numam-dpdk/drivers/net/cxgbe/cxgbe_flow.c
Rahul Lakkireddy ff7079a3a8 net/cxgbe: ignore flow default masks for unrequested fields
commit 536db938a4 ("net/cxgbe: add devargs to control filtermode and
filtermask") allows configuring hardware to select specific combination
of header fields to match in the incoming packets. However, the default
mask is set for all fields in the requested pattern items, even if the
field is not explicitly set in the combination and results in
validation errors. To prevent this, ignore setting the default masks
for the unrequested fields and the hardware will also ignore them in
validation, accordingly. Also, tweak the filter spec before finalizing
the masks.

Fixes: 536db938a4 ("net/cxgbe: add devargs to control filtermode and filtermask")
Cc: stable@dpdk.org

Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
2020-06-17 15:31:32 +02:00

1476 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Chelsio Communications.
* All rights reserved.
*/
#include "base/common.h"
#include "cxgbe_flow.h"
#define __CXGBE_FILL_FS(__v, __m, fs, elem, e) \
do { \
if ((fs)->mask.elem && ((fs)->val.elem != (__v))) \
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, \
NULL, "Redefined match item with" \
" different values found"); \
(fs)->val.elem = (__v); \
(fs)->mask.elem = (__m); \
} while (0)
#define __CXGBE_FILL_FS_MEMCPY(__v, __m, fs, elem) \
do { \
memcpy(&(fs)->val.elem, &(__v), sizeof(__v)); \
memcpy(&(fs)->mask.elem, &(__m), sizeof(__m)); \
} while (0)
#define CXGBE_FILL_FS(v, m, elem) \
__CXGBE_FILL_FS(v, m, fs, elem, e)
#define CXGBE_FILL_FS_MEMCPY(v, m, elem) \
__CXGBE_FILL_FS_MEMCPY(v, m, fs, elem)
static int
cxgbe_validate_item(const struct rte_flow_item *i, struct rte_flow_error *e)
{
/* rte_flow specification does not allow it. */
if (!i->spec && (i->mask || i->last))
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
i, "last or mask given without spec");
/*
* We don't support it.
* Although, we can support values in last as 0's or last == spec.
* But this will not provide user with any additional functionality
* and will only increase the complexity for us.
*/
if (i->last)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
i, "last is not supported by chelsio pmd");
return 0;
}
/**
* Apart from the 4-tuple IPv4/IPv6 - TCP/UDP information,
* there's only 40-bits available to store match fields.
* So, to save space, optimize filter spec for some common
* known fields that hardware can parse against incoming
* packets automatically.
*/
static void
cxgbe_tweak_filter_spec(struct adapter *adap,
struct ch_filter_specification *fs)
{
/* Save 16-bit ethertype field space, by setting corresponding
* 1-bit flags in the filter spec for common known ethertypes.
* When hardware sees these flags, it automatically infers and
* matches incoming packets against the corresponding ethertype.
*/
if (fs->mask.ethtype == 0xffff) {
switch (fs->val.ethtype) {
case RTE_ETHER_TYPE_IPV4:
if (adap->params.tp.ethertype_shift < 0) {
fs->type = FILTER_TYPE_IPV4;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
case RTE_ETHER_TYPE_IPV6:
if (adap->params.tp.ethertype_shift < 0) {
fs->type = FILTER_TYPE_IPV6;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
case RTE_ETHER_TYPE_VLAN:
if (adap->params.tp.ethertype_shift < 0 &&
adap->params.tp.vlan_shift >= 0) {
fs->val.ivlan_vld = 1;
fs->mask.ivlan_vld = 1;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
case RTE_ETHER_TYPE_QINQ:
if (adap->params.tp.ethertype_shift < 0 &&
adap->params.tp.vnic_shift >= 0) {
fs->val.ovlan_vld = 1;
fs->mask.ovlan_vld = 1;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
default:
break;
}
}
}
static void
cxgbe_fill_filter_region(struct adapter *adap,
struct ch_filter_specification *fs)
{
struct tp_params *tp = &adap->params.tp;
u64 hash_filter_mask = tp->hash_filter_mask;
u64 ntuple_mask = 0;
fs->cap = 0;
if (!is_hashfilter(adap))
return;
if (fs->type) {
uint8_t biton[16] = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff};
uint8_t bitoff[16] = {0};
if (!memcmp(fs->val.lip, bitoff, sizeof(bitoff)) ||
!memcmp(fs->val.fip, bitoff, sizeof(bitoff)) ||
memcmp(fs->mask.lip, biton, sizeof(biton)) ||
memcmp(fs->mask.fip, biton, sizeof(biton)))
return;
} else {
uint32_t biton = 0xffffffff;
uint32_t bitoff = 0x0U;
if (!memcmp(fs->val.lip, &bitoff, sizeof(bitoff)) ||
!memcmp(fs->val.fip, &bitoff, sizeof(bitoff)) ||
memcmp(fs->mask.lip, &biton, sizeof(biton)) ||
memcmp(fs->mask.fip, &biton, sizeof(biton)))
return;
}
if (!fs->val.lport || fs->mask.lport != 0xffff)
return;
if (!fs->val.fport || fs->mask.fport != 0xffff)
return;
if (tp->protocol_shift >= 0)
ntuple_mask |= (u64)fs->mask.proto << tp->protocol_shift;
if (tp->ethertype_shift >= 0)
ntuple_mask |= (u64)fs->mask.ethtype << tp->ethertype_shift;
if (tp->port_shift >= 0)
ntuple_mask |= (u64)fs->mask.iport << tp->port_shift;
if (tp->macmatch_shift >= 0)
ntuple_mask |= (u64)fs->mask.macidx << tp->macmatch_shift;
if (tp->vlan_shift >= 0 && fs->mask.ivlan_vld)
ntuple_mask |= (u64)(F_FT_VLAN_VLD | fs->mask.ivlan) <<
tp->vlan_shift;
if (tp->vnic_shift >= 0) {
if (fs->mask.ovlan_vld)
ntuple_mask |= (u64)(fs->val.ovlan_vld << 16 |
fs->mask.ovlan) << tp->vnic_shift;
else if (fs->mask.pfvf_vld)
ntuple_mask |= (u64)(fs->mask.pfvf_vld << 16 |
fs->mask.pf << 13 |
fs->mask.vf) << tp->vnic_shift;
}
if (tp->tos_shift >= 0)
ntuple_mask |= (u64)fs->mask.tos << tp->tos_shift;
if (ntuple_mask != hash_filter_mask)
return;
fs->cap = 1; /* use hash region */
}
static int
ch_rte_parsetype_eth(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *umask = item->mask;
const struct rte_flow_item_eth *mask;
/* If user has not given any mask, then use chelsio supported mask. */
mask = umask ? umask : (const struct rte_flow_item_eth *)dmask;
if (!spec)
return 0;
/* we don't support SRC_MAC filtering*/
if (!rte_is_zero_ether_addr(&spec->src) ||
(umask && !rte_is_zero_ether_addr(&umask->src)))
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"src mac filtering not supported");
if (!rte_is_zero_ether_addr(&spec->dst) ||
(umask && !rte_is_zero_ether_addr(&umask->dst))) {
CXGBE_FILL_FS(0, 0x1ff, macidx);
CXGBE_FILL_FS_MEMCPY(spec->dst.addr_bytes, mask->dst.addr_bytes,
dmac);
}
if (spec->type || (umask && umask->type))
CXGBE_FILL_FS(be16_to_cpu(spec->type),
be16_to_cpu(mask->type), ethtype);
return 0;
}
static int
ch_rte_parsetype_port(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_phy_port *val = item->spec;
const struct rte_flow_item_phy_port *umask = item->mask;
const struct rte_flow_item_phy_port *mask;
mask = umask ? umask : (const struct rte_flow_item_phy_port *)dmask;
if (!val)
return 0; /* Wildcard, match all physical ports */
if (val->index > 0x7)
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"port index up to 0x7 is supported");
if (val->index || (umask && umask->index))
CXGBE_FILL_FS(val->index, mask->index, iport);
return 0;
}
static int
ch_rte_parsetype_vlan(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_vlan *spec = item->spec;
const struct rte_flow_item_vlan *umask = item->mask;
const struct rte_flow_item_vlan *mask;
/* If user has not given any mask, then use chelsio supported mask. */
mask = umask ? umask : (const struct rte_flow_item_vlan *)dmask;
if (!fs->mask.ethtype)
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Can't parse VLAN item without knowing ethertype");
/* If ethertype is already set and is not VLAN (0x8100) or
* QINQ(0x88A8), then don't proceed further. Otherwise,
* reset the outer ethertype, so that it can be replaced by
* innermost ethertype. Note that hardware will automatically
* match against VLAN or QINQ packets, based on 'ivlan_vld' or
* 'ovlan_vld' bit set in Chelsio filter spec, respectively.
*/
if (fs->mask.ethtype) {
if (fs->val.ethtype != RTE_ETHER_TYPE_VLAN &&
fs->val.ethtype != RTE_ETHER_TYPE_QINQ)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Ethertype must be 0x8100 or 0x88a8");
}
if (fs->val.ethtype == RTE_ETHER_TYPE_QINQ) {
CXGBE_FILL_FS(1, 1, ovlan_vld);
if (spec) {
if (spec->tci || (umask && umask->tci))
CXGBE_FILL_FS(be16_to_cpu(spec->tci),
be16_to_cpu(mask->tci), ovlan);
fs->mask.ethtype = 0;
fs->val.ethtype = 0;
}
} else if (fs->val.ethtype == RTE_ETHER_TYPE_VLAN) {
CXGBE_FILL_FS(1, 1, ivlan_vld);
if (spec) {
if (spec->tci || (umask && umask->tci))
CXGBE_FILL_FS(be16_to_cpu(spec->tci),
be16_to_cpu(mask->tci), ivlan);
fs->mask.ethtype = 0;
fs->val.ethtype = 0;
}
}
if (spec && (spec->inner_type || (umask && umask->inner_type)))
CXGBE_FILL_FS(be16_to_cpu(spec->inner_type),
be16_to_cpu(mask->inner_type), ethtype);
return 0;
}
static int
ch_rte_parsetype_pf(const void *dmask __rte_unused,
const struct rte_flow_item *item __rte_unused,
struct ch_filter_specification *fs,
struct rte_flow_error *e __rte_unused)
{
struct rte_flow *flow = (struct rte_flow *)fs->private;
struct rte_eth_dev *dev = flow->dev;
struct adapter *adap = ethdev2adap(dev);
CXGBE_FILL_FS(1, 1, pfvf_vld);
CXGBE_FILL_FS(adap->pf, 0x7, pf);
return 0;
}
static int
ch_rte_parsetype_vf(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_vf *umask = item->mask;
const struct rte_flow_item_vf *val = item->spec;
const struct rte_flow_item_vf *mask;
/* If user has not given any mask, then use chelsio supported mask. */
mask = umask ? umask : (const struct rte_flow_item_vf *)dmask;
CXGBE_FILL_FS(1, 1, pfvf_vld);
if (!val)
return 0; /* Wildcard, match all Vf */
if (val->id > UCHAR_MAX)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VF ID > MAX(255)");
if (val->id || (umask && umask->id))
CXGBE_FILL_FS(val->id, mask->id, vf);
return 0;
}
static int
ch_rte_parsetype_udp(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_udp *val = item->spec;
const struct rte_flow_item_udp *umask = item->mask;
const struct rte_flow_item_udp *mask;
mask = umask ? umask : (const struct rte_flow_item_udp *)dmask;
if (mask->hdr.dgram_len || mask->hdr.dgram_cksum)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"udp: only src/dst port supported");
CXGBE_FILL_FS(IPPROTO_UDP, 0xff, proto);
if (!val)
return 0;
if (val->hdr.src_port || (umask && umask->hdr.src_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.src_port),
be16_to_cpu(mask->hdr.src_port), fport);
if (val->hdr.dst_port || (umask && umask->hdr.dst_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.dst_port),
be16_to_cpu(mask->hdr.dst_port), lport);
return 0;
}
static int
ch_rte_parsetype_tcp(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_tcp *val = item->spec;
const struct rte_flow_item_tcp *umask = item->mask;
const struct rte_flow_item_tcp *mask;
mask = umask ? umask : (const struct rte_flow_item_tcp *)dmask;
if (mask->hdr.sent_seq || mask->hdr.recv_ack || mask->hdr.data_off ||
mask->hdr.tcp_flags || mask->hdr.rx_win || mask->hdr.cksum ||
mask->hdr.tcp_urp)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"tcp: only src/dst port supported");
CXGBE_FILL_FS(IPPROTO_TCP, 0xff, proto);
if (!val)
return 0;
if (val->hdr.src_port || (umask && umask->hdr.src_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.src_port),
be16_to_cpu(mask->hdr.src_port), fport);
if (val->hdr.dst_port || (umask && umask->hdr.dst_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.dst_port),
be16_to_cpu(mask->hdr.dst_port), lport);
return 0;
}
static int
ch_rte_parsetype_ipv4(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_ipv4 *val = item->spec;
const struct rte_flow_item_ipv4 *umask = item->mask;
const struct rte_flow_item_ipv4 *mask;
mask = umask ? umask : (const struct rte_flow_item_ipv4 *)dmask;
if (mask->hdr.time_to_live)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item, "ttl is not supported");
if (fs->mask.ethtype &&
(fs->val.ethtype != RTE_ETHER_TYPE_IPV4))
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Couldn't find IPv4 ethertype");
fs->type = FILTER_TYPE_IPV4;
if (!val)
return 0; /* ipv4 wild card */
if (val->hdr.next_proto_id || (umask && umask->hdr.next_proto_id))
CXGBE_FILL_FS(val->hdr.next_proto_id, mask->hdr.next_proto_id,
proto);
if (val->hdr.dst_addr || (umask && umask->hdr.dst_addr))
CXGBE_FILL_FS_MEMCPY(val->hdr.dst_addr, mask->hdr.dst_addr,
lip);
if (val->hdr.src_addr || (umask && umask->hdr.src_addr))
CXGBE_FILL_FS_MEMCPY(val->hdr.src_addr, mask->hdr.src_addr,
fip);
if (val->hdr.type_of_service || (umask && umask->hdr.type_of_service))
CXGBE_FILL_FS(val->hdr.type_of_service,
mask->hdr.type_of_service, tos);
return 0;
}
static int
ch_rte_parsetype_ipv6(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_ipv6 *val = item->spec;
const struct rte_flow_item_ipv6 *umask = item->mask;
const struct rte_flow_item_ipv6 *mask;
u32 vtc_flow, vtc_flow_mask;
u8 z[16] = { 0 };
mask = umask ? umask : (const struct rte_flow_item_ipv6 *)dmask;
vtc_flow_mask = be32_to_cpu(mask->hdr.vtc_flow);
if (vtc_flow_mask & RTE_IPV6_HDR_FL_MASK ||
mask->hdr.payload_len || mask->hdr.hop_limits)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"flow/hop are not supported");
if (fs->mask.ethtype &&
(fs->val.ethtype != RTE_ETHER_TYPE_IPV6))
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Couldn't find IPv6 ethertype");
fs->type = FILTER_TYPE_IPV6;
if (!val)
return 0; /* ipv6 wild card */
if (val->hdr.proto || (umask && umask->hdr.proto))
CXGBE_FILL_FS(val->hdr.proto, mask->hdr.proto, proto);
vtc_flow = be32_to_cpu(val->hdr.vtc_flow);
if (val->hdr.vtc_flow || (umask && umask->hdr.vtc_flow))
CXGBE_FILL_FS((vtc_flow & RTE_IPV6_HDR_TC_MASK) >>
RTE_IPV6_HDR_TC_SHIFT,
(vtc_flow_mask & RTE_IPV6_HDR_TC_MASK) >>
RTE_IPV6_HDR_TC_SHIFT,
tos);
if (memcmp(val->hdr.dst_addr, z, sizeof(val->hdr.dst_addr)) ||
(umask &&
memcmp(umask->hdr.dst_addr, z, sizeof(umask->hdr.dst_addr))))
CXGBE_FILL_FS_MEMCPY(val->hdr.dst_addr, mask->hdr.dst_addr,
lip);
if (memcmp(val->hdr.src_addr, z, sizeof(val->hdr.src_addr)) ||
(umask &&
memcmp(umask->hdr.src_addr, z, sizeof(umask->hdr.src_addr))))
CXGBE_FILL_FS_MEMCPY(val->hdr.src_addr, mask->hdr.src_addr,
fip);
return 0;
}
static int
cxgbe_rtef_parse_attr(struct rte_flow *flow, const struct rte_flow_attr *attr,
struct rte_flow_error *e)
{
if (attr->egress)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR,
attr, "attribute:<egress> is"
" not supported !");
if (attr->group > 0)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR,
attr, "group parameter is"
" not supported.");
flow->fidx = attr->priority ? attr->priority - 1 : FILTER_ID_MAX;
return 0;
}
static inline int check_rxq(struct rte_eth_dev *dev, uint16_t rxq)
{
struct port_info *pi = ethdev2pinfo(dev);
if (rxq > pi->n_rx_qsets)
return -EINVAL;
return 0;
}
static int cxgbe_validate_fidxondel(struct filter_entry *f, unsigned int fidx)
{
struct adapter *adap = ethdev2adap(f->dev);
struct ch_filter_specification fs = f->fs;
u8 nentries;
if (fidx >= adap->tids.nftids) {
dev_err(adap, "invalid flow index %d.\n", fidx);
return -EINVAL;
}
nentries = cxgbe_filter_slots(adap, fs.type);
if (!cxgbe_is_filter_set(&adap->tids, fidx, nentries)) {
dev_err(adap, "Already free fidx:%d f:%p\n", fidx, f);
return -EINVAL;
}
return 0;
}
static int
cxgbe_validate_fidxonadd(struct ch_filter_specification *fs,
struct adapter *adap, unsigned int fidx)
{
u8 nentries;
nentries = cxgbe_filter_slots(adap, fs->type);
if (cxgbe_is_filter_set(&adap->tids, fidx, nentries)) {
dev_err(adap, "filter index: %d is busy.\n", fidx);
return -EBUSY;
}
if (fidx >= adap->tids.nftids) {
dev_err(adap, "filter index (%u) >= max(%u)\n",
fidx, adap->tids.nftids);
return -ERANGE;
}
return 0;
}
static int
cxgbe_verify_fidx(struct rte_flow *flow, unsigned int fidx, uint8_t del)
{
if (flow->fs.cap)
return 0; /* Hash filters */
return del ? cxgbe_validate_fidxondel(flow->f, fidx) :
cxgbe_validate_fidxonadd(&flow->fs,
ethdev2adap(flow->dev), fidx);
}
static int cxgbe_get_fidx(struct rte_flow *flow, unsigned int *fidx)
{
struct ch_filter_specification *fs = &flow->fs;
struct adapter *adap = ethdev2adap(flow->dev);
/* For tcam get the next available slot, if default value specified */
if (flow->fidx == FILTER_ID_MAX) {
u8 nentries;
int idx;
nentries = cxgbe_filter_slots(adap, fs->type);
idx = cxgbe_alloc_ftid(adap, nentries);
if (idx < 0) {
dev_err(adap, "unable to get a filter index in tcam\n");
return -ENOMEM;
}
*fidx = (unsigned int)idx;
} else {
*fidx = flow->fidx;
}
return 0;
}
static int
cxgbe_get_flow_item_index(const struct rte_flow_item items[], u32 type)
{
const struct rte_flow_item *i;
int j, index = -ENOENT;
for (i = items, j = 0; i->type != RTE_FLOW_ITEM_TYPE_END; i++, j++) {
if (i->type == type) {
index = j;
break;
}
}
return index;
}
static int
ch_rte_parse_nat(uint8_t nmode, struct ch_filter_specification *fs)
{
/* nmode:
* BIT_0 = [src_ip], BIT_1 = [dst_ip]
* BIT_2 = [src_port], BIT_3 = [dst_port]
*
* Only below cases are supported as per our spec.
*/
switch (nmode) {
case 0: /* 0000b */
fs->nat_mode = NAT_MODE_NONE;
break;
case 2: /* 0010b */
fs->nat_mode = NAT_MODE_DIP;
break;
case 5: /* 0101b */
fs->nat_mode = NAT_MODE_SIP_SP;
break;
case 7: /* 0111b */
fs->nat_mode = NAT_MODE_DIP_SIP_SP;
break;
case 10: /* 1010b */
fs->nat_mode = NAT_MODE_DIP_DP;
break;
case 11: /* 1011b */
fs->nat_mode = NAT_MODE_DIP_DP_SIP;
break;
case 14: /* 1110b */
fs->nat_mode = NAT_MODE_DIP_DP_SP;
break;
case 15: /* 1111b */
fs->nat_mode = NAT_MODE_ALL;
break;
default:
return -EINVAL;
}
return 0;
}
static int
ch_rte_parse_atype_switch(const struct rte_flow_action *a,
const struct rte_flow_item items[],
uint8_t *nmode,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_action_of_set_vlan_vid *vlanid;
const struct rte_flow_action_of_set_vlan_pcp *vlanpcp;
const struct rte_flow_action_of_push_vlan *pushvlan;
const struct rte_flow_action_set_ipv4 *ipv4;
const struct rte_flow_action_set_ipv6 *ipv6;
const struct rte_flow_action_set_tp *tp_port;
const struct rte_flow_action_phy_port *port;
const struct rte_flow_action_set_mac *mac;
int item_index;
u16 tmp_vlan;
switch (a->type) {
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
vlanid = (const struct rte_flow_action_of_set_vlan_vid *)
a->conf;
/* If explicitly asked to push a new VLAN header,
* then don't set rewrite mode. Otherwise, the
* incoming VLAN packets will get their VLAN fields
* rewritten, instead of adding an additional outer
* VLAN header.
*/
if (fs->newvlan != VLAN_INSERT)
fs->newvlan = VLAN_REWRITE;
tmp_vlan = fs->vlan & 0xe000;
fs->vlan = (be16_to_cpu(vlanid->vlan_vid) & 0xfff) | tmp_vlan;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
vlanpcp = (const struct rte_flow_action_of_set_vlan_pcp *)
a->conf;
/* If explicitly asked to push a new VLAN header,
* then don't set rewrite mode. Otherwise, the
* incoming VLAN packets will get their VLAN fields
* rewritten, instead of adding an additional outer
* VLAN header.
*/
if (fs->newvlan != VLAN_INSERT)
fs->newvlan = VLAN_REWRITE;
tmp_vlan = fs->vlan & 0xfff;
fs->vlan = (vlanpcp->vlan_pcp << 13) | tmp_vlan;
break;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
pushvlan = (const struct rte_flow_action_of_push_vlan *)
a->conf;
if (be16_to_cpu(pushvlan->ethertype) != RTE_ETHER_TYPE_VLAN)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"only ethertype 0x8100 "
"supported for push vlan.");
fs->newvlan = VLAN_INSERT;
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
fs->newvlan = VLAN_REMOVE;
break;
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
port = (const struct rte_flow_action_phy_port *)a->conf;
fs->eport = port->index;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV4);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV4 "
"found.");
ipv4 = (const struct rte_flow_action_set_ipv4 *)a->conf;
memcpy(fs->nat_fip, &ipv4->ipv4_addr, sizeof(ipv4->ipv4_addr));
*nmode |= 1 << 0;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV4);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV4 "
"found.");
ipv4 = (const struct rte_flow_action_set_ipv4 *)a->conf;
memcpy(fs->nat_lip, &ipv4->ipv4_addr, sizeof(ipv4->ipv4_addr));
*nmode |= 1 << 1;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV6);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV6 "
"found.");
ipv6 = (const struct rte_flow_action_set_ipv6 *)a->conf;
memcpy(fs->nat_fip, ipv6->ipv6_addr, sizeof(ipv6->ipv6_addr));
*nmode |= 1 << 0;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV6);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV6 "
"found.");
ipv6 = (const struct rte_flow_action_set_ipv6 *)a->conf;
memcpy(fs->nat_lip, ipv6->ipv6_addr, sizeof(ipv6->ipv6_addr));
*nmode |= 1 << 1;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_TCP);
if (item_index < 0) {
item_index =
cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_UDP);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_TCP or "
"RTE_FLOW_ITEM_TYPE_UDP found");
}
tp_port = (const struct rte_flow_action_set_tp *)a->conf;
fs->nat_fport = be16_to_cpu(tp_port->port);
*nmode |= 1 << 2;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_TCP);
if (item_index < 0) {
item_index =
cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_UDP);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_TCP or "
"RTE_FLOW_ITEM_TYPE_UDP found");
}
tp_port = (const struct rte_flow_action_set_tp *)a->conf;
fs->nat_lport = be16_to_cpu(tp_port->port);
*nmode |= 1 << 3;
break;
case RTE_FLOW_ACTION_TYPE_MAC_SWAP:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_ETH);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_ETH "
"found");
fs->swapmac = 1;
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_ETH);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_ETH "
"found");
mac = (const struct rte_flow_action_set_mac *)a->conf;
fs->newsmac = 1;
memcpy(fs->smac, mac->mac_addr, sizeof(fs->smac));
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_ETH);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_ETH found");
mac = (const struct rte_flow_action_set_mac *)a->conf;
fs->newdmac = 1;
memcpy(fs->dmac, mac->mac_addr, sizeof(fs->dmac));
break;
default:
/* We are not supposed to come here */
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"Action not supported");
}
return 0;
}
static int
cxgbe_rtef_parse_actions(struct rte_flow *flow,
const struct rte_flow_item items[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
struct ch_filter_specification *fs = &flow->fs;
uint8_t nmode = 0, nat_ipv4 = 0, nat_ipv6 = 0;
uint8_t vlan_set_vid = 0, vlan_set_pcp = 0;
const struct rte_flow_action_queue *q;
const struct rte_flow_action *a;
char abit = 0;
int ret;
for (a = action; a->type != RTE_FLOW_ACTION_TYPE_END; a++) {
switch (a->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
continue;
case RTE_FLOW_ACTION_TYPE_DROP:
if (abit++)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"specify only 1 pass/drop");
fs->action = FILTER_DROP;
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
q = (const struct rte_flow_action_queue *)a->conf;
if (!q)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, q,
"specify rx queue index");
if (check_rxq(flow->dev, q->index))
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, q,
"Invalid rx queue");
if (abit++)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"specify only 1 pass/drop");
fs->action = FILTER_PASS;
fs->dirsteer = 1;
fs->iq = q->index;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
fs->hitcnts = 1;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
vlan_set_vid++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
vlan_set_pcp++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
case RTE_FLOW_ACTION_TYPE_MAC_SWAP:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
nat_ipv4++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
nat_ipv6++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
action_switch:
/* We allow multiple switch actions, but switch is
* not compatible with either queue or drop
*/
if (abit++ && fs->action != FILTER_SWITCH)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"overlapping action specified");
if (nat_ipv4 && nat_ipv6)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"Can't have one address ipv4 and the"
" other ipv6");
ret = ch_rte_parse_atype_switch(a, items, &nmode, fs,
e);
if (ret)
return ret;
fs->action = FILTER_SWITCH;
break;
default:
/* Not supported action : return error */
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
a, "Action not supported");
}
}
if (fs->newvlan == VLAN_REWRITE && (!vlan_set_vid || !vlan_set_pcp))
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"Both OF_SET_VLAN_VID and "
"OF_SET_VLAN_PCP must be specified");
if (ch_rte_parse_nat(nmode, fs))
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"invalid settings for swich action");
return 0;
}
static struct chrte_fparse parseitem[] = {
[RTE_FLOW_ITEM_TYPE_ETH] = {
.fptr = ch_rte_parsetype_eth,
.dmask = &(const struct rte_flow_item_eth){
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
.type = 0xffff,
}
},
[RTE_FLOW_ITEM_TYPE_PHY_PORT] = {
.fptr = ch_rte_parsetype_port,
.dmask = &(const struct rte_flow_item_phy_port){
.index = 0x7,
}
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.fptr = ch_rte_parsetype_vlan,
.dmask = &(const struct rte_flow_item_vlan){
.tci = 0xffff,
.inner_type = 0xffff,
}
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.fptr = ch_rte_parsetype_ipv4,
.dmask = &(const struct rte_flow_item_ipv4) {
.hdr = {
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
.type_of_service = 0xff,
},
},
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.fptr = ch_rte_parsetype_ipv6,
.dmask = &(const struct rte_flow_item_ipv6) {
.hdr = {
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.vtc_flow = RTE_BE32(0xff000000),
},
},
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.fptr = ch_rte_parsetype_udp,
.dmask = &rte_flow_item_udp_mask,
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.fptr = ch_rte_parsetype_tcp,
.dmask = &rte_flow_item_tcp_mask,
},
[RTE_FLOW_ITEM_TYPE_PF] = {
.fptr = ch_rte_parsetype_pf,
.dmask = NULL,
},
[RTE_FLOW_ITEM_TYPE_VF] = {
.fptr = ch_rte_parsetype_vf,
.dmask = &(const struct rte_flow_item_vf){
.id = 0xffffffff,
}
},
};
static int
cxgbe_rtef_parse_items(struct rte_flow *flow,
const struct rte_flow_item items[],
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(flow->dev);
const struct rte_flow_item *i;
char repeat[ARRAY_SIZE(parseitem)] = {0};
for (i = items; i->type != RTE_FLOW_ITEM_TYPE_END; i++) {
struct chrte_fparse *idx;
int ret;
if (i->type >= ARRAY_SIZE(parseitem))
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
i, "Item not supported");
switch (i->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
continue;
default:
/* check if item is repeated */
if (repeat[i->type] &&
i->type != RTE_FLOW_ITEM_TYPE_VLAN)
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, i,
"parse items cannot be repeated(except void/vlan)");
repeat[i->type] = 1;
/* validate the item */
ret = cxgbe_validate_item(i, e);
if (ret)
return ret;
idx = &flow->item_parser[i->type];
if (!idx || !idx->fptr) {
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, i,
"Item not supported");
} else {
ret = idx->fptr(idx->dmask, i, &flow->fs, e);
if (ret)
return ret;
}
}
}
cxgbe_tweak_filter_spec(adap, &flow->fs);
cxgbe_fill_filter_region(adap, &flow->fs);
return 0;
}
static int
cxgbe_flow_parse(struct rte_flow *flow,
const struct rte_flow_attr *attr,
const struct rte_flow_item item[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
int ret;
/* parse user request into ch_filter_specification */
ret = cxgbe_rtef_parse_attr(flow, attr, e);
if (ret)
return ret;
ret = cxgbe_rtef_parse_items(flow, item, e);
if (ret)
return ret;
return cxgbe_rtef_parse_actions(flow, item, action, e);
}
static int __cxgbe_flow_create(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct ch_filter_specification *fs = &flow->fs;
struct adapter *adap = ethdev2adap(dev);
struct tid_info *t = &adap->tids;
struct filter_ctx ctx;
unsigned int fidx;
int err;
if (cxgbe_get_fidx(flow, &fidx))
return -ENOMEM;
if (cxgbe_verify_fidx(flow, fidx, 0))
return -1;
t4_init_completion(&ctx.completion);
/* go create the filter */
err = cxgbe_set_filter(dev, fidx, fs, &ctx);
if (err) {
dev_err(adap, "Error %d while creating filter.\n", err);
return err;
}
/* Poll the FW for reply */
err = cxgbe_poll_for_completion(&adap->sge.fw_evtq,
CXGBE_FLOW_POLL_MS,
CXGBE_FLOW_POLL_CNT,
&ctx.completion);
if (err) {
dev_err(adap, "Filter set operation timed out (%d)\n", err);
return err;
}
if (ctx.result) {
dev_err(adap, "Hardware error %d while creating the filter.\n",
ctx.result);
return ctx.result;
}
if (fs->cap) { /* to destroy the filter */
flow->fidx = ctx.tid;
flow->f = lookup_tid(t, ctx.tid);
} else {
flow->fidx = fidx;
flow->f = &adap->tids.ftid_tab[fidx];
}
return 0;
}
static struct rte_flow *
cxgbe_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item item[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
struct rte_flow *flow;
int ret;
flow = t4_os_alloc(sizeof(struct rte_flow));
if (!flow) {
rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Unable to allocate memory for"
" filter_entry");
return NULL;
}
flow->item_parser = parseitem;
flow->dev = dev;
flow->fs.private = (void *)flow;
if (cxgbe_flow_parse(flow, attr, item, action, e)) {
t4_os_free(flow);
return NULL;
}
t4_os_lock(&adap->flow_lock);
/* go, interact with cxgbe_filter */
ret = __cxgbe_flow_create(dev, flow);
t4_os_unlock(&adap->flow_lock);
if (ret) {
rte_flow_error_set(e, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Unable to create flow rule");
t4_os_free(flow);
return NULL;
}
flow->f->private = flow; /* Will be used during flush */
return flow;
}
static int __cxgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct adapter *adap = ethdev2adap(dev);
struct filter_entry *f = flow->f;
struct ch_filter_specification *fs;
struct filter_ctx ctx;
int err;
fs = &f->fs;
if (cxgbe_verify_fidx(flow, flow->fidx, 1))
return -1;
t4_init_completion(&ctx.completion);
err = cxgbe_del_filter(dev, flow->fidx, fs, &ctx);
if (err) {
dev_err(adap, "Error %d while deleting filter.\n", err);
return err;
}
/* Poll the FW for reply */
err = cxgbe_poll_for_completion(&adap->sge.fw_evtq,
CXGBE_FLOW_POLL_MS,
CXGBE_FLOW_POLL_CNT,
&ctx.completion);
if (err) {
dev_err(adap, "Filter delete operation timed out (%d)\n", err);
return err;
}
if (ctx.result) {
dev_err(adap, "Hardware error %d while deleting the filter.\n",
ctx.result);
return ctx.result;
}
return 0;
}
static int
cxgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
int ret;
t4_os_lock(&adap->flow_lock);
ret = __cxgbe_flow_destroy(dev, flow);
t4_os_unlock(&adap->flow_lock);
if (ret)
return rte_flow_error_set(e, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
flow, "error destroying filter.");
t4_os_free(flow);
return 0;
}
static int __cxgbe_flow_query(struct rte_flow *flow, u64 *count,
u64 *byte_count)
{
struct adapter *adap = ethdev2adap(flow->dev);
struct ch_filter_specification fs = flow->f->fs;
unsigned int fidx = flow->fidx;
int ret = 0;
ret = cxgbe_get_filter_count(adap, fidx, count, fs.cap, 0);
if (ret)
return ret;
return cxgbe_get_filter_count(adap, fidx, byte_count, fs.cap, 1);
}
static int
cxgbe_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow,
const struct rte_flow_action *action, void *data,
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(flow->dev);
struct ch_filter_specification fs;
struct rte_flow_query_count *c;
struct filter_entry *f;
int ret;
RTE_SET_USED(dev);
f = flow->f;
fs = f->fs;
if (action->type != RTE_FLOW_ACTION_TYPE_COUNT)
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"only count supported for query");
/*
* This is a valid operation, Since we are allowed to do chelsio
* specific operations in rte side of our code but not vise-versa
*
* So, fs can be queried/modified here BUT rte_flow_query_count
* cannot be worked on by the lower layer since we want to maintain
* it as rte_flow agnostic.
*/
if (!fs.hitcnts)
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
&fs, "filter hit counters were not"
" enabled during filter creation");
c = (struct rte_flow_query_count *)data;
t4_os_lock(&adap->flow_lock);
ret = __cxgbe_flow_query(flow, &c->hits, &c->bytes);
if (ret) {
rte_flow_error_set(e, -ret, RTE_FLOW_ERROR_TYPE_ACTION,
f, "cxgbe pmd failed to perform query");
goto out;
}
/* Query was successful */
c->bytes_set = 1;
c->hits_set = 1;
if (c->reset)
cxgbe_clear_filter_count(adap, flow->fidx, f->fs.cap, true);
out:
t4_os_unlock(&adap->flow_lock);
return ret;
}
static int
cxgbe_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item item[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
struct rte_flow *flow;
unsigned int fidx;
int ret = 0;
flow = t4_os_alloc(sizeof(struct rte_flow));
if (!flow)
return rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Unable to allocate memory for filter_entry");
flow->item_parser = parseitem;
flow->dev = dev;
flow->fs.private = (void *)flow;
ret = cxgbe_flow_parse(flow, attr, item, action, e);
if (ret) {
t4_os_free(flow);
return ret;
}
if (cxgbe_validate_filter(adap, &flow->fs)) {
t4_os_free(flow);
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"validation failed. Check f/w config file.");
}
t4_os_lock(&adap->flow_lock);
if (cxgbe_get_fidx(flow, &fidx)) {
ret = rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "no memory in tcam.");
goto out;
}
if (cxgbe_verify_fidx(flow, fidx, 0)) {
ret = rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "validation failed");
goto out;
}
out:
t4_os_unlock(&adap->flow_lock);
t4_os_free(flow);
return ret;
}
/*
* @ret : > 0 filter destroyed succsesfully
* < 0 error destroying filter
* == 1 filter not active / not found
*/
static int
cxgbe_check_n_destroy(struct filter_entry *f, struct rte_eth_dev *dev)
{
if (f && (f->valid || f->pending) &&
f->dev == dev && /* Only if user has asked for this port */
f->private) /* We (rte_flow) created this filter */
return __cxgbe_flow_destroy(dev, (struct rte_flow *)f->private);
return 1;
}
static int cxgbe_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
unsigned int i;
int ret = 0;
t4_os_lock(&adap->flow_lock);
if (adap->tids.ftid_tab) {
struct filter_entry *f = &adap->tids.ftid_tab[0];
for (i = 0; i < adap->tids.nftids; i++, f++) {
ret = cxgbe_check_n_destroy(f, dev);
if (ret < 0) {
rte_flow_error_set(e, ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
f->private,
"error destroying TCAM "
"filter.");
goto out;
}
}
}
if (is_hashfilter(adap) && adap->tids.tid_tab) {
struct filter_entry *f;
for (i = adap->tids.hash_base; i <= adap->tids.ntids; i++) {
f = (struct filter_entry *)adap->tids.tid_tab[i];
ret = cxgbe_check_n_destroy(f, dev);
if (ret < 0) {
rte_flow_error_set(e, ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
f->private,
"error destroying HASH "
"filter.");
goto out;
}
}
}
out:
t4_os_unlock(&adap->flow_lock);
return ret >= 0 ? 0 : ret;
}
static const struct rte_flow_ops cxgbe_flow_ops = {
.validate = cxgbe_flow_validate,
.create = cxgbe_flow_create,
.destroy = cxgbe_flow_destroy,
.flush = cxgbe_flow_flush,
.query = cxgbe_flow_query,
.isolate = NULL,
};
int
cxgbe_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
int ret = 0;
RTE_SET_USED(dev);
switch (filter_type) {
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &cxgbe_flow_ops;
break;
default:
ret = -ENOTSUP;
break;
}
return ret;
}