9e0b9d2ec0
This patch adds a framework that allows GRO on tunneled packets. Furthermore, it leverages that framework to provide GRO support for VxLAN-encapsulated packets. Supported VxLAN packets must have an outer IPv4 header, and contain an inner TCP/IPv4 packet. VxLAN GRO doesn't check if input packets have correct checksums and doesn't update checksums for output packets. Additionally, it assumes the packets are complete (i.e., MF==0 && frag_off==0), when IP fragmentation is possible (i.e., DF==0). Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Reviewed-by: Junjie Chen <junjie.j.chen@intel.com> Tested-by: Lei Yao <lei.a.yao@intel.com>
302 lines
7.9 KiB
C
302 lines
7.9 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _GRO_TCP4_H_
|
|
#define _GRO_TCP4_H_
|
|
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
|
|
#define INVALID_ARRAY_INDEX 0xffffffffUL
|
|
#define GRO_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
|
|
|
|
/*
|
|
* The max length of a IPv4 packet, which includes the length of the L3
|
|
* header, the L4 header and the data payload.
|
|
*/
|
|
#define MAX_IPV4_PKT_LENGTH UINT16_MAX
|
|
|
|
/* Header fields representing a TCP/IPv4 flow */
|
|
struct tcp4_flow_key {
|
|
struct ether_addr eth_saddr;
|
|
struct ether_addr eth_daddr;
|
|
uint32_t ip_src_addr;
|
|
uint32_t ip_dst_addr;
|
|
|
|
uint32_t recv_ack;
|
|
uint16_t src_port;
|
|
uint16_t dst_port;
|
|
};
|
|
|
|
struct gro_tcp4_flow {
|
|
struct tcp4_flow_key key;
|
|
/*
|
|
* The index of the first packet in the flow.
|
|
* INVALID_ARRAY_INDEX indicates an empty flow.
|
|
*/
|
|
uint32_t start_index;
|
|
};
|
|
|
|
struct gro_tcp4_item {
|
|
/*
|
|
* The first MBUF segment of the packet. If the value
|
|
* is NULL, it means the item is empty.
|
|
*/
|
|
struct rte_mbuf *firstseg;
|
|
/* The last MBUF segment of the packet */
|
|
struct rte_mbuf *lastseg;
|
|
/*
|
|
* The time when the first packet is inserted into the table.
|
|
* This value won't be updated, even if the packet is merged
|
|
* with other packets.
|
|
*/
|
|
uint64_t start_time;
|
|
/*
|
|
* next_pkt_idx is used to chain the packets that
|
|
* are in the same flow but can't be merged together
|
|
* (e.g. caused by packet reordering).
|
|
*/
|
|
uint32_t next_pkt_idx;
|
|
/* TCP sequence number of the packet */
|
|
uint32_t sent_seq;
|
|
/* IPv4 ID of the packet */
|
|
uint16_t ip_id;
|
|
/* the number of merged packets */
|
|
uint16_t nb_merged;
|
|
/* Indicate if IPv4 ID can be ignored */
|
|
uint8_t is_atomic;
|
|
};
|
|
|
|
/*
|
|
* TCP/IPv4 reassembly table structure.
|
|
*/
|
|
struct gro_tcp4_tbl {
|
|
/* item array */
|
|
struct gro_tcp4_item *items;
|
|
/* flow array */
|
|
struct gro_tcp4_flow *flows;
|
|
/* current item number */
|
|
uint32_t item_num;
|
|
/* current flow num */
|
|
uint32_t flow_num;
|
|
/* item array size */
|
|
uint32_t max_item_num;
|
|
/* flow array size */
|
|
uint32_t max_flow_num;
|
|
};
|
|
|
|
/**
|
|
* This function creates a TCP/IPv4 reassembly table.
|
|
*
|
|
* @param socket_id
|
|
* Socket index for allocating the TCP/IPv4 reassemble table
|
|
* @param max_flow_num
|
|
* The maximum number of flows in the TCP/IPv4 GRO table
|
|
* @param max_item_per_flow
|
|
* The maximum number of packets per flow
|
|
*
|
|
* @return
|
|
* - Return the table pointer on success.
|
|
* - Return NULL on failure.
|
|
*/
|
|
void *gro_tcp4_tbl_create(uint16_t socket_id,
|
|
uint16_t max_flow_num,
|
|
uint16_t max_item_per_flow);
|
|
|
|
/**
|
|
* This function destroys a TCP/IPv4 reassembly table.
|
|
*
|
|
* @param tbl
|
|
* Pointer pointing to the TCP/IPv4 reassembly table.
|
|
*/
|
|
void gro_tcp4_tbl_destroy(void *tbl);
|
|
|
|
/**
|
|
* This function merges a TCP/IPv4 packet. It doesn't process the packet,
|
|
* which has SYN, FIN, RST, PSH, CWR, ECE or URG set, or doesn't have
|
|
* payload.
|
|
*
|
|
* This function doesn't check if the packet has correct checksums and
|
|
* doesn't re-calculate checksums for the merged packet. Additionally,
|
|
* it assumes the packets are complete (i.e., MF==0 && frag_off==0),
|
|
* when IP fragmentation is possible (i.e., DF==0). It returns the
|
|
* packet, if the packet has invalid parameters (e.g. SYN bit is set)
|
|
* or there is no available space in the table.
|
|
*
|
|
* @param pkt
|
|
* Packet to reassemble
|
|
* @param tbl
|
|
* Pointer pointing to the TCP/IPv4 reassembly table
|
|
* @start_time
|
|
* The time when the packet is inserted into the table
|
|
*
|
|
* @return
|
|
* - Return a positive value if the packet is merged.
|
|
* - Return zero if the packet isn't merged but stored in the table.
|
|
* - Return a negative value for invalid parameters or no available
|
|
* space in the table.
|
|
*/
|
|
int32_t gro_tcp4_reassemble(struct rte_mbuf *pkt,
|
|
struct gro_tcp4_tbl *tbl,
|
|
uint64_t start_time);
|
|
|
|
/**
|
|
* This function flushes timeout packets in a TCP/IPv4 reassembly table,
|
|
* and without updating checksums.
|
|
*
|
|
* @param tbl
|
|
* TCP/IPv4 reassembly table pointer
|
|
* @param flush_timestamp
|
|
* Flush packets which are inserted into the table before or at the
|
|
* flush_timestamp.
|
|
* @param out
|
|
* Pointer array used to keep flushed packets
|
|
* @param nb_out
|
|
* The element number in 'out'. It also determines the maximum number of
|
|
* packets that can be flushed finally.
|
|
*
|
|
* @return
|
|
* The number of flushed packets
|
|
*/
|
|
uint16_t gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
|
|
uint64_t flush_timestamp,
|
|
struct rte_mbuf **out,
|
|
uint16_t nb_out);
|
|
|
|
/**
|
|
* This function returns the number of the packets in a TCP/IPv4
|
|
* reassembly table.
|
|
*
|
|
* @param tbl
|
|
* TCP/IPv4 reassembly table pointer
|
|
*
|
|
* @return
|
|
* The number of packets in the table
|
|
*/
|
|
uint32_t gro_tcp4_tbl_pkt_count(void *tbl);
|
|
|
|
/*
|
|
* Check if two TCP/IPv4 packets belong to the same flow.
|
|
*/
|
|
static inline int
|
|
is_same_tcp4_flow(struct tcp4_flow_key k1, struct tcp4_flow_key k2)
|
|
{
|
|
return (is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
|
|
is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
|
|
(k1.ip_src_addr == k2.ip_src_addr) &&
|
|
(k1.ip_dst_addr == k2.ip_dst_addr) &&
|
|
(k1.recv_ack == k2.recv_ack) &&
|
|
(k1.src_port == k2.src_port) &&
|
|
(k1.dst_port == k2.dst_port));
|
|
}
|
|
|
|
/*
|
|
* Merge two TCP/IPv4 packets without updating checksums.
|
|
* If cmp is larger than 0, append the new packet to the
|
|
* original packet. Otherwise, pre-pend the new packet to
|
|
* the original packet.
|
|
*/
|
|
static inline int
|
|
merge_two_tcp4_packets(struct gro_tcp4_item *item,
|
|
struct rte_mbuf *pkt,
|
|
int cmp,
|
|
uint32_t sent_seq,
|
|
uint16_t ip_id,
|
|
uint16_t l2_offset)
|
|
{
|
|
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
|
|
uint16_t hdr_len, l2_len;
|
|
|
|
if (cmp > 0) {
|
|
pkt_head = item->firstseg;
|
|
pkt_tail = pkt;
|
|
} else {
|
|
pkt_head = pkt;
|
|
pkt_tail = item->firstseg;
|
|
}
|
|
|
|
/* check if the IPv4 packet length is greater than the max value */
|
|
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len +
|
|
pkt_head->l4_len;
|
|
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
|
|
if (unlikely(pkt_head->pkt_len - l2_len + pkt_tail->pkt_len -
|
|
hdr_len > MAX_IPV4_PKT_LENGTH))
|
|
return 0;
|
|
|
|
/* remove the packet header for the tail packet */
|
|
rte_pktmbuf_adj(pkt_tail, hdr_len);
|
|
|
|
/* chain two packets together */
|
|
if (cmp > 0) {
|
|
item->lastseg->next = pkt;
|
|
item->lastseg = rte_pktmbuf_lastseg(pkt);
|
|
/* update IP ID to the larger value */
|
|
item->ip_id = ip_id;
|
|
} else {
|
|
lastseg = rte_pktmbuf_lastseg(pkt);
|
|
lastseg->next = item->firstseg;
|
|
item->firstseg = pkt;
|
|
/* update sent_seq to the smaller value */
|
|
item->sent_seq = sent_seq;
|
|
item->ip_id = ip_id;
|
|
}
|
|
item->nb_merged++;
|
|
|
|
/* update MBUF metadata for the merged packet */
|
|
pkt_head->nb_segs += pkt_tail->nb_segs;
|
|
pkt_head->pkt_len += pkt_tail->pkt_len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check if two TCP/IPv4 packets are neighbors.
|
|
*/
|
|
static inline int
|
|
check_seq_option(struct gro_tcp4_item *item,
|
|
struct tcp_hdr *tcph,
|
|
uint32_t sent_seq,
|
|
uint16_t ip_id,
|
|
uint16_t tcp_hl,
|
|
uint16_t tcp_dl,
|
|
uint16_t l2_offset,
|
|
uint8_t is_atomic)
|
|
{
|
|
struct rte_mbuf *pkt_orig = item->firstseg;
|
|
struct ipv4_hdr *iph_orig;
|
|
struct tcp_hdr *tcph_orig;
|
|
uint16_t len, tcp_hl_orig;
|
|
|
|
iph_orig = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt_orig, char *) +
|
|
l2_offset + pkt_orig->l2_len);
|
|
tcph_orig = (struct tcp_hdr *)((char *)iph_orig + pkt_orig->l3_len);
|
|
tcp_hl_orig = pkt_orig->l4_len;
|
|
|
|
/* Check if TCP option fields equal */
|
|
len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct tcp_hdr);
|
|
if ((tcp_hl != tcp_hl_orig) || ((len > 0) &&
|
|
(memcmp(tcph + 1, tcph_orig + 1,
|
|
len) != 0)))
|
|
return 0;
|
|
|
|
/* Don't merge packets whose DF bits are different */
|
|
if (unlikely(item->is_atomic ^ is_atomic))
|
|
return 0;
|
|
|
|
/* check if the two packets are neighbors */
|
|
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
|
|
pkt_orig->l3_len - tcp_hl_orig;
|
|
if ((sent_seq == item->sent_seq + len) && (is_atomic ||
|
|
(ip_id == item->ip_id + 1)))
|
|
/* append the new packet */
|
|
return 1;
|
|
else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic ||
|
|
(ip_id + item->nb_merged == item->ip_id)))
|
|
/* pre-pend the new packet */
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|