numam-spdk/lib/env_dpdk/vtophys.c

609 lines
15 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "env_internal.h"
#include <inttypes.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
/* x86-64 userspace virtual addresses use only the low 47 bits [0..46],
* which is enough to cover 128 TB.
*/
#define SHIFT_128TB 47 /* (1 << 47) == 128 TB */
#define MASK_128TB ((1ULL << SHIFT_128TB) - 1)
#define SHIFT_1GB 30 /* (1 << 30) == 1 GB */
#define MASK_1GB ((1ULL << SHIFT_1GB) - 1)
#define SHIFT_2MB 21 /* (1 << 21) == 2MB */
#define MASK_2MB ((1ULL << SHIFT_2MB) - 1)
#define SHIFT_4KB 12 /* (1 << 12) == 4KB */
#define MASK_4KB ((1ULL << SHIFT_4KB) - 1)
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_128TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB + 1)) - 1))
/* Max value for a 16-bit ref count. */
#define VTOPHYS_MAX_REF_COUNT (0xFFFF)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or SPDK_VTOPHYS_ERROR for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB + 1)];
uint16_t ref_count[1ULL << (SHIFT_1GB - SHIFT_2MB + 1)];
};
/* Top-level map table indexed by bits [30..46] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_128tb {
struct map_1gb *map[1ULL << (SHIFT_128TB - SHIFT_1GB + 1)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_128tb map_128tb;
pthread_mutex_t mutex;
uint64_t default_translation;
spdk_mem_map_notify_cb notify_cb;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
static struct spdk_mem_map *g_vtophys_map;
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Walk the currently registered memory via the main vtophys map
* and call the new map's notify callback for each virtually contiguous region.
*/
static void
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_128tb;
uint64_t contig_start = SPDK_VTOPHYS_ERROR;
uint64_t contig_end = SPDK_VTOPHYS_ERROR;
#define END_RANGE() \
do { \
if (contig_start != SPDK_VTOPHYS_ERROR) { \
/* End of of a virtually contiguous range */ \
map->notify_cb(map->cb_ctx, map, action, \
(void *)contig_start, \
contig_end - contig_start + 2 * 1024 * 1024); \
} \
contig_start = SPDK_VTOPHYS_ERROR; \
} while (0)
if (!g_vtophys_map) {
return;
}
/* Hold the vtophys mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_vtophys_map->mutex);
for (idx_128tb = 0;
idx_128tb < sizeof(g_vtophys_map->map_128tb.map) / sizeof(g_vtophys_map->map_128tb.map[0]);
idx_128tb++) {
const struct map_1gb *map_1gb = g_vtophys_map->map_128tb.map[idx_128tb];
uint64_t idx_1gb;
if (!map_1gb) {
END_RANGE();
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if (map_1gb->map[idx_1gb].translation_2mb != SPDK_VTOPHYS_ERROR) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_128tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == SPDK_VTOPHYS_ERROR) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
END_RANGE();
}
}
}
pthread_mutex_unlock(&g_vtophys_map->mutex);
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, spdk_mem_map_notify_cb notify_cb, void *cb_ctx)
{
struct spdk_mem_map *map;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->notify_cb = notify_cb;
map->cb_ctx = cb_ctx;
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
for (i = 0; i < sizeof(map->map_128tb.map) / sizeof(map->map_128tb.map[0]); i++) {
free(map->map_128tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
void
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
pthread_mutex_lock(&g_spdk_mem_map_mutex);
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, vaddr, len);
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
void
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
pthread_mutex_lock(&g_spdk_mem_map_mutex);
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, vaddr, len);
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
static struct map_1gb *
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_128tb = MAP_128TB_IDX(vfn_2mb);
size_t i;
map_1gb = map->map_128tb.map[idx_128tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_128tb.map[idx_128tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
memset(map_1gb->ref_count, 0, sizeof(map_1gb->ref_count));
map->map_128tb.map[idx_128tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
#ifdef DEBUG
printf("allocation failed\n");
#endif
return NULL;
}
}
return map_1gb;
}
void
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
uint16_t *ref_count;
/* For now, only 2 MB-aligned registrations are supported */
assert(size % (2 * 1024 * 1024) == 0);
assert((vaddr & MASK_2MB) == 0);
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
#ifdef DEBUG
fprintf(stderr, "could not get %p map\n", (void *)vaddr);
#endif
return;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
ref_count = &map_1gb->ref_count[idx_1gb];
if (*ref_count == VTOPHYS_MAX_REF_COUNT) {
#ifdef DEBUG
fprintf(stderr, "ref count for %p already at %d\n",
(void *)vaddr, VTOPHYS_MAX_REF_COUNT);
#endif
return;
}
map_2mb->translation_2mb = translation;
(*ref_count)++;
size -= 2 * 1024 * 1024;
vfn_2mb++;
}
}
void
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
uint16_t *ref_count;
/* For now, only 2 MB-aligned registrations are supported */
assert(size % (2 * 1024 * 1024) == 0);
assert((vaddr & MASK_2MB) == 0);
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
#ifdef DEBUG
fprintf(stderr, "could not get %p map\n", (void *)vaddr);
#endif
return;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
ref_count = &map_1gb->ref_count[idx_1gb];
if (*ref_count == 0) {
#ifdef DEBUG
fprintf(stderr, "vaddr %p not registered\n", (void *)vaddr);
#endif
return;
}
(*ref_count)--;
if (*ref_count == 0) {
map_2mb->translation_2mb = map->default_translation;
}
size -= 2 * 1024 * 1024;
vfn_2mb++;
}
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_128tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
if (spdk_unlikely(vaddr & ~MASK_128TB)) {
#ifdef DEBUG
printf("invalid usermode virtual address %p\n", (void *)vaddr);
#endif
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_128tb = MAP_128TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_128tb.map[idx_128tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
map_2mb = &map_1gb->map[idx_1gb];
return map_2mb->translation_2mb;
}
static uint64_t
vtophys_get_dpdk_paddr(void *vaddr)
{
uintptr_t paddr;
paddr = rte_mem_virt2phy(vaddr);
if (paddr == 0) {
/*
* The vaddr was valid but returned 0. Touch the page
* to ensure a backing page gets assigned, then call
* rte_mem_virt2phy() again.
*/
rte_atomic64_read((rte_atomic64_t *)vaddr);
paddr = rte_mem_virt2phy(vaddr);
}
return paddr;
}
static uint64_t
vtophys_get_paddr(uint64_t vaddr)
{
uintptr_t paddr;
struct rte_mem_config *mcfg;
struct rte_memseg *seg;
uint32_t seg_idx;
paddr = vtophys_get_dpdk_paddr((void *)vaddr);
if (paddr != RTE_BAD_PHYS_ADDR) {
return paddr;
}
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
if (vaddr >= (uintptr_t)seg->addr &&
vaddr < ((uintptr_t)seg->addr + seg->len)) {
paddr = seg->phys_addr;
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
}
#ifdef DEBUG
fprintf(stderr, "could not find vaddr 0x%" PRIx64 " in DPDK mem config\n", vaddr);
#endif
return SPDK_VTOPHYS_ERROR;
}
static void
_spdk_vtophys_register_one(uint64_t vfn_2mb, uint64_t paddr)
{
if (paddr & MASK_2MB) {
#ifdef DEBUG
fprintf(stderr, "invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
#endif
return;
}
spdk_mem_map_set_translation(g_vtophys_map, vfn_2mb << SHIFT_2MB, 2 * 1024 * 1024, paddr);
}
static void
_spdk_vtophys_unregister_one(uint64_t vfn_2mb)
{
spdk_mem_map_clear_translation(g_vtophys_map, vfn_2mb << SHIFT_2MB, 2 * 1024 * 1024);
}
static void
spdk_vtophys_register(void *vaddr, uint64_t len)
{
uint64_t vfn_2mb;
if ((uintptr_t)vaddr & ~MASK_128TB) {
#ifdef DEBUG
printf("invalid usermode virtual address %p\n", vaddr);
#endif
return;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
#ifdef DEBUG
fprintf(stderr, "invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
#endif
return;
}
vfn_2mb = (uintptr_t)vaddr >> SHIFT_2MB;
len = len >> SHIFT_2MB;
while (len > 0) {
uint64_t vaddr = vfn_2mb << SHIFT_2MB;
uint64_t paddr = vtophys_get_paddr(vaddr);
if (paddr == RTE_BAD_PHYS_ADDR) {
#ifdef DEBUG
fprintf(stderr, "could not get phys addr for 0x%" PRIx64 "\n", vaddr);
#endif
return;
}
_spdk_vtophys_register_one(vfn_2mb, paddr);
vfn_2mb++;
len--;
}
}
static void
spdk_vtophys_unregister(void *vaddr, uint64_t len)
{
uint64_t vfn_2mb;
if ((uintptr_t)vaddr & ~MASK_128TB) {
#ifdef DEBUG
printf("invalid usermode virtual address %p\n", vaddr);
#endif
return;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
#ifdef DEBUG
fprintf(stderr, "invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
#endif
return;
}
vfn_2mb = (uintptr_t)vaddr >> SHIFT_2MB;
len = len >> SHIFT_2MB;
while (len > 0) {
_spdk_vtophys_unregister_one(vfn_2mb);
vfn_2mb++;
len--;
}
}
static void
spdk_vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t len)
{
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
spdk_vtophys_register(vaddr, len);
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
spdk_vtophys_unregister(vaddr, len);
break;
}
}
void
spdk_vtophys_register_dpdk_mem(void)
{
struct rte_mem_config *mcfg;
size_t seg_idx;
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, spdk_vtophys_notify, NULL);
if (g_vtophys_map == NULL) {
fprintf(stderr, "vtophys map allocation failed\n");
abort();
}
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
spdk_vtophys_register(seg->addr, seg->len);
}
}
uint64_t
spdk_vtophys(void *buf)
{
uint64_t vaddr, paddr_2mb;
vaddr = (uint64_t)buf;
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr);
/*
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
* we will still bitwise-or it with the buf offset below, but the result will still be
* SPDK_VTOPHYS_ERROR.
*/
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
return paddr_2mb | ((uint64_t)buf & MASK_2MB);
}