ecbc857013
This patch adds the new flow item RTE_FLOW_ITEM_TYPE_PFCP to flow API to match a PFCP header. Add sample PFCP rules for testpmd guide. Since Session Endpoint Identifier (SEID) only will be present in PFCP Session header and PFCP Session headers shall be identified when the S field is equal to 1, when create rules for PFCP Session header with certain SEID the S field need be set 1. Signed-off-by: Xiao Zhang <xiao.zhang@intel.com> Acked-by: Ori Kam <orika@mellanox.com>
1235 lines
37 KiB
C
1235 lines
37 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2016 6WIND S.A.
|
|
* Copyright 2016 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mbuf_dyn.h>
|
|
#include "rte_ethdev.h"
|
|
#include "rte_flow_driver.h"
|
|
#include "rte_flow.h"
|
|
|
|
/* Mbuf dynamic field name for metadata. */
|
|
int rte_flow_dynf_metadata_offs = -1;
|
|
|
|
/* Mbuf dynamic field flag bit number for metadata. */
|
|
uint64_t rte_flow_dynf_metadata_mask;
|
|
|
|
/**
|
|
* Flow elements description tables.
|
|
*/
|
|
struct rte_flow_desc_data {
|
|
const char *name;
|
|
size_t size;
|
|
};
|
|
|
|
/** Generate flow_item[] entry. */
|
|
#define MK_FLOW_ITEM(t, s) \
|
|
[RTE_FLOW_ITEM_TYPE_ ## t] = { \
|
|
.name = # t, \
|
|
.size = s, \
|
|
}
|
|
|
|
/** Information about known flow pattern items. */
|
|
static const struct rte_flow_desc_data rte_flow_desc_item[] = {
|
|
MK_FLOW_ITEM(END, 0),
|
|
MK_FLOW_ITEM(VOID, 0),
|
|
MK_FLOW_ITEM(INVERT, 0),
|
|
MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
|
|
MK_FLOW_ITEM(PF, 0),
|
|
MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
|
|
MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
|
|
MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
|
|
MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
|
|
MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
|
|
MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
|
|
MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
|
|
MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
|
|
MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
|
|
MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
|
|
MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
|
|
MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
|
|
MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
|
|
MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
|
|
MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
|
|
MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
|
|
MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
|
|
MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
|
|
MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
|
|
MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
|
|
MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
|
|
MK_FLOW_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
|
|
MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
|
|
MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
|
|
MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
|
|
MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
|
|
MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
|
|
MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
|
|
MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
|
|
MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
|
|
MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
|
|
sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
|
|
MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
|
|
sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
|
|
MK_FLOW_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
|
|
MK_FLOW_ITEM(META, sizeof(struct rte_flow_item_meta)),
|
|
MK_FLOW_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
|
|
MK_FLOW_ITEM(GRE_KEY, sizeof(rte_be32_t)),
|
|
MK_FLOW_ITEM(GTP_PSC, sizeof(struct rte_flow_item_gtp_psc)),
|
|
MK_FLOW_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
|
|
MK_FLOW_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
|
|
MK_FLOW_ITEM(PPPOE_PROTO_ID,
|
|
sizeof(struct rte_flow_item_pppoe_proto_id)),
|
|
MK_FLOW_ITEM(NSH, sizeof(struct rte_flow_item_nsh)),
|
|
MK_FLOW_ITEM(IGMP, sizeof(struct rte_flow_item_igmp)),
|
|
MK_FLOW_ITEM(AH, sizeof(struct rte_flow_item_ah)),
|
|
MK_FLOW_ITEM(HIGIG2, sizeof(struct rte_flow_item_higig2_hdr)),
|
|
MK_FLOW_ITEM(L2TPV3OIP, sizeof(struct rte_flow_item_l2tpv3oip)),
|
|
MK_FLOW_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
|
|
};
|
|
|
|
/** Generate flow_action[] entry. */
|
|
#define MK_FLOW_ACTION(t, s) \
|
|
[RTE_FLOW_ACTION_TYPE_ ## t] = { \
|
|
.name = # t, \
|
|
.size = s, \
|
|
}
|
|
|
|
/** Information about known flow actions. */
|
|
static const struct rte_flow_desc_data rte_flow_desc_action[] = {
|
|
MK_FLOW_ACTION(END, 0),
|
|
MK_FLOW_ACTION(VOID, 0),
|
|
MK_FLOW_ACTION(PASSTHRU, 0),
|
|
MK_FLOW_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
|
|
MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
|
|
MK_FLOW_ACTION(FLAG, 0),
|
|
MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
|
|
MK_FLOW_ACTION(DROP, 0),
|
|
MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
|
|
MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
|
|
MK_FLOW_ACTION(PF, 0),
|
|
MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
|
|
MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
|
|
MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
|
|
MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
|
|
MK_FLOW_ACTION(SECURITY, sizeof(struct rte_flow_action_security)),
|
|
MK_FLOW_ACTION(OF_SET_MPLS_TTL,
|
|
sizeof(struct rte_flow_action_of_set_mpls_ttl)),
|
|
MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
|
|
MK_FLOW_ACTION(OF_SET_NW_TTL,
|
|
sizeof(struct rte_flow_action_of_set_nw_ttl)),
|
|
MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
|
|
MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
|
|
MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
|
|
MK_FLOW_ACTION(OF_POP_VLAN, 0),
|
|
MK_FLOW_ACTION(OF_PUSH_VLAN,
|
|
sizeof(struct rte_flow_action_of_push_vlan)),
|
|
MK_FLOW_ACTION(OF_SET_VLAN_VID,
|
|
sizeof(struct rte_flow_action_of_set_vlan_vid)),
|
|
MK_FLOW_ACTION(OF_SET_VLAN_PCP,
|
|
sizeof(struct rte_flow_action_of_set_vlan_pcp)),
|
|
MK_FLOW_ACTION(OF_POP_MPLS,
|
|
sizeof(struct rte_flow_action_of_pop_mpls)),
|
|
MK_FLOW_ACTION(OF_PUSH_MPLS,
|
|
sizeof(struct rte_flow_action_of_push_mpls)),
|
|
MK_FLOW_ACTION(VXLAN_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
|
|
MK_FLOW_ACTION(VXLAN_DECAP, 0),
|
|
MK_FLOW_ACTION(NVGRE_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
|
|
MK_FLOW_ACTION(NVGRE_DECAP, 0),
|
|
MK_FLOW_ACTION(RAW_ENCAP, sizeof(struct rte_flow_action_raw_encap)),
|
|
MK_FLOW_ACTION(RAW_DECAP, sizeof(struct rte_flow_action_raw_decap)),
|
|
MK_FLOW_ACTION(SET_IPV4_SRC,
|
|
sizeof(struct rte_flow_action_set_ipv4)),
|
|
MK_FLOW_ACTION(SET_IPV4_DST,
|
|
sizeof(struct rte_flow_action_set_ipv4)),
|
|
MK_FLOW_ACTION(SET_IPV6_SRC,
|
|
sizeof(struct rte_flow_action_set_ipv6)),
|
|
MK_FLOW_ACTION(SET_IPV6_DST,
|
|
sizeof(struct rte_flow_action_set_ipv6)),
|
|
MK_FLOW_ACTION(SET_TP_SRC,
|
|
sizeof(struct rte_flow_action_set_tp)),
|
|
MK_FLOW_ACTION(SET_TP_DST,
|
|
sizeof(struct rte_flow_action_set_tp)),
|
|
MK_FLOW_ACTION(MAC_SWAP, 0),
|
|
MK_FLOW_ACTION(DEC_TTL, 0),
|
|
MK_FLOW_ACTION(SET_TTL, sizeof(struct rte_flow_action_set_ttl)),
|
|
MK_FLOW_ACTION(SET_MAC_SRC, sizeof(struct rte_flow_action_set_mac)),
|
|
MK_FLOW_ACTION(SET_MAC_DST, sizeof(struct rte_flow_action_set_mac)),
|
|
MK_FLOW_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
|
|
MK_FLOW_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
|
|
MK_FLOW_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
|
|
MK_FLOW_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
|
|
MK_FLOW_ACTION(SET_TAG, sizeof(struct rte_flow_action_set_tag)),
|
|
MK_FLOW_ACTION(SET_META, sizeof(struct rte_flow_action_set_meta)),
|
|
MK_FLOW_ACTION(SET_IPV4_DSCP, sizeof(struct rte_flow_action_set_dscp)),
|
|
MK_FLOW_ACTION(SET_IPV6_DSCP, sizeof(struct rte_flow_action_set_dscp)),
|
|
};
|
|
|
|
int
|
|
rte_flow_dynf_metadata_register(void)
|
|
{
|
|
int offset;
|
|
int flag;
|
|
|
|
static const struct rte_mbuf_dynfield desc_offs = {
|
|
.name = RTE_MBUF_DYNFIELD_METADATA_NAME,
|
|
.size = sizeof(uint32_t),
|
|
.align = __alignof__(uint32_t),
|
|
};
|
|
static const struct rte_mbuf_dynflag desc_flag = {
|
|
.name = RTE_MBUF_DYNFLAG_METADATA_NAME,
|
|
};
|
|
|
|
offset = rte_mbuf_dynfield_register(&desc_offs);
|
|
if (offset < 0)
|
|
goto error;
|
|
flag = rte_mbuf_dynflag_register(&desc_flag);
|
|
if (flag < 0)
|
|
goto error;
|
|
rte_flow_dynf_metadata_offs = offset;
|
|
rte_flow_dynf_metadata_mask = (1ULL << flag);
|
|
return 0;
|
|
|
|
error:
|
|
rte_flow_dynf_metadata_offs = -1;
|
|
rte_flow_dynf_metadata_mask = 0ULL;
|
|
return -rte_errno;
|
|
}
|
|
|
|
static int
|
|
flow_err(uint16_t port_id, int ret, struct rte_flow_error *error)
|
|
{
|
|
if (ret == 0)
|
|
return 0;
|
|
if (rte_eth_dev_is_removed(port_id))
|
|
return rte_flow_error_set(error, EIO,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(EIO));
|
|
return ret;
|
|
}
|
|
|
|
static enum rte_flow_item_type
|
|
rte_flow_expand_rss_item_complete(const struct rte_flow_item *item)
|
|
{
|
|
enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
|
|
uint16_t ether_type = 0;
|
|
uint16_t ether_type_m;
|
|
uint8_t ip_next_proto = 0;
|
|
uint8_t ip_next_proto_m;
|
|
|
|
if (item == NULL || item->spec == NULL)
|
|
return ret;
|
|
switch (item->type) {
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
if (item->mask)
|
|
ether_type_m = ((const struct rte_flow_item_eth *)
|
|
(item->mask))->type;
|
|
else
|
|
ether_type_m = rte_flow_item_eth_mask.type;
|
|
if (ether_type_m != RTE_BE16(0xFFFF))
|
|
break;
|
|
ether_type = ((const struct rte_flow_item_eth *)
|
|
(item->spec))->type;
|
|
if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV4;
|
|
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV6;
|
|
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
|
|
ret = RTE_FLOW_ITEM_TYPE_VLAN;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VLAN:
|
|
if (item->mask)
|
|
ether_type_m = ((const struct rte_flow_item_vlan *)
|
|
(item->mask))->inner_type;
|
|
else
|
|
ether_type_m = rte_flow_item_vlan_mask.inner_type;
|
|
if (ether_type_m != RTE_BE16(0xFFFF))
|
|
break;
|
|
ether_type = ((const struct rte_flow_item_vlan *)
|
|
(item->spec))->inner_type;
|
|
if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV4;
|
|
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV6;
|
|
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
|
|
ret = RTE_FLOW_ITEM_TYPE_VLAN;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4:
|
|
if (item->mask)
|
|
ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
|
|
(item->mask))->hdr.next_proto_id;
|
|
else
|
|
ip_next_proto_m =
|
|
rte_flow_item_ipv4_mask.hdr.next_proto_id;
|
|
if (ip_next_proto_m != 0xFF)
|
|
break;
|
|
ip_next_proto = ((const struct rte_flow_item_ipv4 *)
|
|
(item->spec))->hdr.next_proto_id;
|
|
if (ip_next_proto == IPPROTO_UDP)
|
|
ret = RTE_FLOW_ITEM_TYPE_UDP;
|
|
else if (ip_next_proto == IPPROTO_TCP)
|
|
ret = RTE_FLOW_ITEM_TYPE_TCP;
|
|
else if (ip_next_proto == IPPROTO_IP)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV4;
|
|
else if (ip_next_proto == IPPROTO_IPV6)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV6;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV6:
|
|
if (item->mask)
|
|
ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
|
|
(item->mask))->hdr.proto;
|
|
else
|
|
ip_next_proto_m =
|
|
rte_flow_item_ipv6_mask.hdr.proto;
|
|
if (ip_next_proto_m != 0xFF)
|
|
break;
|
|
ip_next_proto = ((const struct rte_flow_item_ipv6 *)
|
|
(item->spec))->hdr.proto;
|
|
if (ip_next_proto == IPPROTO_UDP)
|
|
ret = RTE_FLOW_ITEM_TYPE_UDP;
|
|
else if (ip_next_proto == IPPROTO_TCP)
|
|
ret = RTE_FLOW_ITEM_TYPE_TCP;
|
|
else if (ip_next_proto == IPPROTO_IP)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV4;
|
|
else if (ip_next_proto == IPPROTO_IPV6)
|
|
ret = RTE_FLOW_ITEM_TYPE_IPV6;
|
|
break;
|
|
default:
|
|
ret = RTE_FLOW_ITEM_TYPE_VOID;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Get generic flow operations structure from a port. */
|
|
const struct rte_flow_ops *
|
|
rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
const struct rte_flow_ops *ops;
|
|
int code;
|
|
|
|
if (unlikely(!rte_eth_dev_is_valid_port(port_id)))
|
|
code = ENODEV;
|
|
else if (unlikely(!dev->dev_ops->filter_ctrl ||
|
|
dev->dev_ops->filter_ctrl(dev,
|
|
RTE_ETH_FILTER_GENERIC,
|
|
RTE_ETH_FILTER_GET,
|
|
&ops) ||
|
|
!ops))
|
|
code = ENOSYS;
|
|
else
|
|
return ops;
|
|
rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(code));
|
|
return NULL;
|
|
}
|
|
|
|
/* Check whether a flow rule can be created on a given port. */
|
|
int
|
|
rte_flow_validate(uint16_t port_id,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
|
|
if (unlikely(!ops))
|
|
return -rte_errno;
|
|
if (likely(!!ops->validate))
|
|
return flow_err(port_id, ops->validate(dev, attr, pattern,
|
|
actions, error), error);
|
|
return rte_flow_error_set(error, ENOSYS,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
}
|
|
|
|
/* Create a flow rule on a given port. */
|
|
struct rte_flow *
|
|
rte_flow_create(uint16_t port_id,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
struct rte_flow *flow;
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
|
|
if (unlikely(!ops))
|
|
return NULL;
|
|
if (likely(!!ops->create)) {
|
|
flow = ops->create(dev, attr, pattern, actions, error);
|
|
if (flow == NULL)
|
|
flow_err(port_id, -rte_errno, error);
|
|
return flow;
|
|
}
|
|
rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
return NULL;
|
|
}
|
|
|
|
/* Destroy a flow rule on a given port. */
|
|
int
|
|
rte_flow_destroy(uint16_t port_id,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
|
|
if (unlikely(!ops))
|
|
return -rte_errno;
|
|
if (likely(!!ops->destroy))
|
|
return flow_err(port_id, ops->destroy(dev, flow, error),
|
|
error);
|
|
return rte_flow_error_set(error, ENOSYS,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
}
|
|
|
|
/* Destroy all flow rules associated with a port. */
|
|
int
|
|
rte_flow_flush(uint16_t port_id,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
|
|
if (unlikely(!ops))
|
|
return -rte_errno;
|
|
if (likely(!!ops->flush))
|
|
return flow_err(port_id, ops->flush(dev, error), error);
|
|
return rte_flow_error_set(error, ENOSYS,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
}
|
|
|
|
/* Query an existing flow rule. */
|
|
int
|
|
rte_flow_query(uint16_t port_id,
|
|
struct rte_flow *flow,
|
|
const struct rte_flow_action *action,
|
|
void *data,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
|
|
if (!ops)
|
|
return -rte_errno;
|
|
if (likely(!!ops->query))
|
|
return flow_err(port_id, ops->query(dev, flow, action, data,
|
|
error), error);
|
|
return rte_flow_error_set(error, ENOSYS,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
}
|
|
|
|
/* Restrict ingress traffic to the defined flow rules. */
|
|
int
|
|
rte_flow_isolate(uint16_t port_id,
|
|
int set,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
|
|
if (!ops)
|
|
return -rte_errno;
|
|
if (likely(!!ops->isolate))
|
|
return flow_err(port_id, ops->isolate(dev, set, error), error);
|
|
return rte_flow_error_set(error, ENOSYS,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
}
|
|
|
|
/* Initialize flow error structure. */
|
|
int
|
|
rte_flow_error_set(struct rte_flow_error *error,
|
|
int code,
|
|
enum rte_flow_error_type type,
|
|
const void *cause,
|
|
const char *message)
|
|
{
|
|
if (error) {
|
|
*error = (struct rte_flow_error){
|
|
.type = type,
|
|
.cause = cause,
|
|
.message = message,
|
|
};
|
|
}
|
|
rte_errno = code;
|
|
return -code;
|
|
}
|
|
|
|
/** Pattern item specification types. */
|
|
enum rte_flow_conv_item_spec_type {
|
|
RTE_FLOW_CONV_ITEM_SPEC,
|
|
RTE_FLOW_CONV_ITEM_LAST,
|
|
RTE_FLOW_CONV_ITEM_MASK,
|
|
};
|
|
|
|
/**
|
|
* Copy pattern item specification.
|
|
*
|
|
* @param[out] buf
|
|
* Output buffer. Can be NULL if @p size is zero.
|
|
* @param size
|
|
* Size of @p buf in bytes.
|
|
* @param[in] item
|
|
* Pattern item to copy specification from.
|
|
* @param type
|
|
* Specification selector for either @p spec, @p last or @p mask.
|
|
*
|
|
* @return
|
|
* Number of bytes needed to store pattern item specification regardless
|
|
* of @p size. @p buf contents are truncated to @p size if not large
|
|
* enough.
|
|
*/
|
|
static size_t
|
|
rte_flow_conv_item_spec(void *buf, const size_t size,
|
|
const struct rte_flow_item *item,
|
|
enum rte_flow_conv_item_spec_type type)
|
|
{
|
|
size_t off;
|
|
const void *data =
|
|
type == RTE_FLOW_CONV_ITEM_SPEC ? item->spec :
|
|
type == RTE_FLOW_CONV_ITEM_LAST ? item->last :
|
|
type == RTE_FLOW_CONV_ITEM_MASK ? item->mask :
|
|
NULL;
|
|
|
|
switch (item->type) {
|
|
union {
|
|
const struct rte_flow_item_raw *raw;
|
|
} spec;
|
|
union {
|
|
const struct rte_flow_item_raw *raw;
|
|
} last;
|
|
union {
|
|
const struct rte_flow_item_raw *raw;
|
|
} mask;
|
|
union {
|
|
const struct rte_flow_item_raw *raw;
|
|
} src;
|
|
union {
|
|
struct rte_flow_item_raw *raw;
|
|
} dst;
|
|
size_t tmp;
|
|
|
|
case RTE_FLOW_ITEM_TYPE_RAW:
|
|
spec.raw = item->spec;
|
|
last.raw = item->last ? item->last : item->spec;
|
|
mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
|
|
src.raw = data;
|
|
dst.raw = buf;
|
|
rte_memcpy(dst.raw,
|
|
(&(struct rte_flow_item_raw){
|
|
.relative = src.raw->relative,
|
|
.search = src.raw->search,
|
|
.reserved = src.raw->reserved,
|
|
.offset = src.raw->offset,
|
|
.limit = src.raw->limit,
|
|
.length = src.raw->length,
|
|
}),
|
|
size > sizeof(*dst.raw) ? sizeof(*dst.raw) : size);
|
|
off = sizeof(*dst.raw);
|
|
if (type == RTE_FLOW_CONV_ITEM_SPEC ||
|
|
(type == RTE_FLOW_CONV_ITEM_MASK &&
|
|
((spec.raw->length & mask.raw->length) >=
|
|
(last.raw->length & mask.raw->length))))
|
|
tmp = spec.raw->length & mask.raw->length;
|
|
else
|
|
tmp = last.raw->length & mask.raw->length;
|
|
if (tmp) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(*dst.raw->pattern));
|
|
if (size >= off + tmp)
|
|
dst.raw->pattern = rte_memcpy
|
|
((void *)((uintptr_t)dst.raw + off),
|
|
src.raw->pattern, tmp);
|
|
off += tmp;
|
|
}
|
|
break;
|
|
default:
|
|
off = rte_flow_desc_item[item->type].size;
|
|
rte_memcpy(buf, data, (size > off ? off : size));
|
|
break;
|
|
}
|
|
return off;
|
|
}
|
|
|
|
/**
|
|
* Copy action configuration.
|
|
*
|
|
* @param[out] buf
|
|
* Output buffer. Can be NULL if @p size is zero.
|
|
* @param size
|
|
* Size of @p buf in bytes.
|
|
* @param[in] action
|
|
* Action to copy configuration from.
|
|
*
|
|
* @return
|
|
* Number of bytes needed to store pattern item specification regardless
|
|
* of @p size. @p buf contents are truncated to @p size if not large
|
|
* enough.
|
|
*/
|
|
static size_t
|
|
rte_flow_conv_action_conf(void *buf, const size_t size,
|
|
const struct rte_flow_action *action)
|
|
{
|
|
size_t off;
|
|
|
|
switch (action->type) {
|
|
union {
|
|
const struct rte_flow_action_rss *rss;
|
|
const struct rte_flow_action_vxlan_encap *vxlan_encap;
|
|
const struct rte_flow_action_nvgre_encap *nvgre_encap;
|
|
} src;
|
|
union {
|
|
struct rte_flow_action_rss *rss;
|
|
struct rte_flow_action_vxlan_encap *vxlan_encap;
|
|
struct rte_flow_action_nvgre_encap *nvgre_encap;
|
|
} dst;
|
|
size_t tmp;
|
|
int ret;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_RSS:
|
|
src.rss = action->conf;
|
|
dst.rss = buf;
|
|
rte_memcpy(dst.rss,
|
|
(&(struct rte_flow_action_rss){
|
|
.func = src.rss->func,
|
|
.level = src.rss->level,
|
|
.types = src.rss->types,
|
|
.key_len = src.rss->key_len,
|
|
.queue_num = src.rss->queue_num,
|
|
}),
|
|
size > sizeof(*dst.rss) ? sizeof(*dst.rss) : size);
|
|
off = sizeof(*dst.rss);
|
|
if (src.rss->key_len) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->key));
|
|
tmp = sizeof(*src.rss->key) * src.rss->key_len;
|
|
if (size >= off + tmp)
|
|
dst.rss->key = rte_memcpy
|
|
((void *)((uintptr_t)dst.rss + off),
|
|
src.rss->key, tmp);
|
|
off += tmp;
|
|
}
|
|
if (src.rss->queue_num) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->queue));
|
|
tmp = sizeof(*src.rss->queue) * src.rss->queue_num;
|
|
if (size >= off + tmp)
|
|
dst.rss->queue = rte_memcpy
|
|
((void *)((uintptr_t)dst.rss + off),
|
|
src.rss->queue, tmp);
|
|
off += tmp;
|
|
}
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
|
|
case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
|
|
src.vxlan_encap = action->conf;
|
|
dst.vxlan_encap = buf;
|
|
RTE_BUILD_BUG_ON(sizeof(*src.vxlan_encap) !=
|
|
sizeof(*src.nvgre_encap) ||
|
|
offsetof(struct rte_flow_action_vxlan_encap,
|
|
definition) !=
|
|
offsetof(struct rte_flow_action_nvgre_encap,
|
|
definition));
|
|
off = sizeof(*dst.vxlan_encap);
|
|
if (src.vxlan_encap->definition) {
|
|
off = RTE_ALIGN_CEIL
|
|
(off, sizeof(*dst.vxlan_encap->definition));
|
|
ret = rte_flow_conv
|
|
(RTE_FLOW_CONV_OP_PATTERN,
|
|
(void *)((uintptr_t)dst.vxlan_encap + off),
|
|
size > off ? size - off : 0,
|
|
src.vxlan_encap->definition, NULL);
|
|
if (ret < 0)
|
|
return 0;
|
|
if (size >= off + ret)
|
|
dst.vxlan_encap->definition =
|
|
(void *)((uintptr_t)dst.vxlan_encap +
|
|
off);
|
|
off += ret;
|
|
}
|
|
break;
|
|
default:
|
|
off = rte_flow_desc_action[action->type].size;
|
|
rte_memcpy(buf, action->conf, (size > off ? off : size));
|
|
break;
|
|
}
|
|
return off;
|
|
}
|
|
|
|
/**
|
|
* Copy a list of pattern items.
|
|
*
|
|
* @param[out] dst
|
|
* Destination buffer. Can be NULL if @p size is zero.
|
|
* @param size
|
|
* Size of @p dst in bytes.
|
|
* @param[in] src
|
|
* Source pattern items.
|
|
* @param num
|
|
* Maximum number of pattern items to process from @p src or 0 to process
|
|
* the entire list. In both cases, processing stops after
|
|
* RTE_FLOW_ITEM_TYPE_END is encountered.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* A positive value representing the number of bytes needed to store
|
|
* pattern items regardless of @p size on success (@p buf contents are
|
|
* truncated to @p size if not large enough), a negative errno value
|
|
* otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
rte_flow_conv_pattern(struct rte_flow_item *dst,
|
|
const size_t size,
|
|
const struct rte_flow_item *src,
|
|
unsigned int num,
|
|
struct rte_flow_error *error)
|
|
{
|
|
uintptr_t data = (uintptr_t)dst;
|
|
size_t off;
|
|
size_t ret;
|
|
unsigned int i;
|
|
|
|
for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
|
|
if ((size_t)src->type >= RTE_DIM(rte_flow_desc_item) ||
|
|
!rte_flow_desc_item[src->type].name)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, src,
|
|
"cannot convert unknown item type");
|
|
if (size >= off + sizeof(*dst))
|
|
*dst = (struct rte_flow_item){
|
|
.type = src->type,
|
|
};
|
|
off += sizeof(*dst);
|
|
if (!src->type)
|
|
num = i + 1;
|
|
}
|
|
num = i;
|
|
src -= num;
|
|
dst -= num;
|
|
do {
|
|
if (src->spec) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
ret = rte_flow_conv_item_spec
|
|
((void *)(data + off),
|
|
size > off ? size - off : 0, src,
|
|
RTE_FLOW_CONV_ITEM_SPEC);
|
|
if (size && size >= off + ret)
|
|
dst->spec = (void *)(data + off);
|
|
off += ret;
|
|
|
|
}
|
|
if (src->last) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
ret = rte_flow_conv_item_spec
|
|
((void *)(data + off),
|
|
size > off ? size - off : 0, src,
|
|
RTE_FLOW_CONV_ITEM_LAST);
|
|
if (size && size >= off + ret)
|
|
dst->last = (void *)(data + off);
|
|
off += ret;
|
|
}
|
|
if (src->mask) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
ret = rte_flow_conv_item_spec
|
|
((void *)(data + off),
|
|
size > off ? size - off : 0, src,
|
|
RTE_FLOW_CONV_ITEM_MASK);
|
|
if (size && size >= off + ret)
|
|
dst->mask = (void *)(data + off);
|
|
off += ret;
|
|
}
|
|
++src;
|
|
++dst;
|
|
} while (--num);
|
|
return off;
|
|
}
|
|
|
|
/**
|
|
* Copy a list of actions.
|
|
*
|
|
* @param[out] dst
|
|
* Destination buffer. Can be NULL if @p size is zero.
|
|
* @param size
|
|
* Size of @p dst in bytes.
|
|
* @param[in] src
|
|
* Source actions.
|
|
* @param num
|
|
* Maximum number of actions to process from @p src or 0 to process the
|
|
* entire list. In both cases, processing stops after
|
|
* RTE_FLOW_ACTION_TYPE_END is encountered.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* A positive value representing the number of bytes needed to store
|
|
* actions regardless of @p size on success (@p buf contents are truncated
|
|
* to @p size if not large enough), a negative errno value otherwise and
|
|
* rte_errno is set.
|
|
*/
|
|
static int
|
|
rte_flow_conv_actions(struct rte_flow_action *dst,
|
|
const size_t size,
|
|
const struct rte_flow_action *src,
|
|
unsigned int num,
|
|
struct rte_flow_error *error)
|
|
{
|
|
uintptr_t data = (uintptr_t)dst;
|
|
size_t off;
|
|
size_t ret;
|
|
unsigned int i;
|
|
|
|
for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
|
|
if ((size_t)src->type >= RTE_DIM(rte_flow_desc_action) ||
|
|
!rte_flow_desc_action[src->type].name)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
|
|
src, "cannot convert unknown action type");
|
|
if (size >= off + sizeof(*dst))
|
|
*dst = (struct rte_flow_action){
|
|
.type = src->type,
|
|
};
|
|
off += sizeof(*dst);
|
|
if (!src->type)
|
|
num = i + 1;
|
|
}
|
|
num = i;
|
|
src -= num;
|
|
dst -= num;
|
|
do {
|
|
if (src->conf) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
ret = rte_flow_conv_action_conf
|
|
((void *)(data + off),
|
|
size > off ? size - off : 0, src);
|
|
if (size && size >= off + ret)
|
|
dst->conf = (void *)(data + off);
|
|
off += ret;
|
|
}
|
|
++src;
|
|
++dst;
|
|
} while (--num);
|
|
return off;
|
|
}
|
|
|
|
/**
|
|
* Copy flow rule components.
|
|
*
|
|
* This comprises the flow rule descriptor itself, attributes, pattern and
|
|
* actions list. NULL components in @p src are skipped.
|
|
*
|
|
* @param[out] dst
|
|
* Destination buffer. Can be NULL if @p size is zero.
|
|
* @param size
|
|
* Size of @p dst in bytes.
|
|
* @param[in] src
|
|
* Source flow rule descriptor.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* A positive value representing the number of bytes needed to store all
|
|
* components including the descriptor regardless of @p size on success
|
|
* (@p buf contents are truncated to @p size if not large enough), a
|
|
* negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
rte_flow_conv_rule(struct rte_flow_conv_rule *dst,
|
|
const size_t size,
|
|
const struct rte_flow_conv_rule *src,
|
|
struct rte_flow_error *error)
|
|
{
|
|
size_t off;
|
|
int ret;
|
|
|
|
rte_memcpy(dst,
|
|
(&(struct rte_flow_conv_rule){
|
|
.attr = NULL,
|
|
.pattern = NULL,
|
|
.actions = NULL,
|
|
}),
|
|
size > sizeof(*dst) ? sizeof(*dst) : size);
|
|
off = sizeof(*dst);
|
|
if (src->attr_ro) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
if (size && size >= off + sizeof(*dst->attr))
|
|
dst->attr = rte_memcpy
|
|
((void *)((uintptr_t)dst + off),
|
|
src->attr_ro, sizeof(*dst->attr));
|
|
off += sizeof(*dst->attr);
|
|
}
|
|
if (src->pattern_ro) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
ret = rte_flow_conv_pattern((void *)((uintptr_t)dst + off),
|
|
size > off ? size - off : 0,
|
|
src->pattern_ro, 0, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (size && size >= off + (size_t)ret)
|
|
dst->pattern = (void *)((uintptr_t)dst + off);
|
|
off += ret;
|
|
}
|
|
if (src->actions_ro) {
|
|
off = RTE_ALIGN_CEIL(off, sizeof(double));
|
|
ret = rte_flow_conv_actions((void *)((uintptr_t)dst + off),
|
|
size > off ? size - off : 0,
|
|
src->actions_ro, 0, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (size >= off + (size_t)ret)
|
|
dst->actions = (void *)((uintptr_t)dst + off);
|
|
off += ret;
|
|
}
|
|
return off;
|
|
}
|
|
|
|
/**
|
|
* Retrieve the name of a pattern item/action type.
|
|
*
|
|
* @param is_action
|
|
* Nonzero when @p src represents an action type instead of a pattern item
|
|
* type.
|
|
* @param is_ptr
|
|
* Nonzero to write string address instead of contents into @p dst.
|
|
* @param[out] dst
|
|
* Destination buffer. Can be NULL if @p size is zero.
|
|
* @param size
|
|
* Size of @p dst in bytes.
|
|
* @param[in] src
|
|
* Depending on @p is_action, source pattern item or action type cast as a
|
|
* pointer.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* A positive value representing the number of bytes needed to store the
|
|
* name or its address regardless of @p size on success (@p buf contents
|
|
* are truncated to @p size if not large enough), a negative errno value
|
|
* otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
rte_flow_conv_name(int is_action,
|
|
int is_ptr,
|
|
char *dst,
|
|
const size_t size,
|
|
const void *src,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct desc_info {
|
|
const struct rte_flow_desc_data *data;
|
|
size_t num;
|
|
};
|
|
static const struct desc_info info_rep[2] = {
|
|
{ rte_flow_desc_item, RTE_DIM(rte_flow_desc_item), },
|
|
{ rte_flow_desc_action, RTE_DIM(rte_flow_desc_action), },
|
|
};
|
|
const struct desc_info *const info = &info_rep[!!is_action];
|
|
unsigned int type = (uintptr_t)src;
|
|
|
|
if (type >= info->num)
|
|
return rte_flow_error_set
|
|
(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unknown object type to retrieve the name of");
|
|
if (!is_ptr)
|
|
return strlcpy(dst, info->data[type].name, size);
|
|
if (size >= sizeof(const char **))
|
|
*((const char **)dst) = info->data[type].name;
|
|
return sizeof(const char **);
|
|
}
|
|
|
|
/** Helper function to convert flow API objects. */
|
|
int
|
|
rte_flow_conv(enum rte_flow_conv_op op,
|
|
void *dst,
|
|
size_t size,
|
|
const void *src,
|
|
struct rte_flow_error *error)
|
|
{
|
|
switch (op) {
|
|
const struct rte_flow_attr *attr;
|
|
|
|
case RTE_FLOW_CONV_OP_NONE:
|
|
return 0;
|
|
case RTE_FLOW_CONV_OP_ATTR:
|
|
attr = src;
|
|
if (size > sizeof(*attr))
|
|
size = sizeof(*attr);
|
|
rte_memcpy(dst, attr, size);
|
|
return sizeof(*attr);
|
|
case RTE_FLOW_CONV_OP_ITEM:
|
|
return rte_flow_conv_pattern(dst, size, src, 1, error);
|
|
case RTE_FLOW_CONV_OP_ACTION:
|
|
return rte_flow_conv_actions(dst, size, src, 1, error);
|
|
case RTE_FLOW_CONV_OP_PATTERN:
|
|
return rte_flow_conv_pattern(dst, size, src, 0, error);
|
|
case RTE_FLOW_CONV_OP_ACTIONS:
|
|
return rte_flow_conv_actions(dst, size, src, 0, error);
|
|
case RTE_FLOW_CONV_OP_RULE:
|
|
return rte_flow_conv_rule(dst, size, src, error);
|
|
case RTE_FLOW_CONV_OP_ITEM_NAME:
|
|
return rte_flow_conv_name(0, 0, dst, size, src, error);
|
|
case RTE_FLOW_CONV_OP_ACTION_NAME:
|
|
return rte_flow_conv_name(1, 0, dst, size, src, error);
|
|
case RTE_FLOW_CONV_OP_ITEM_NAME_PTR:
|
|
return rte_flow_conv_name(0, 1, dst, size, src, error);
|
|
case RTE_FLOW_CONV_OP_ACTION_NAME_PTR:
|
|
return rte_flow_conv_name(1, 1, dst, size, src, error);
|
|
}
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unknown object conversion operation");
|
|
}
|
|
|
|
/** Store a full rte_flow description. */
|
|
size_t
|
|
rte_flow_copy(struct rte_flow_desc *desc, size_t len,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item *items,
|
|
const struct rte_flow_action *actions)
|
|
{
|
|
/*
|
|
* Overlap struct rte_flow_conv with struct rte_flow_desc in order
|
|
* to convert the former to the latter without wasting space.
|
|
*/
|
|
struct rte_flow_conv_rule *dst =
|
|
len ?
|
|
(void *)((uintptr_t)desc +
|
|
(offsetof(struct rte_flow_desc, actions) -
|
|
offsetof(struct rte_flow_conv_rule, actions))) :
|
|
NULL;
|
|
size_t dst_size =
|
|
len > sizeof(*desc) - sizeof(*dst) ?
|
|
len - (sizeof(*desc) - sizeof(*dst)) :
|
|
0;
|
|
struct rte_flow_conv_rule src = {
|
|
.attr_ro = NULL,
|
|
.pattern_ro = items,
|
|
.actions_ro = actions,
|
|
};
|
|
int ret;
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(struct rte_flow_desc) <
|
|
sizeof(struct rte_flow_conv_rule));
|
|
if (dst_size &&
|
|
(&dst->pattern != &desc->items ||
|
|
&dst->actions != &desc->actions ||
|
|
(uintptr_t)(dst + 1) != (uintptr_t)(desc + 1))) {
|
|
rte_errno = EINVAL;
|
|
return 0;
|
|
}
|
|
ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, dst, dst_size, &src, NULL);
|
|
if (ret < 0)
|
|
return 0;
|
|
ret += sizeof(*desc) - sizeof(*dst);
|
|
rte_memcpy(desc,
|
|
(&(struct rte_flow_desc){
|
|
.size = ret,
|
|
.attr = *attr,
|
|
.items = dst_size ? dst->pattern : NULL,
|
|
.actions = dst_size ? dst->actions : NULL,
|
|
}),
|
|
len > sizeof(*desc) ? sizeof(*desc) : len);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Expand RSS flows into several possible flows according to the RSS hash
|
|
* fields requested and the driver capabilities.
|
|
*/
|
|
int
|
|
rte_flow_expand_rss(struct rte_flow_expand_rss *buf, size_t size,
|
|
const struct rte_flow_item *pattern, uint64_t types,
|
|
const struct rte_flow_expand_node graph[],
|
|
int graph_root_index)
|
|
{
|
|
const int elt_n = 8;
|
|
const struct rte_flow_item *item;
|
|
const struct rte_flow_expand_node *node = &graph[graph_root_index];
|
|
const int *next_node;
|
|
const int *stack[elt_n];
|
|
int stack_pos = 0;
|
|
struct rte_flow_item flow_items[elt_n];
|
|
unsigned int i;
|
|
size_t lsize;
|
|
size_t user_pattern_size = 0;
|
|
void *addr = NULL;
|
|
const struct rte_flow_expand_node *next = NULL;
|
|
struct rte_flow_item missed_item;
|
|
int missed = 0;
|
|
int elt = 0;
|
|
const struct rte_flow_item *last_item = NULL;
|
|
|
|
memset(&missed_item, 0, sizeof(missed_item));
|
|
lsize = offsetof(struct rte_flow_expand_rss, entry) +
|
|
elt_n * sizeof(buf->entry[0]);
|
|
if (lsize <= size) {
|
|
buf->entry[0].priority = 0;
|
|
buf->entry[0].pattern = (void *)&buf->entry[elt_n];
|
|
buf->entries = 0;
|
|
addr = buf->entry[0].pattern;
|
|
}
|
|
for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
|
|
if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
|
|
last_item = item;
|
|
for (i = 0; node->next && node->next[i]; ++i) {
|
|
next = &graph[node->next[i]];
|
|
if (next->type == item->type)
|
|
break;
|
|
}
|
|
if (next)
|
|
node = next;
|
|
user_pattern_size += sizeof(*item);
|
|
}
|
|
user_pattern_size += sizeof(*item); /* Handle END item. */
|
|
lsize += user_pattern_size;
|
|
/* Copy the user pattern in the first entry of the buffer. */
|
|
if (lsize <= size) {
|
|
rte_memcpy(addr, pattern, user_pattern_size);
|
|
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
|
|
buf->entries = 1;
|
|
}
|
|
/* Start expanding. */
|
|
memset(flow_items, 0, sizeof(flow_items));
|
|
user_pattern_size -= sizeof(*item);
|
|
/*
|
|
* Check if the last valid item has spec set
|
|
* and need complete pattern.
|
|
*/
|
|
missed_item.type = rte_flow_expand_rss_item_complete(last_item);
|
|
if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
|
|
next = NULL;
|
|
missed = 1;
|
|
for (i = 0; node->next && node->next[i]; ++i) {
|
|
next = &graph[node->next[i]];
|
|
if (next->type == missed_item.type) {
|
|
flow_items[0].type = missed_item.type;
|
|
flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
|
|
break;
|
|
}
|
|
next = NULL;
|
|
}
|
|
}
|
|
if (next && missed) {
|
|
elt = 2; /* missed item + item end. */
|
|
node = next;
|
|
lsize += elt * sizeof(*item) + user_pattern_size;
|
|
if ((node->rss_types & types) && lsize <= size) {
|
|
buf->entry[buf->entries].priority = 1;
|
|
buf->entry[buf->entries].pattern = addr;
|
|
buf->entries++;
|
|
rte_memcpy(addr, buf->entry[0].pattern,
|
|
user_pattern_size);
|
|
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
|
|
rte_memcpy(addr, flow_items, elt * sizeof(*item));
|
|
addr = (void *)(((uintptr_t)addr) +
|
|
elt * sizeof(*item));
|
|
}
|
|
}
|
|
memset(flow_items, 0, sizeof(flow_items));
|
|
next_node = node->next;
|
|
stack[stack_pos] = next_node;
|
|
node = next_node ? &graph[*next_node] : NULL;
|
|
while (node) {
|
|
flow_items[stack_pos].type = node->type;
|
|
if (node->rss_types & types) {
|
|
/*
|
|
* compute the number of items to copy from the
|
|
* expansion and copy it.
|
|
* When the stack_pos is 0, there are 1 element in it,
|
|
* plus the addition END item.
|
|
*/
|
|
elt = stack_pos + 2;
|
|
flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
|
|
lsize += elt * sizeof(*item) + user_pattern_size;
|
|
if (lsize <= size) {
|
|
size_t n = elt * sizeof(*item);
|
|
|
|
buf->entry[buf->entries].priority =
|
|
stack_pos + 1 + missed;
|
|
buf->entry[buf->entries].pattern = addr;
|
|
buf->entries++;
|
|
rte_memcpy(addr, buf->entry[0].pattern,
|
|
user_pattern_size);
|
|
addr = (void *)(((uintptr_t)addr) +
|
|
user_pattern_size);
|
|
rte_memcpy(addr, &missed_item,
|
|
missed * sizeof(*item));
|
|
addr = (void *)(((uintptr_t)addr) +
|
|
missed * sizeof(*item));
|
|
rte_memcpy(addr, flow_items, n);
|
|
addr = (void *)(((uintptr_t)addr) + n);
|
|
}
|
|
}
|
|
/* Go deeper. */
|
|
if (node->next) {
|
|
next_node = node->next;
|
|
if (stack_pos++ == elt_n) {
|
|
rte_errno = E2BIG;
|
|
return -rte_errno;
|
|
}
|
|
stack[stack_pos] = next_node;
|
|
} else if (*(next_node + 1)) {
|
|
/* Follow up with the next possibility. */
|
|
++next_node;
|
|
} else {
|
|
/* Move to the next path. */
|
|
if (stack_pos)
|
|
next_node = stack[--stack_pos];
|
|
next_node++;
|
|
stack[stack_pos] = next_node;
|
|
}
|
|
node = *next_node ? &graph[*next_node] : NULL;
|
|
};
|
|
/* no expanded flows but we have missed item, create one rule for it */
|
|
if (buf->entries == 1 && missed != 0) {
|
|
elt = 2;
|
|
lsize += elt * sizeof(*item) + user_pattern_size;
|
|
if (lsize <= size) {
|
|
buf->entry[buf->entries].priority = 1;
|
|
buf->entry[buf->entries].pattern = addr;
|
|
buf->entries++;
|
|
flow_items[0].type = missed_item.type;
|
|
flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
|
|
rte_memcpy(addr, buf->entry[0].pattern,
|
|
user_pattern_size);
|
|
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
|
|
rte_memcpy(addr, flow_items, elt * sizeof(*item));
|
|
addr = (void *)(((uintptr_t)addr) +
|
|
elt * sizeof(*item));
|
|
}
|
|
}
|
|
return lsize;
|
|
}
|
|
|
|
int
|
|
rte_flow_dev_dump(uint16_t port_id, FILE *file, struct rte_flow_error *error)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
|
|
|
|
if (unlikely(!ops))
|
|
return -rte_errno;
|
|
if (likely(!!ops->dev_dump))
|
|
return flow_err(port_id, ops->dev_dump(dev, file, error),
|
|
error);
|
|
return rte_flow_error_set(error, ENOSYS,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, rte_strerror(ENOSYS));
|
|
}
|