SSE8))
search_sse_8(ctx, data, results, num, categories);
else if (num >= MAX_SEARCHES_SSE4)
search_sse_4(ctx, data, results, num, categories);
else
search_sse_2(ctx, data, results, num, categories);
return 0;
}