numam-spdk/lib/nvme/nvme_pcie.c

1258 lines
33 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over PCIe transport
*/
#include "nvme_internal.h"
/* PCIe transport extensions for spdk_nvme_ctrlr */
struct nvme_pcie_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
/** NVMe MMIO register space */
volatile struct spdk_nvme_registers *regs;
/* BAR mapping address which contains controller memory buffer */
void *cmb_bar_virt_addr;
/* BAR physical address which contains controller memory buffer */
uint64_t cmb_bar_phys_addr;
/* Controller memory buffer size in Bytes */
uint64_t cmb_size;
/* Current offset of controller memory buffer */
uint64_t cmb_current_offset;
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
uint32_t doorbell_stride_u32;
};
static inline struct nvme_pcie_ctrlr *
nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->transport == &spdk_nvme_transport_pcie);
return (struct nvme_pcie_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_pcie_ctrlr, ctrlr));
}
static int
nvme_pcie_ctrlr_get_pci_id(struct spdk_nvme_ctrlr *ctrlr, struct pci_id *pci_id)
{
struct spdk_pci_device *pci_dev;
assert(ctrlr != NULL);
assert(pci_id != NULL);
pci_dev = ctrlr->devhandle;
assert(pci_dev != NULL);
pci_id->vendor_id = spdk_pci_device_get_vendor_id(pci_dev);
pci_id->dev_id = spdk_pci_device_get_device_id(pci_dev);
pci_id->sub_vendor_id = spdk_pci_device_get_subvendor_id(pci_dev);
pci_id->sub_dev_id = spdk_pci_device_get_subdevice_id(pci_dev);
return 0;
}
static volatile void *
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
}
static int
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
return 0;
}
static int
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
return 0;
}
static int
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
assert(value != NULL);
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
return 0;
}
static int
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
assert(value != NULL);
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
return 0;
}
static int
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
&cmbloc->raw);
}
static int
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
&cmbsz->raw);
}
static void
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr;
uint32_t bir;
union spdk_nvme_cmbsz_register cmbsz;
union spdk_nvme_cmbloc_register cmbloc;
uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "get registers failed\n");
goto exit;
}
if (!cmbsz.bits.sz)
goto exit;
bir = cmbloc.bits.bir;
/* Values 0 2 3 4 5 are valid for BAR */
if (bir > 5 || bir == 1)
goto exit;
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
/* controller memory buffer size in Bytes */
size = unit_size * cmbsz.bits.sz;
/* controller memory buffer offset from BAR in Bytes */
offset = unit_size * cmbloc.bits.ofst;
rc = spdk_pci_device_map_bar(pctrlr->ctrlr.devhandle, bir, &addr,
&bar_phys_addr, &bar_size);
if ((rc != 0) || addr == NULL) {
goto exit;
}
if (offset > bar_size) {
goto exit;
}
if (size > bar_size - offset) {
goto exit;
}
pctrlr->cmb_bar_virt_addr = addr;
pctrlr->cmb_bar_phys_addr = bar_phys_addr;
pctrlr->cmb_size = size;
pctrlr->cmb_current_offset = offset;
if (!cmbsz.bits.sqs) {
pctrlr->ctrlr.opts.use_cmb_sqs = false;
}
return;
exit:
pctrlr->cmb_bar_virt_addr = NULL;
pctrlr->ctrlr.opts.use_cmb_sqs = false;
return;
}
static int
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
union spdk_nvme_cmbloc_register cmbloc;
void *addr = pctrlr->cmb_bar_virt_addr;
if (addr) {
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "get_cmbloc() failed\n");
return -EIO;
}
rc = spdk_pci_device_unmap_bar(pctrlr->ctrlr.devhandle, cmbloc.bits.bir, addr);
}
return rc;
}
static int
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
uint64_t *offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
uint64_t round_offset;
round_offset = pctrlr->cmb_current_offset;
round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
if (round_offset + length > pctrlr->cmb_size)
return -1;
*offset = round_offset;
pctrlr->cmb_current_offset = round_offset + length;
return 0;
}
static int
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr;
uint64_t phys_addr, size;
rc = spdk_pci_device_map_bar(pctrlr->ctrlr.devhandle, 0, &addr,
&phys_addr, &size);
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
if ((pctrlr->regs == NULL) || (rc != 0)) {
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
rc, pctrlr->regs);
return -1;
}
nvme_pcie_ctrlr_map_cmb(pctrlr);
return 0;
}
static int
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
void *addr = (void *)pctrlr->regs;
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
if (rc != 0) {
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
return -1;
}
if (addr) {
rc = spdk_pci_device_unmap_bar(pctrlr->ctrlr.devhandle, 0, addr);
}
return rc;
}
static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(void *devhandle)
{
struct spdk_pci_device *pci_dev = devhandle;
struct nvme_pcie_ctrlr *pctrlr;
union spdk_nvme_cap_register cap;
uint32_t cmd_reg;
int rc;
pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL);
if (pctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
pctrlr->ctrlr.transport = &spdk_nvme_transport_pcie;
pctrlr->ctrlr.devhandle = devhandle;
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
if (rc != 0) {
spdk_free(pctrlr);
return NULL;
}
/* Enable PCI busmaster and disable INTx */
spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
cmd_reg |= 0x404;
spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "get_cap() failed\n");
spdk_free(pctrlr);
return NULL;
}
/* Doorbell stride is 2 ^ (dstrd + 2),
* but we want multiples of 4, so drop the + 2 */
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
/* Save the PCI address */
pctrlr->ctrlr.pci_addr.domain = spdk_pci_device_get_domain(pci_dev);
pctrlr->ctrlr.pci_addr.bus = spdk_pci_device_get_bus(pci_dev);
pctrlr->ctrlr.pci_addr.dev = spdk_pci_device_get_dev(pci_dev);
pctrlr->ctrlr.pci_addr.func = spdk_pci_device_get_func(pci_dev);
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
if (rc != 0) {
spdk_free(pctrlr);
return NULL;
}
return &pctrlr->ctrlr;
}
static void
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
nvme_pcie_ctrlr_free_bars(pctrlr);
spdk_free(pctrlr);
}
static void
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
{
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
tr->cid = cid;
tr->active = false;
}
static void
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
{
qpair->sq_tail = qpair->cq_head = 0;
/*
* First time through the completion queue, HW will set phase
* bit on completions to 1. So set this to 1 here, indicating
* we're looking for a 1 to know which entries have completed.
* we'll toggle the bit each time when the completion queue
* rolls over.
*/
qpair->phase = 1;
memset(qpair->cmd, 0,
qpair->num_entries * sizeof(struct spdk_nvme_cmd));
memset(qpair->cpl, 0,
qpair->num_entries * sizeof(struct spdk_nvme_cpl));
}
static int
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_tracker *tr;
uint16_t i;
volatile uint32_t *doorbell_base;
uint64_t phys_addr = 0;
uint64_t offset;
uint16_t num_trackers;
if (qpair->id == 0) {
num_trackers = NVME_ADMIN_TRACKERS;
} else {
/*
* No need to have more trackers than entries in the submit queue.
* Note also that for a queue size of N, we can only have (N-1)
* commands outstanding, hence the "-1" here.
*/
num_trackers = nvme_min(NVME_IO_TRACKERS, qpair->num_entries - 1);
}
assert(num_trackers != 0);
qpair->sq_in_cmb = false;
/* cmd and cpl rings must be aligned on 4KB boundaries. */
if (ctrlr->opts.use_cmb_sqs) {
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, qpair->num_entries * sizeof(struct spdk_nvme_cmd),
0x1000, &offset) == 0) {
qpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
qpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
qpair->sq_in_cmb = true;
}
}
if (qpair->sq_in_cmb == false) {
qpair->cmd = spdk_zmalloc(qpair->num_entries * sizeof(struct spdk_nvme_cmd),
0x1000,
&qpair->cmd_bus_addr);
if (qpair->cmd == NULL) {
SPDK_ERRLOG("alloc qpair_cmd failed\n");
return -ENOMEM;
}
}
qpair->cpl = spdk_zmalloc(qpair->num_entries * sizeof(struct spdk_nvme_cpl),
0x1000,
&qpair->cpl_bus_addr);
if (qpair->cpl == NULL) {
SPDK_ERRLOG("alloc qpair_cpl failed\n");
return -ENOMEM;
}
doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
qpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
qpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
/*
* Reserve space for all of the trackers in a single allocation.
* struct nvme_tracker must be padded so that its size is already a power of 2.
* This ensures the PRP list embedded in the nvme_tracker object will not span a
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
*/
qpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), &phys_addr);
if (qpair->tr == NULL) {
SPDK_ERRLOG("nvme_tr failed\n");
return -ENOMEM;
}
for (i = 0; i < num_trackers; i++) {
tr = &qpair->tr[i];
nvme_qpair_construct_tracker(tr, i, phys_addr);
LIST_INSERT_HEAD(&qpair->free_tr, tr, list);
phys_addr += sizeof(struct nvme_tracker);
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
static inline void
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
/* dst and src are known to be non-overlapping and 64-byte aligned. */
#if defined(__AVX__)
__m256i *d256 = (__m256i *)dst;
const __m256i *s256 = (const __m256i *)src;
_mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0]));
_mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1]));
#elif defined(__SSE2__)
__m128i *d128 = (__m128i *)dst;
const __m128i *s128 = (const __m128i *)src;
_mm_store_si128(&d128[0], _mm_load_si128(&s128[0]));
_mm_store_si128(&d128[1], _mm_load_si128(&s128[1]));
_mm_store_si128(&d128[2], _mm_load_si128(&s128[2]));
_mm_store_si128(&d128[3], _mm_load_si128(&s128[3]));
#else
*dst = *src;
#endif
}
static void
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
req = tr->req;
qpair->tr[tr->cid].active = true;
/* Copy the command from the tracker to the submission queue. */
nvme_pcie_copy_command(&qpair->cmd[qpair->sq_tail], &req->cmd);
if (++qpair->sq_tail == qpair->num_entries) {
qpair->sq_tail = 0;
}
spdk_wmb();
spdk_mmio_write_4(qpair->sq_tdbl, qpair->sq_tail);
}
static void
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
struct spdk_nvme_cpl *cpl, bool print_on_error)
{
struct nvme_request *req;
bool retry, error, was_active;
req = tr->req;
assert(req != NULL);
error = spdk_nvme_cpl_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < spdk_nvme_retry_count;
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, cpl);
}
was_active = qpair->tr[cpl->cid].active;
qpair->tr[cpl->cid].active = false;
assert(cpl->cid == req->cmd.cid);
if (retry) {
req->retries++;
nvme_pcie_qpair_submit_tracker(qpair, tr);
} else {
if (was_active && req->cb_fn) {
req->cb_fn(req->cb_arg, cpl);
}
nvme_free_request(req);
tr->req = NULL;
LIST_REMOVE(tr, list);
LIST_INSERT_HEAD(&qpair->free_tr, tr, list);
/*
* If the controller is in the middle of resetting, don't
* try to submit queued requests here - let the reset logic
* handle that instead.
*/
if (!STAILQ_EMPTY(&qpair->queued_req) &&
!qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
}
}
static void
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
static void
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr;
tr = LIST_FIRST(&qpair->outstanding_tr);
while (tr != NULL) {
assert(tr->req != NULL);
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
false);
tr = LIST_FIRST(&qpair->outstanding_tr);
} else {
tr = LIST_NEXT(tr, list);
}
}
}
static void
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
static void
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_pcie_admin_qpair_destroy(qpair);
}
if (qpair->cmd && !qpair->sq_in_cmb) {
spdk_free(qpair->cmd);
qpair->cmd = NULL;
}
if (qpair->cpl) {
spdk_free(qpair->cpl);
qpair->cpl = NULL;
}
if (qpair->tr) {
spdk_free(qpair->tr);
qpair->tr = NULL;
}
}
static void
nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr, *temp;
/*
* Manually abort each outstanding admin command. Do not retry
* admin commands found here, since they will be left over from
* a controller reset and its likely the context in which the
* command was issued no longer applies.
*/
LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, temp) {
SPDK_ERRLOG("aborting outstanding admin command\n");
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true);
}
}
static void
nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr, *temp;
/* Manually abort each outstanding I/O. */
LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, temp) {
SPDK_ERRLOG("aborting outstanding i/o\n");
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, 0, true);
}
}
static void
nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair)
{
if (nvme_qpair_is_io_queue(qpair)) {
nvme_pcie_io_qpair_enable(qpair);
} else {
nvme_pcie_admin_qpair_enable(qpair);
}
}
static void
nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
static void
nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair)
{
}
static void
nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair)
{
qpair->is_enabled = false;
if (nvme_qpair_is_io_queue(qpair)) {
nvme_pcie_io_qpair_disable(qpair);
} else {
nvme_pcie_admin_qpair_disable(qpair);
}
}
static void
nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr;
/* Manually abort each outstanding I/O. */
while (!LIST_EMPTY(&qpair->outstanding_tr)) {
tr = LIST_FIRST(&qpair->outstanding_tr);
/*
* Do not remove the tracker. The abort_tracker path will
* do that for us.
*/
SPDK_ERRLOG("failing outstanding i/o\n");
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true);
}
}
static int
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
/*
* TODO: create a create io completion queue command data
* structure.
*/
cmd->cdw10 = ((io_que->num_entries - 1) << 16) | io_que->id;
/*
* 0x2 = interrupts enabled
* 0x1 = physically contiguous
*/
cmd->cdw11 = 0x1;
cmd->dptr.prp.prp1 = io_que->cpl_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
/*
* TODO: create a create io submission queue command data
* structure.
*/
cmd->cdw10 = ((io_que->num_entries - 1) << 16) | io_que->id;
/* 0x1 = physically contiguous */
cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
cmd->dptr.prp.prp1 = io_que->cmd_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
cmd->cdw10 = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
cmd->cdw10 = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_completion_poll_status status;
int rc;
assert(ctrlr != NULL);
assert(qpair != NULL);
status.done = false;
rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_create_io_cq failed!\n");
return -1;
}
status.done = false;
rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_create_io_sq failed!\n");
/* Attempt to delete the completion queue */
status.done = false;
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
return -1;
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
static int
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_completion_poll_status status;
int rc;
assert(ctrlr != NULL);
assert(qpair != NULL);
/* Delete the I/O submission queue and then the completion queue */
status.done = false;
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
return -1;
}
status.done = false;
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
return -1;
}
return 0;
}
static void
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
/*
* Bad vtophys translation, so abort this request and return
* immediately.
*/
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_INVALID_FIELD,
1 /* do not retry */, true);
}
/**
* Build PRP list describing physically contiguous payload buffer.
*/
static int
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
uint64_t phys_addr;
void *seg_addr;
uint32_t nseg, cur_nseg, modulo, unaligned;
void *md_payload;
void *payload = req->payload.u.contig + req->payload_offset;
phys_addr = spdk_vtophys(payload);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
nseg = req->payload_size >> nvme_u32log2(PAGE_SIZE);
modulo = req->payload_size & (PAGE_SIZE - 1);
unaligned = phys_addr & (PAGE_SIZE - 1);
if (modulo || unaligned) {
nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE));
}
if (req->payload.md) {
md_payload = req->payload.md + req->md_offset;
tr->req->cmd.mptr = spdk_vtophys(md_payload);
if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
}
tr->req->cmd.psdt = SPDK_NVME_PSDT_PRP;
tr->req->cmd.dptr.prp.prp1 = phys_addr;
if (nseg == 2) {
seg_addr = payload + PAGE_SIZE - unaligned;
tr->req->cmd.dptr.prp.prp2 = spdk_vtophys(seg_addr);
} else if (nseg > 2) {
cur_nseg = 1;
tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr;
while (cur_nseg < nseg) {
seg_addr = payload + cur_nseg * PAGE_SIZE - unaligned;
phys_addr = spdk_vtophys(seg_addr);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
tr->u.prp[cur_nseg - 1] = phys_addr;
cur_nseg++;
}
}
return 0;
}
/**
* Build SGL list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
uint64_t phys_addr;
uint32_t remaining_transfer_len, length;
struct spdk_nvme_sgl_descriptor *sgl;
uint32_t nseg = 0;
/*
* Build scattered payloads.
*/
assert(req->payload_size != 0);
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
assert(req->payload.u.sgl.next_sge_fn != NULL);
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
sgl = tr->u.sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &phys_addr, &length);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
length = nvme_min(remaining_transfer_len, length);
remaining_transfer_len -= length;
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.length = length;
sgl->address = phys_addr;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
}
if (nseg == 1) {
/*
* The whole transfer can be described by a single SGL descriptor.
* Use the special case described by the spec where SGL1's type is Data Block.
* This means the SGL in the tracker is not used at all, so copy the first (and only)
* SGL element into SGL1.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
} else {
/* For now we can only support 1 SGL segment in NVMe controller */
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
}
return 0;
}
/**
* Build PRP list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
uint64_t phys_addr;
uint32_t data_transferred, remaining_transfer_len, length;
uint32_t nseg, cur_nseg, total_nseg, last_nseg, modulo, unaligned;
uint32_t sge_count = 0;
uint64_t prp2 = 0;
/*
* Build scattered payloads.
*/
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
remaining_transfer_len = req->payload_size;
total_nseg = 0;
last_nseg = 0;
while (remaining_transfer_len > 0) {
assert(req->payload.u.sgl.next_sge_fn != NULL);
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &phys_addr, &length);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
/* Confirm that this sge is prp compatible. */
if (phys_addr & 0x3 ||
(length < remaining_transfer_len && ((phys_addr + length) & (PAGE_SIZE - 1)))) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
data_transferred = nvme_min(remaining_transfer_len, length);
nseg = data_transferred >> nvme_u32log2(PAGE_SIZE);
modulo = data_transferred & (PAGE_SIZE - 1);
unaligned = phys_addr & (PAGE_SIZE - 1);
if (modulo || unaligned) {
nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE));
}
if (total_nseg == 0) {
req->cmd.psdt = SPDK_NVME_PSDT_PRP;
req->cmd.dptr.prp.prp1 = phys_addr;
phys_addr -= unaligned;
}
total_nseg += nseg;
sge_count++;
remaining_transfer_len -= data_transferred;
if (total_nseg == 2) {
if (sge_count == 1)
tr->req->cmd.dptr.prp.prp2 = phys_addr + PAGE_SIZE;
else if (sge_count == 2)
tr->req->cmd.dptr.prp.prp2 = phys_addr;
/* save prp2 value */
prp2 = tr->req->cmd.dptr.prp.prp2;
} else if (total_nseg > 2) {
if (sge_count == 1)
cur_nseg = 1;
else
cur_nseg = 0;
tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr;
while (cur_nseg < nseg) {
if (prp2) {
tr->u.prp[0] = prp2;
tr->u.prp[last_nseg + 1] = phys_addr + cur_nseg * PAGE_SIZE;
} else
tr->u.prp[last_nseg] = phys_addr + cur_nseg * PAGE_SIZE;
last_nseg++;
cur_nseg++;
}
}
}
return 0;
}
static inline bool
nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
{
if (!qpair->is_enabled &&
!qpair->ctrlr->is_resetting) {
nvme_qpair_enable(qpair);
}
return qpair->is_enabled;
}
static int
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
struct nvme_tracker *tr;
int rc;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
nvme_pcie_qpair_check_enabled(qpair);
tr = LIST_FIRST(&qpair->free_tr);
if (tr == NULL || !qpair->is_enabled) {
/*
* No tracker is available, or the qpair is disabled due to
* an in-progress controller-level reset.
*
* Put the request on the qpair's request queue to be
* processed when a tracker frees up via a command
* completion or when the controller reset is
* completed.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
return 0;
}
LIST_REMOVE(tr, list); /* remove tr from free_tr */
LIST_INSERT_HEAD(&qpair->outstanding_tr, tr, list);
tr->req = req;
req->cmd.cid = tr->cid;
if (req->payload_size == 0) {
/* Null payload - leave PRP fields zeroed */
rc = 0;
} else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) {
rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
} else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) {
if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
} else {
rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
}
} else {
assert(0);
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
rc = -EINVAL;
}
if (rc < 0) {
return rc;
}
nvme_pcie_qpair_submit_tracker(qpair, tr);
return 0;
}
static int32_t
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl;
uint32_t num_completions = 0;
if (!nvme_pcie_qpair_check_enabled(qpair)) {
/*
* qpair is not enabled, likely because a controller reset is
* is in progress. Ignore the interrupt - any I/O that was
* associated with this interrupt will get retried when the
* reset is complete.
*/
return 0;
}
if (max_completions == 0 || (max_completions > (qpair->num_entries - 1U))) {
/*
* max_completions == 0 means unlimited, but complete at most one
* queue depth batch of I/O at a time so that the completion
* queue doorbells don't wrap around.
*/
max_completions = qpair->num_entries - 1;
}
while (1) {
cpl = &qpair->cpl[qpair->cq_head];
if (cpl->status.p != qpair->phase)
break;
tr = &qpair->tr[cpl->cid];
if (tr->active) {
nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
} else {
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
nvme_qpair_print_completion(qpair, cpl);
assert(0);
}
if (++qpair->cq_head == qpair->num_entries) {
qpair->cq_head = 0;
qpair->phase = !qpair->phase;
}
if (++num_completions == max_completions) {
break;
}
}
if (num_completions > 0) {
spdk_mmio_write_4(qpair->cq_hdbl, qpair->cq_head);
}
return num_completions;
}
const struct spdk_nvme_transport spdk_nvme_transport_pcie = {
.ctrlr_construct = nvme_pcie_ctrlr_construct,
.ctrlr_destruct = nvme_pcie_ctrlr_destruct,
.ctrlr_get_pci_id = nvme_pcie_ctrlr_get_pci_id,
.ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
.ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
.ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
.ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,
.ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
.ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
.qpair_construct = nvme_pcie_qpair_construct,
.qpair_destroy = nvme_pcie_qpair_destroy,
.qpair_enable = nvme_pcie_qpair_enable,
.qpair_disable = nvme_pcie_qpair_disable,
.qpair_reset = nvme_pcie_qpair_reset,
.qpair_fail = nvme_pcie_qpair_fail,
.qpair_submit_request = nvme_pcie_qpair_submit_request,
.qpair_process_completions = nvme_pcie_qpair_process_completions,
};