numam-dpdk/drivers/event/dsw/dsw_evdev.c
Mattias Rönnblom 7e192bdb0c event/dsw: ignore scheduling type for single-link queues
The scheduling type parameter is not applicable for single link
queues. DSW would, at the time of rte_event_queue_setup(), erroneously
verify that scheduling type was one of the supported types, and
returned -ENOTSUP in case of RTE_SCHED_TYPE_ORDERED.

Fixes: 4540ee9c68 ("event/dsw: add device and queue configuration")
Cc: stable@dpdk.org

Signed-off-by: Mattias Rönnblom <mattias.ronnblom@ericsson.com>
Acked-by: Gage Eads <gage.eads@intel.com>
2019-05-13 16:19:05 +02:00

439 lines
10 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Ericsson AB
*/
#include <stdbool.h>
#include <rte_cycles.h>
#include <rte_eventdev_pmd.h>
#include <rte_eventdev_pmd_vdev.h>
#include <rte_random.h>
#include "dsw_evdev.h"
#define EVENTDEV_NAME_DSW_PMD event_dsw
static int
dsw_port_setup(struct rte_eventdev *dev, uint8_t port_id,
const struct rte_event_port_conf *conf)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
struct dsw_port *port;
struct rte_event_ring *in_ring;
struct rte_ring *ctl_in_ring;
char ring_name[RTE_RING_NAMESIZE];
port = &dsw->ports[port_id];
*port = (struct dsw_port) {
.id = port_id,
.dsw = dsw,
.dequeue_depth = conf->dequeue_depth,
.enqueue_depth = conf->enqueue_depth,
.new_event_threshold = conf->new_event_threshold
};
snprintf(ring_name, sizeof(ring_name), "dsw%d_p%u", dev->data->dev_id,
port_id);
in_ring = rte_event_ring_create(ring_name, DSW_IN_RING_SIZE,
dev->data->socket_id,
RING_F_SC_DEQ|RING_F_EXACT_SZ);
if (in_ring == NULL)
return -ENOMEM;
snprintf(ring_name, sizeof(ring_name), "dswctl%d_p%u",
dev->data->dev_id, port_id);
ctl_in_ring = rte_ring_create(ring_name, DSW_CTL_IN_RING_SIZE,
dev->data->socket_id,
RING_F_SC_DEQ|RING_F_EXACT_SZ);
if (ctl_in_ring == NULL) {
rte_event_ring_free(in_ring);
return -ENOMEM;
}
port->in_ring = in_ring;
port->ctl_in_ring = ctl_in_ring;
rte_atomic16_init(&port->load);
port->load_update_interval =
(DSW_LOAD_UPDATE_INTERVAL * rte_get_timer_hz()) / US_PER_S;
port->migration_interval =
(DSW_MIGRATION_INTERVAL * rte_get_timer_hz()) / US_PER_S;
dev->data->ports[port_id] = port;
return 0;
}
static void
dsw_port_def_conf(struct rte_eventdev *dev __rte_unused,
uint8_t port_id __rte_unused,
struct rte_event_port_conf *port_conf)
{
*port_conf = (struct rte_event_port_conf) {
.new_event_threshold = 1024,
.dequeue_depth = DSW_MAX_PORT_DEQUEUE_DEPTH / 4,
.enqueue_depth = DSW_MAX_PORT_ENQUEUE_DEPTH / 4
};
}
static void
dsw_port_release(void *p)
{
struct dsw_port *port = p;
rte_event_ring_free(port->in_ring);
rte_ring_free(port->ctl_in_ring);
}
static int
dsw_queue_setup(struct rte_eventdev *dev, uint8_t queue_id,
const struct rte_event_queue_conf *conf)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
struct dsw_queue *queue = &dsw->queues[queue_id];
if (RTE_EVENT_QUEUE_CFG_ALL_TYPES & conf->event_queue_cfg)
return -ENOTSUP;
/* SINGLE_LINK is better off treated as TYPE_ATOMIC, since it
* avoid the "fake" TYPE_PARALLEL flow_id assignment. Since
* the queue will only have a single serving port, no
* migration will ever happen, so the extra TYPE_ATOMIC
* migration overhead is avoided.
*/
if (RTE_EVENT_QUEUE_CFG_SINGLE_LINK & conf->event_queue_cfg)
queue->schedule_type = RTE_SCHED_TYPE_ATOMIC;
else {
if (conf->schedule_type == RTE_SCHED_TYPE_ORDERED)
return -ENOTSUP;
/* atomic or parallel */
queue->schedule_type = conf->schedule_type;
}
queue->num_serving_ports = 0;
return 0;
}
static void
dsw_queue_def_conf(struct rte_eventdev *dev __rte_unused,
uint8_t queue_id __rte_unused,
struct rte_event_queue_conf *queue_conf)
{
*queue_conf = (struct rte_event_queue_conf) {
.nb_atomic_flows = 4096,
.schedule_type = RTE_SCHED_TYPE_ATOMIC,
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL
};
}
static void
dsw_queue_release(struct rte_eventdev *dev __rte_unused,
uint8_t queue_id __rte_unused)
{
}
static void
queue_add_port(struct dsw_queue *queue, uint16_t port_id)
{
queue->serving_ports[queue->num_serving_ports] = port_id;
queue->num_serving_ports++;
}
static bool
queue_remove_port(struct dsw_queue *queue, uint16_t port_id)
{
uint16_t i;
for (i = 0; i < queue->num_serving_ports; i++)
if (queue->serving_ports[i] == port_id) {
uint16_t last_idx = queue->num_serving_ports - 1;
if (i != last_idx)
queue->serving_ports[i] =
queue->serving_ports[last_idx];
queue->num_serving_ports--;
return true;
}
return false;
}
static int
dsw_port_link_unlink(struct rte_eventdev *dev, void *port,
const uint8_t queues[], uint16_t num, bool link)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
struct dsw_port *p = port;
uint16_t i;
uint16_t count = 0;
for (i = 0; i < num; i++) {
uint8_t qid = queues[i];
struct dsw_queue *q = &dsw->queues[qid];
if (link) {
queue_add_port(q, p->id);
count++;
} else {
bool removed = queue_remove_port(q, p->id);
if (removed)
count++;
}
}
return count;
}
static int
dsw_port_link(struct rte_eventdev *dev, void *port, const uint8_t queues[],
const uint8_t priorities[] __rte_unused, uint16_t num)
{
return dsw_port_link_unlink(dev, port, queues, num, true);
}
static int
dsw_port_unlink(struct rte_eventdev *dev, void *port, uint8_t queues[],
uint16_t num)
{
return dsw_port_link_unlink(dev, port, queues, num, false);
}
static void
dsw_info_get(struct rte_eventdev *dev __rte_unused,
struct rte_event_dev_info *info)
{
*info = (struct rte_event_dev_info) {
.driver_name = DSW_PMD_NAME,
.max_event_queues = DSW_MAX_QUEUES,
.max_event_queue_flows = DSW_MAX_FLOWS,
.max_event_queue_priority_levels = 1,
.max_event_priority_levels = 1,
.max_event_ports = DSW_MAX_PORTS,
.max_event_port_dequeue_depth = DSW_MAX_PORT_DEQUEUE_DEPTH,
.max_event_port_enqueue_depth = DSW_MAX_PORT_ENQUEUE_DEPTH,
.max_num_events = DSW_MAX_EVENTS,
.event_dev_cap = RTE_EVENT_DEV_CAP_BURST_MODE|
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED|
RTE_EVENT_DEV_CAP_NONSEQ_MODE|
RTE_EVENT_DEV_CAP_MULTIPLE_QUEUE_PORT
};
}
static int
dsw_configure(const struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
const struct rte_event_dev_config *conf = &dev->data->dev_conf;
int32_t min_max_in_flight;
dsw->num_ports = conf->nb_event_ports;
dsw->num_queues = conf->nb_event_queues;
/* Avoid a situation where consumer ports are holding all the
* credits, without making use of them.
*/
min_max_in_flight = conf->nb_event_ports * DSW_PORT_MAX_CREDITS;
dsw->max_inflight = RTE_MAX(conf->nb_events_limit, min_max_in_flight);
return 0;
}
static void
initial_flow_to_port_assignment(struct dsw_evdev *dsw)
{
uint8_t queue_id;
for (queue_id = 0; queue_id < dsw->num_queues; queue_id++) {
struct dsw_queue *queue = &dsw->queues[queue_id];
uint16_t flow_hash;
for (flow_hash = 0; flow_hash < DSW_MAX_FLOWS; flow_hash++) {
uint8_t port_idx =
rte_rand() % queue->num_serving_ports;
uint8_t port_id =
queue->serving_ports[port_idx];
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
port_id;
}
}
}
static int
dsw_start(struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
uint16_t i;
uint64_t now;
rte_atomic32_init(&dsw->credits_on_loan);
initial_flow_to_port_assignment(dsw);
now = rte_get_timer_cycles();
for (i = 0; i < dsw->num_ports; i++) {
dsw->ports[i].measurement_start = now;
dsw->ports[i].busy_start = now;
}
return 0;
}
static void
dsw_port_drain_buf(uint8_t dev_id, struct rte_event *buf, uint16_t buf_len,
eventdev_stop_flush_t flush, void *flush_arg)
{
uint16_t i;
for (i = 0; i < buf_len; i++)
flush(dev_id, buf[i], flush_arg);
}
static void
dsw_port_drain_paused(uint8_t dev_id, struct dsw_port *port,
eventdev_stop_flush_t flush, void *flush_arg)
{
dsw_port_drain_buf(dev_id, port->paused_events, port->paused_events_len,
flush, flush_arg);
}
static void
dsw_port_drain_out(uint8_t dev_id, struct dsw_evdev *dsw, struct dsw_port *port,
eventdev_stop_flush_t flush, void *flush_arg)
{
uint16_t dport_id;
for (dport_id = 0; dport_id < dsw->num_ports; dport_id++)
if (dport_id != port->id)
dsw_port_drain_buf(dev_id, port->out_buffer[dport_id],
port->out_buffer_len[dport_id],
flush, flush_arg);
}
static void
dsw_port_drain_in_ring(uint8_t dev_id, struct dsw_port *port,
eventdev_stop_flush_t flush, void *flush_arg)
{
struct rte_event ev;
while (rte_event_ring_dequeue_burst(port->in_ring, &ev, 1, NULL))
flush(dev_id, ev, flush_arg);
}
static void
dsw_drain(uint8_t dev_id, struct dsw_evdev *dsw,
eventdev_stop_flush_t flush, void *flush_arg)
{
uint16_t port_id;
if (flush == NULL)
return;
for (port_id = 0; port_id < dsw->num_ports; port_id++) {
struct dsw_port *port = &dsw->ports[port_id];
dsw_port_drain_out(dev_id, dsw, port, flush, flush_arg);
dsw_port_drain_paused(dev_id, port, flush, flush_arg);
dsw_port_drain_in_ring(dev_id, port, flush, flush_arg);
}
}
static void
dsw_stop(struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
uint8_t dev_id;
eventdev_stop_flush_t flush;
void *flush_arg;
dev_id = dev->data->dev_id;
flush = dev->dev_ops->dev_stop_flush;
flush_arg = dev->data->dev_stop_flush_arg;
dsw_drain(dev_id, dsw, flush, flush_arg);
}
static int
dsw_close(struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
dsw->num_ports = 0;
dsw->num_queues = 0;
return 0;
}
static struct rte_eventdev_ops dsw_evdev_ops = {
.port_setup = dsw_port_setup,
.port_def_conf = dsw_port_def_conf,
.port_release = dsw_port_release,
.queue_setup = dsw_queue_setup,
.queue_def_conf = dsw_queue_def_conf,
.queue_release = dsw_queue_release,
.port_link = dsw_port_link,
.port_unlink = dsw_port_unlink,
.dev_infos_get = dsw_info_get,
.dev_configure = dsw_configure,
.dev_start = dsw_start,
.dev_stop = dsw_stop,
.dev_close = dsw_close,
.xstats_get = dsw_xstats_get,
.xstats_get_names = dsw_xstats_get_names,
.xstats_get_by_name = dsw_xstats_get_by_name
};
static int
dsw_probe(struct rte_vdev_device *vdev)
{
const char *name;
struct rte_eventdev *dev;
struct dsw_evdev *dsw;
name = rte_vdev_device_name(vdev);
dev = rte_event_pmd_vdev_init(name, sizeof(struct dsw_evdev),
rte_socket_id());
if (dev == NULL)
return -EFAULT;
dev->dev_ops = &dsw_evdev_ops;
dev->enqueue = dsw_event_enqueue;
dev->enqueue_burst = dsw_event_enqueue_burst;
dev->enqueue_new_burst = dsw_event_enqueue_new_burst;
dev->enqueue_forward_burst = dsw_event_enqueue_forward_burst;
dev->dequeue = dsw_event_dequeue;
dev->dequeue_burst = dsw_event_dequeue_burst;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
dsw = dev->data->dev_private;
dsw->data = dev->data;
return 0;
}
static int
dsw_remove(struct rte_vdev_device *vdev)
{
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
return rte_event_pmd_vdev_uninit(name);
}
static struct rte_vdev_driver evdev_dsw_pmd_drv = {
.probe = dsw_probe,
.remove = dsw_remove
};
RTE_PMD_REGISTER_VDEV(EVENTDEV_NAME_DSW_PMD, evdev_dsw_pmd_drv);