numam-spdk/lib/bdev/bdev.c

2610 lines
67 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (C) 2008-2012 Daisuke Aoyama <aoyama@peach.ne.jp>.
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/bdev.h"
#include "spdk/env.h"
#include "spdk/event.h"
#include "spdk/io_channel.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/nvme_spec.h"
#include "spdk/scsi_spec.h"
#include "spdk/util.h"
#include "spdk_internal/bdev.h"
#include "spdk_internal/log.h"
#include "spdk/string.h"
#ifdef SPDK_CONFIG_VTUNE
#include "ittnotify.h"
#include "ittnotify_types.h"
int __itt_init_ittlib(const char *, __itt_group_id);
#endif
#define SPDK_BDEV_IO_POOL_SIZE (64 * 1024)
#define SPDK_BDEV_IO_CACHE_SIZE 256
#define BUF_SMALL_POOL_SIZE 8192
#define BUF_LARGE_POOL_SIZE 1024
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
#define NOMEM_THRESHOLD_COUNT 8
#define ZERO_BUFFER_SIZE 0x100000
typedef TAILQ_HEAD(, spdk_bdev_io) bdev_io_tailq_t;
typedef STAILQ_HEAD(, spdk_bdev_io) bdev_io_stailq_t;
struct spdk_bdev_mgr {
struct spdk_mempool *bdev_io_pool;
struct spdk_mempool *buf_small_pool;
struct spdk_mempool *buf_large_pool;
void *zero_buffer;
TAILQ_HEAD(, spdk_bdev_module_if) bdev_modules;
TAILQ_HEAD(, spdk_bdev) bdevs;
bool init_complete;
bool module_init_complete;
#ifdef SPDK_CONFIG_VTUNE
__itt_domain *domain;
#endif
};
static struct spdk_bdev_mgr g_bdev_mgr = {
.bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules),
.bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs),
.init_complete = false,
.module_init_complete = false,
};
static spdk_bdev_init_cb g_init_cb_fn = NULL;
static void *g_init_cb_arg = NULL;
static spdk_bdev_fini_cb g_fini_cb_fn = NULL;
static void *g_fini_cb_arg = NULL;
static struct spdk_thread *g_fini_thread = NULL;
struct spdk_bdev_mgmt_channel {
bdev_io_stailq_t need_buf_small;
bdev_io_stailq_t need_buf_large;
/*
* Each thread keeps a cache of bdev_io - this allows
* bdev threads which are *not* DPDK threads to still
* benefit from a per-thread bdev_io cache. Without
* this, non-DPDK threads fetching from the mempool
* incur a cmpxchg on get and put.
*/
bdev_io_stailq_t per_thread_cache;
uint32_t per_thread_cache_count;
TAILQ_HEAD(, spdk_bdev_module_channel) module_channels;
};
struct spdk_bdev_desc {
struct spdk_bdev *bdev;
spdk_bdev_remove_cb_t remove_cb;
void *remove_ctx;
bool write;
TAILQ_ENTRY(spdk_bdev_desc) link;
};
#define BDEV_CH_RESET_IN_PROGRESS (1 << 0)
struct spdk_bdev_channel {
struct spdk_bdev *bdev;
/* The channel for the underlying device */
struct spdk_io_channel *channel;
/* Channel for the bdev manager */
struct spdk_io_channel *mgmt_channel;
struct spdk_bdev_io_stat stat;
bdev_io_tailq_t queued_resets;
uint32_t flags;
/* Per-device channel */
struct spdk_bdev_module_channel *module_ch;
#ifdef SPDK_CONFIG_VTUNE
uint64_t start_tsc;
uint64_t interval_tsc;
__itt_string_handle *handle;
#endif
};
/*
* Per-module (or per-io_device) channel. Multiple bdevs built on the same io_device
* will queue here their IO that awaits retry. It makes it posible to retry sending
* IO to one bdev after IO from other bdev completes.
*/
struct spdk_bdev_module_channel {
/*
* Count of I/O submitted to bdev module and waiting for completion.
* Incremented before submit_request() is called on an spdk_bdev_io.
*/
uint64_t io_outstanding;
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
/*
* Queue of IO awaiting retry because of a previous NOMEM status returned
* on this channel.
*/
bdev_io_tailq_t nomem_io;
/*
* Threshold which io_outstanding must drop to before retrying nomem_io.
*/
uint64_t nomem_threshold;
/* I/O channel allocated by a bdev module */
struct spdk_io_channel *module_ch;
uint32_t ref;
TAILQ_ENTRY(spdk_bdev_module_channel) link;
};
static void spdk_bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
struct spdk_bdev *
spdk_bdev_first(void)
{
struct spdk_bdev *bdev;
bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs);
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_next(struct spdk_bdev *prev)
{
struct spdk_bdev *bdev;
bdev = TAILQ_NEXT(prev, link);
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name);
}
return bdev;
}
static struct spdk_bdev *
_bdev_next_leaf(struct spdk_bdev *bdev)
{
while (bdev != NULL) {
if (TAILQ_EMPTY(&bdev->vbdevs)) {
return bdev;
} else {
bdev = TAILQ_NEXT(bdev, link);
}
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_first_leaf(void)
{
struct spdk_bdev *bdev;
bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs));
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_next_leaf(struct spdk_bdev *prev)
{
struct spdk_bdev *bdev;
bdev = _bdev_next_leaf(TAILQ_NEXT(prev, link));
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_get_by_name(const char *bdev_name)
{
struct spdk_bdev_alias *tmp;
struct spdk_bdev *bdev = spdk_bdev_first();
while (bdev != NULL) {
if (strcmp(bdev_name, bdev->name) == 0) {
return bdev;
}
TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
if (strcmp(bdev_name, tmp->alias) == 0) {
return bdev;
}
}
bdev = spdk_bdev_next(bdev);
}
return NULL;
}
static void
spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf)
{
assert(bdev_io->get_buf_cb != NULL);
assert(buf != NULL);
assert(bdev_io->u.bdev.iovs != NULL);
bdev_io->buf = buf;
bdev_io->u.bdev.iovs[0].iov_base = (void *)((unsigned long)((char *)buf + 512) & ~511UL);
bdev_io->u.bdev.iovs[0].iov_len = bdev_io->buf_len;
bdev_io->get_buf_cb(bdev_io->ch->channel, bdev_io);
}
static void
spdk_bdev_io_put_buf(struct spdk_bdev_io *bdev_io)
{
struct spdk_mempool *pool;
struct spdk_bdev_io *tmp;
void *buf;
bdev_io_stailq_t *stailq;
struct spdk_bdev_mgmt_channel *ch;
assert(bdev_io->u.bdev.iovcnt == 1);
buf = bdev_io->buf;
ch = bdev_io->mgmt_ch;
if (bdev_io->buf_len <= SPDK_BDEV_SMALL_BUF_MAX_SIZE) {
pool = g_bdev_mgr.buf_small_pool;
stailq = &ch->need_buf_small;
} else {
pool = g_bdev_mgr.buf_large_pool;
stailq = &ch->need_buf_large;
}
if (STAILQ_EMPTY(stailq)) {
spdk_mempool_put(pool, buf);
} else {
tmp = STAILQ_FIRST(stailq);
STAILQ_REMOVE_HEAD(stailq, buf_link);
spdk_bdev_io_set_buf(tmp, buf);
}
}
void
spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
{
struct spdk_mempool *pool;
bdev_io_stailq_t *stailq;
void *buf = NULL;
struct spdk_bdev_mgmt_channel *ch;
assert(cb != NULL);
assert(bdev_io->u.bdev.iovs != NULL);
if (spdk_unlikely(bdev_io->u.bdev.iovs[0].iov_base != NULL)) {
/* Buffer already present */
cb(bdev_io->ch->channel, bdev_io);
return;
}
assert(len <= SPDK_BDEV_LARGE_BUF_MAX_SIZE);
ch = spdk_io_channel_get_ctx(bdev_io->ch->mgmt_channel);
bdev_io->buf_len = len;
bdev_io->get_buf_cb = cb;
if (len <= SPDK_BDEV_SMALL_BUF_MAX_SIZE) {
pool = g_bdev_mgr.buf_small_pool;
stailq = &ch->need_buf_small;
} else {
pool = g_bdev_mgr.buf_large_pool;
stailq = &ch->need_buf_large;
}
buf = spdk_mempool_get(pool);
if (!buf) {
STAILQ_INSERT_TAIL(stailq, bdev_io, buf_link);
} else {
spdk_bdev_io_set_buf(bdev_io, buf);
}
}
static int
spdk_bdev_module_get_max_ctx_size(void)
{
struct spdk_bdev_module_if *bdev_module;
int max_bdev_module_size = 0;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, tailq) {
if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) {
max_bdev_module_size = bdev_module->get_ctx_size();
}
}
return max_bdev_module_size;
}
void
spdk_bdev_config_text(FILE *fp)
{
struct spdk_bdev_module_if *bdev_module;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, tailq) {
if (bdev_module->config_text) {
bdev_module->config_text(fp);
}
}
}
static int
spdk_bdev_mgmt_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_bdev_mgmt_channel *ch = ctx_buf;
STAILQ_INIT(&ch->need_buf_small);
STAILQ_INIT(&ch->need_buf_large);
STAILQ_INIT(&ch->per_thread_cache);
ch->per_thread_cache_count = 0;
TAILQ_INIT(&ch->module_channels);
return 0;
}
static void
spdk_bdev_mgmt_channel_free_resources(struct spdk_bdev_mgmt_channel *ch)
{
struct spdk_bdev_io *bdev_io;
if (!STAILQ_EMPTY(&ch->need_buf_small) || !STAILQ_EMPTY(&ch->need_buf_large)) {
SPDK_ERRLOG("Pending I/O list wasn't empty on channel free\n");
}
while (!STAILQ_EMPTY(&ch->per_thread_cache)) {
bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
STAILQ_REMOVE_HEAD(&ch->per_thread_cache, buf_link);
ch->per_thread_cache_count--;
spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
}
assert(ch->per_thread_cache_count == 0);
}
static void
spdk_bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bdev_mgmt_channel *ch = ctx_buf;
spdk_bdev_mgmt_channel_free_resources(ch);
}
static void
spdk_bdev_init_complete(int rc)
{
spdk_bdev_init_cb cb_fn = g_init_cb_fn;
void *cb_arg = g_init_cb_arg;
g_bdev_mgr.init_complete = true;
g_init_cb_fn = NULL;
g_init_cb_arg = NULL;
cb_fn(cb_arg, rc);
}
static void
spdk_bdev_module_action_complete(void)
{
struct spdk_bdev_module_if *m;
/*
* Don't finish bdev subsystem initialization if
* module pre-initialization is still in progress, or
* the subsystem been already initialized.
*/
if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) {
return;
}
/*
* Check all bdev modules for inits/examinations in progress. If any
* exist, return immediately since we cannot finish bdev subsystem
* initialization until all are completed.
*/
TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, tailq) {
if (m->action_in_progress > 0) {
return;
}
}
/*
* Modules already finished initialization - now that all
* the bdev modules have finished their asynchronous I/O
* processing, the entire bdev layer can be marked as complete.
*/
spdk_bdev_init_complete(0);
}
static void
spdk_bdev_module_action_done(struct spdk_bdev_module_if *module)
{
assert(module->action_in_progress > 0);
module->action_in_progress--;
spdk_bdev_module_action_complete();
}
void
spdk_bdev_module_init_done(struct spdk_bdev_module_if *module)
{
spdk_bdev_module_action_done(module);
}
void
spdk_bdev_module_examine_done(struct spdk_bdev_module_if *module)
{
spdk_bdev_module_action_done(module);
}
static int
spdk_bdev_modules_init(void)
{
struct spdk_bdev_module_if *module;
int rc = 0;
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, tailq) {
rc = module->module_init();
if (rc != 0) {
break;
}
}
g_bdev_mgr.module_init_complete = true;
return rc;
}
void
spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg)
{
int cache_size;
int rc = 0;
char mempool_name[32];
assert(cb_fn != NULL);
g_init_cb_fn = cb_fn;
g_init_cb_arg = cb_arg;
snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid());
g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name,
SPDK_BDEV_IO_POOL_SIZE,
sizeof(struct spdk_bdev_io) +
spdk_bdev_module_get_max_ctx_size(),
0,
SPDK_ENV_SOCKET_ID_ANY);
if (g_bdev_mgr.bdev_io_pool == NULL) {
SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n");
spdk_bdev_init_complete(-1);
return;
}
/**
* Ensure no more than half of the total buffers end up local caches, by
* using spdk_env_get_core_count() to determine how many local caches we need
* to account for.
*/
cache_size = BUF_SMALL_POOL_SIZE / (2 * spdk_env_get_core_count());
snprintf(mempool_name, sizeof(mempool_name), "buf_small_pool_%d", getpid());
g_bdev_mgr.buf_small_pool = spdk_mempool_create(mempool_name,
BUF_SMALL_POOL_SIZE,
SPDK_BDEV_SMALL_BUF_MAX_SIZE + 512,
cache_size,
SPDK_ENV_SOCKET_ID_ANY);
if (!g_bdev_mgr.buf_small_pool) {
SPDK_ERRLOG("create rbuf small pool failed\n");
spdk_bdev_init_complete(-1);
return;
}
cache_size = BUF_LARGE_POOL_SIZE / (2 * spdk_env_get_core_count());
snprintf(mempool_name, sizeof(mempool_name), "buf_large_pool_%d", getpid());
g_bdev_mgr.buf_large_pool = spdk_mempool_create(mempool_name,
BUF_LARGE_POOL_SIZE,
SPDK_BDEV_LARGE_BUF_MAX_SIZE + 512,
cache_size,
SPDK_ENV_SOCKET_ID_ANY);
if (!g_bdev_mgr.buf_large_pool) {
SPDK_ERRLOG("create rbuf large pool failed\n");
spdk_bdev_init_complete(-1);
return;
}
g_bdev_mgr.zero_buffer = spdk_dma_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE,
NULL);
if (!g_bdev_mgr.zero_buffer) {
SPDK_ERRLOG("create bdev zero buffer failed\n");
spdk_bdev_init_complete(-1);
return;
}
#ifdef SPDK_CONFIG_VTUNE
g_bdev_mgr.domain = __itt_domain_create("spdk_bdev");
#endif
spdk_io_device_register(&g_bdev_mgr, spdk_bdev_mgmt_channel_create,
spdk_bdev_mgmt_channel_destroy,
sizeof(struct spdk_bdev_mgmt_channel));
rc = spdk_bdev_modules_init();
if (rc != 0) {
SPDK_ERRLOG("bdev modules init failed\n");
spdk_bdev_init_complete(-1);
return;
}
spdk_bdev_module_action_complete();
}
static void
spdk_bdev_module_finish_cb(void *io_device)
{
spdk_bdev_fini_cb cb_fn = g_fini_cb_fn;
cb_fn(g_fini_cb_arg);
g_fini_cb_fn = NULL;
g_fini_cb_arg = NULL;
}
static void
spdk_bdev_module_finish_complete(struct spdk_io_channel_iter *i, int status)
{
if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != SPDK_BDEV_IO_POOL_SIZE) {
SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.bdev_io_pool),
SPDK_BDEV_IO_POOL_SIZE);
}
if (spdk_mempool_count(g_bdev_mgr.buf_small_pool) != BUF_SMALL_POOL_SIZE) {
SPDK_ERRLOG("Small buffer pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.buf_small_pool),
BUF_SMALL_POOL_SIZE);
assert(false);
}
if (spdk_mempool_count(g_bdev_mgr.buf_large_pool) != BUF_LARGE_POOL_SIZE) {
SPDK_ERRLOG("Large buffer pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.buf_large_pool),
BUF_LARGE_POOL_SIZE);
assert(false);
}
spdk_mempool_free(g_bdev_mgr.bdev_io_pool);
spdk_mempool_free(g_bdev_mgr.buf_small_pool);
spdk_mempool_free(g_bdev_mgr.buf_large_pool);
spdk_dma_free(g_bdev_mgr.zero_buffer);
spdk_io_device_unregister(&g_bdev_mgr, spdk_bdev_module_finish_cb);
}
static void
mgmt_channel_free_resources(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_mgmt_channel *ch = spdk_io_channel_get_ctx(_ch);
spdk_bdev_mgmt_channel_free_resources(ch);
spdk_for_each_channel_continue(i, 0);
}
static void
spdk_bdev_module_finish_iter(void *arg)
{
/* Notice that this variable is static. It is saved between calls to
* this function. */
static struct spdk_bdev_module_if *resume_bdev_module = NULL;
struct spdk_bdev_module_if *bdev_module;
/* Start iterating from the last touched module */
if (!resume_bdev_module) {
bdev_module = TAILQ_FIRST(&g_bdev_mgr.bdev_modules);
} else {
bdev_module = TAILQ_NEXT(resume_bdev_module, tailq);
}
while (bdev_module) {
if (bdev_module->async_fini) {
/* Save our place so we can resume later. We must
* save the variable here, before calling module_fini()
* below, because in some cases the module may immediately
* call spdk_bdev_module_finish_done() and re-enter
* this function to continue iterating. */
resume_bdev_module = bdev_module;
}
if (bdev_module->module_fini) {
bdev_module->module_fini();
}
if (bdev_module->async_fini) {
return;
}
bdev_module = TAILQ_NEXT(bdev_module, tailq);
}
resume_bdev_module = NULL;
spdk_for_each_channel(&g_bdev_mgr, mgmt_channel_free_resources, NULL,
spdk_bdev_module_finish_complete);
}
void
spdk_bdev_module_finish_done(void)
{
if (spdk_get_thread() != g_fini_thread) {
spdk_thread_send_msg(g_fini_thread, spdk_bdev_module_finish_iter, NULL);
} else {
spdk_bdev_module_finish_iter(NULL);
}
}
static void
_spdk_bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno)
{
struct spdk_bdev *bdev = cb_arg;
if (bdeverrno && bdev) {
SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n",
bdev->name);
/*
* Since the call to spdk_bdev_unregister() failed, we have no way to free this
* bdev; try to continue by manually removing this bdev from the list and continue
* with the next bdev in the list.
*/
TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, link);
}
if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Done unregistering bdevs\n");
spdk_bdev_module_finish_iter(NULL);
return;
}
/*
* Unregister the first bdev in the list.
*
* spdk_bdev_unregister() will handle the case where the bdev has open descriptors by
* calling the remove_cb of the descriptors first.
*
* Once this bdev and all of its open descriptors have been cleaned up, this function
* will be called again via the unregister completion callback to continue the cleanup
* process with the next bdev.
*/
bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs);
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Unregistering bdev '%s'\n", bdev->name);
spdk_bdev_unregister(bdev, _spdk_bdev_finish_unregister_bdevs_iter, bdev);
}
static void
_spdk_bdev_finish_unregister_bdevs(void)
{
_spdk_bdev_finish_unregister_bdevs_iter(NULL, 0);
}
void
spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg)
{
assert(cb_fn != NULL);
g_fini_thread = spdk_get_thread();
g_fini_cb_fn = cb_fn;
g_fini_cb_arg = cb_arg;
_spdk_bdev_finish_unregister_bdevs();
}
static struct spdk_bdev_io *
spdk_bdev_get_io(struct spdk_io_channel *_ch)
{
struct spdk_bdev_mgmt_channel *ch = spdk_io_channel_get_ctx(_ch);
struct spdk_bdev_io *bdev_io;
if (ch->per_thread_cache_count > 0) {
bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
STAILQ_REMOVE_HEAD(&ch->per_thread_cache, buf_link);
ch->per_thread_cache_count--;
} else {
bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
if (!bdev_io) {
SPDK_ERRLOG("Unable to get spdk_bdev_io\n");
abort();
}
}
bdev_io->mgmt_ch = ch;
return bdev_io;
}
static void
spdk_bdev_put_io(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_mgmt_channel *ch = bdev_io->mgmt_ch;
if (bdev_io->buf != NULL) {
spdk_bdev_io_put_buf(bdev_io);
}
if (ch->per_thread_cache_count < SPDK_BDEV_IO_CACHE_SIZE) {
ch->per_thread_cache_count++;
STAILQ_INSERT_TAIL(&ch->per_thread_cache, bdev_io, buf_link);
} else {
spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
}
}
static void
spdk_bdev_io_submit(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->ch;
struct spdk_io_channel *ch = bdev_ch->channel;
struct spdk_bdev_module_channel *shared_ch = bdev_ch->module_ch;
assert(bdev_io->status == SPDK_BDEV_IO_STATUS_PENDING);
bdev_io->submit_tsc = spdk_get_ticks();
shared_ch->io_outstanding++;
bdev_io->in_submit_request = true;
if (spdk_likely(bdev_ch->flags == 0)) {
if (spdk_likely(TAILQ_EMPTY(&shared_ch->nomem_io))) {
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
bdev->fn_table->submit_request(ch, bdev_io);
} else {
shared_ch->io_outstanding--;
TAILQ_INSERT_TAIL(&shared_ch->nomem_io, bdev_io, link);
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
}
} else if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
} else {
SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags);
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
bdev_io->in_submit_request = false;
}
static void
spdk_bdev_io_submit_reset(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->ch;
struct spdk_io_channel *ch = bdev_ch->channel;
assert(bdev_io->status == SPDK_BDEV_IO_STATUS_PENDING);
bdev_io->in_submit_request = true;
bdev->fn_table->submit_request(ch, bdev_io);
bdev_io->in_submit_request = false;
}
static void
spdk_bdev_io_init(struct spdk_bdev_io *bdev_io,
struct spdk_bdev *bdev, void *cb_arg,
spdk_bdev_io_completion_cb cb)
{
bdev_io->bdev = bdev;
bdev_io->caller_ctx = cb_arg;
bdev_io->cb = cb;
bdev_io->status = SPDK_BDEV_IO_STATUS_PENDING;
bdev_io->in_submit_request = false;
bdev_io->buf = NULL;
}
bool
spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
{
return bdev->fn_table->io_type_supported(bdev->ctxt, io_type);
}
int
spdk_bdev_dump_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
if (bdev->fn_table->dump_config_json) {
return bdev->fn_table->dump_config_json(bdev->ctxt, w);
}
return 0;
}
static int
_spdk_bdev_channel_create(struct spdk_bdev_channel *ch, void *io_device)
{
struct spdk_bdev *bdev = io_device;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_module_channel *shared_ch;
ch->bdev = io_device;
ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt);
if (!ch->channel) {
return -1;
}
ch->mgmt_channel = spdk_get_io_channel(&g_bdev_mgr);
if (!ch->mgmt_channel) {
return -1;
}
mgmt_ch = spdk_io_channel_get_ctx(ch->mgmt_channel);
TAILQ_FOREACH(shared_ch, &mgmt_ch->module_channels, link) {
if (shared_ch->module_ch == ch->channel) {
shared_ch->ref++;
break;
}
}
if (shared_ch == NULL) {
shared_ch = calloc(1, sizeof(*shared_ch));
if (!shared_ch) {
return -1;
}
shared_ch->io_outstanding = 0;
TAILQ_INIT(&shared_ch->nomem_io);
shared_ch->nomem_threshold = 0;
shared_ch->module_ch = ch->channel;
shared_ch->ref = 1;
TAILQ_INSERT_TAIL(&mgmt_ch->module_channels, shared_ch, link);
}
memset(&ch->stat, 0, sizeof(ch->stat));
TAILQ_INIT(&ch->queued_resets);
ch->flags = 0;
ch->module_ch = shared_ch;
return 0;
}
static void
_spdk_bdev_channel_destroy_resource(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_mgmt_channel *mgmt_channel;
struct spdk_bdev_module_channel *shared_ch = ch->module_ch;
if (ch->channel) {
spdk_put_io_channel(ch->channel);
}
if (ch->mgmt_channel) {
if (shared_ch) {
assert(shared_ch->ref > 0);
shared_ch->ref--;
if (shared_ch->ref == 0) {
mgmt_channel = spdk_io_channel_get_ctx(ch->mgmt_channel);
assert(shared_ch->io_outstanding == 0);
TAILQ_REMOVE(&mgmt_channel->module_channels, shared_ch, link);
free(shared_ch);
}
}
spdk_put_io_channel(ch->mgmt_channel);
}
}
static int
spdk_bdev_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_bdev_channel *ch = ctx_buf;
if (_spdk_bdev_channel_create(ch, io_device) != 0) {
_spdk_bdev_channel_destroy_resource(ch);
return -1;
}
#ifdef SPDK_CONFIG_VTUNE
{
char *name;
__itt_init_ittlib(NULL, 0);
name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch);
if (!name) {
_spdk_bdev_channel_destroy_resource(ch);
return -1;
}
ch->handle = __itt_string_handle_create(name);
free(name);
ch->start_tsc = spdk_get_ticks();
ch->interval_tsc = spdk_get_ticks_hz() / 100;
}
#endif
return 0;
}
/*
* Abort I/O that are waiting on a data buffer. These types of I/O are
* linked using the spdk_bdev_io buf_link TAILQ_ENTRY.
*/
static void
_spdk_bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_channel *ch)
{
bdev_io_stailq_t tmp;
struct spdk_bdev_io *bdev_io;
STAILQ_INIT(&tmp);
while (!STAILQ_EMPTY(queue)) {
bdev_io = STAILQ_FIRST(queue);
STAILQ_REMOVE_HEAD(queue, buf_link);
if (bdev_io->ch == ch) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
} else {
STAILQ_INSERT_TAIL(&tmp, bdev_io, buf_link);
}
}
STAILQ_SWAP(&tmp, queue, spdk_bdev_io);
}
/*
* Abort I/O that are queued waiting for submission. These types of I/O are
* linked using the spdk_bdev_io link TAILQ_ENTRY.
*/
static void
_spdk_bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch)
{
struct spdk_bdev_io *bdev_io, *tmp;
TAILQ_FOREACH_SAFE(bdev_io, queue, link, tmp) {
if (bdev_io->ch == ch) {
TAILQ_REMOVE(queue, bdev_io, link);
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
/*
* spdk_bdev_io_complete() assumes that the completed I/O had
* been submitted to the bdev module. Since in this case it
* hadn't, bump io_outstanding to account for the decrement
* that spdk_bdev_io_complete() will do.
*/
if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) {
ch->module_ch->io_outstanding++;
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
}
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
static void
_spdk_bdev_channel_destroy(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_mgmt_channel *mgmt_channel;
struct spdk_bdev_module_channel *shared_ch = ch->module_ch;
mgmt_channel = spdk_io_channel_get_ctx(ch->mgmt_channel);
_spdk_bdev_abort_queued_io(&ch->queued_resets, ch);
_spdk_bdev_abort_queued_io(&shared_ch->nomem_io, ch);
_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_small, ch);
_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_large, ch);
_spdk_bdev_channel_destroy_resource(ch);
}
static void
spdk_bdev_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bdev_channel *ch = ctx_buf;
_spdk_bdev_channel_destroy(ch);
}
int
spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias)
{
struct spdk_bdev_alias *tmp;
if (alias == NULL) {
SPDK_ERRLOG("Empty alias passed\n");
return -EINVAL;
}
if (spdk_bdev_get_by_name(alias)) {
SPDK_ERRLOG("Bdev name/alias: %s already exists\n", alias);
return -EEXIST;
}
tmp = calloc(1, sizeof(*tmp));
if (tmp == NULL) {
SPDK_ERRLOG("Unable to allocate alias\n");
return -ENOMEM;
}
tmp->alias = strdup(alias);
if (tmp->alias == NULL) {
free(tmp);
SPDK_ERRLOG("Unable to allocate alias\n");
return -ENOMEM;
}
TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq);
return 0;
}
int
spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias)
{
struct spdk_bdev_alias *tmp;
TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
if (strcmp(alias, tmp->alias) == 0) {
TAILQ_REMOVE(&bdev->aliases, tmp, tailq);
free(tmp->alias);
free(tmp);
return 0;
}
}
SPDK_INFOLOG(SPDK_LOG_BDEV, "Alias %s does not exists\n", alias);
return -ENOENT;
}
struct spdk_io_channel *
spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc)
{
return spdk_get_io_channel(desc->bdev);
}
const char *
spdk_bdev_get_name(const struct spdk_bdev *bdev)
{
return bdev->name;
}
const char *
spdk_bdev_get_product_name(const struct spdk_bdev *bdev)
{
return bdev->product_name;
}
const struct spdk_bdev_aliases_list *
spdk_bdev_get_aliases(const struct spdk_bdev *bdev)
{
return &bdev->aliases;
}
uint32_t
spdk_bdev_get_block_size(const struct spdk_bdev *bdev)
{
return bdev->blocklen;
}
uint64_t
spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev)
{
return bdev->blockcnt;
}
size_t
spdk_bdev_get_buf_align(const struct spdk_bdev *bdev)
{
/* TODO: push this logic down to the bdev modules */
if (bdev->need_aligned_buffer) {
return bdev->blocklen;
}
return 1;
}
uint32_t
spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev)
{
return bdev->optimal_io_boundary;
}
bool
spdk_bdev_has_write_cache(const struct spdk_bdev *bdev)
{
return bdev->write_cache;
}
int
spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size)
{
int ret;
pthread_mutex_lock(&bdev->mutex);
/* bdev has open descriptors */
if (!TAILQ_EMPTY(&bdev->open_descs) &&
bdev->blockcnt > size) {
ret = -EBUSY;
} else {
bdev->blockcnt = size;
ret = 0;
}
pthread_mutex_unlock(&bdev->mutex);
return ret;
}
/*
* Convert I/O offset and length from bytes to blocks.
*
* Returns zero on success or non-zero if the byte parameters aren't divisible by the block size.
*/
static uint64_t
spdk_bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks,
uint64_t num_bytes, uint64_t *num_blocks)
{
uint32_t block_size = bdev->blocklen;
*offset_blocks = offset_bytes / block_size;
*num_blocks = num_bytes / block_size;
return (offset_bytes % block_size) | (num_bytes % block_size);
}
static bool
spdk_bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks)
{
/* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there
* has been an overflow and hence the offset has been wrapped around */
if (offset_blocks + num_blocks < offset_blocks) {
return false;
}
/* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */
if (offset_blocks + num_blocks > bdev->blockcnt) {
return false;
}
return true;
}
int
spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("spdk_bdev_io memory allocation failed duing read\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
bdev_io->u.bdev.iov.iov_base = buf;
bdev_io->u.bdev.iov.iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovs = &bdev_io->u.bdev.iov;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
}
int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("spdk_bdev_io memory allocation failed duing read\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed duing write\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iov.iov_base = buf;
bdev_io->u.bdev.iov.iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovs = &bdev_io->u.bdev.iov;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset, uint64_t len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, len, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed duing writev\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, len, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
uint64_t len;
bool split_request = false;
if (num_blocks > UINT64_MAX / spdk_bdev_get_block_size(bdev)) {
SPDK_ERRLOG("length argument out of range in write_zeroes\n");
return -ERANGE;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed duing write_zeroes\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->u.bdev.offset_blocks = offset_blocks;
if (spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) {
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.iovs = NULL;
bdev_io->u.bdev.iovcnt = 0;
} else {
assert(spdk_bdev_get_block_size(bdev) <= ZERO_BUFFER_SIZE);
len = spdk_bdev_get_block_size(bdev) * num_blocks;
if (len > ZERO_BUFFER_SIZE) {
split_request = true;
len = ZERO_BUFFER_SIZE;
}
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iov.iov_base = g_bdev_mgr.zero_buffer;
bdev_io->u.bdev.iov.iov_len = len;
bdev_io->u.bdev.iovs = &bdev_io->u.bdev.iov;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.num_blocks = len / spdk_bdev_get_block_size(bdev);
bdev_io->split_remaining_num_blocks = num_blocks - bdev_io->u.bdev.num_blocks;
bdev_io->split_current_offset_blocks = offset_blocks + bdev_io->u.bdev.num_blocks;
}
if (split_request) {
bdev_io->stored_user_cb = cb;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, spdk_bdev_write_zeroes_split);
} else {
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
}
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
if (num_blocks == 0) {
SPDK_ERRLOG("Can't unmap 0 bytes\n");
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed duing unmap\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP;
bdev_io->u.bdev.iov.iov_base = NULL;
bdev_io->u.bdev.iov.iov_len = 0;
bdev_io->u.bdev.iovs = &bdev_io->u.bdev.iov;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t length,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, length, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed duing flush\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH;
bdev_io->u.bdev.iovs = NULL;
bdev_io->u.bdev.iovcnt = 0;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
static void
_spdk_bdev_reset_dev(struct spdk_io_channel_iter *i, int status)
{
struct spdk_bdev_channel *ch = spdk_io_channel_iter_get_ctx(i);
struct spdk_bdev_io *bdev_io;
bdev_io = TAILQ_FIRST(&ch->queued_resets);
TAILQ_REMOVE(&ch->queued_resets, bdev_io, link);
spdk_bdev_io_submit_reset(bdev_io);
}
static void
_spdk_bdev_reset_freeze_channel(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_channel;
struct spdk_bdev_module_channel *shared_ch;
ch = spdk_io_channel_iter_get_channel(i);
channel = spdk_io_channel_get_ctx(ch);
mgmt_channel = spdk_io_channel_get_ctx(channel->mgmt_channel);
shared_ch = channel->module_ch;
channel->flags |= BDEV_CH_RESET_IN_PROGRESS;
_spdk_bdev_abort_queued_io(&shared_ch->nomem_io, channel);
_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_small, channel);
_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_large, channel);
spdk_for_each_channel_continue(i, 0);
}
static void
_spdk_bdev_start_reset(void *ctx)
{
struct spdk_bdev_channel *ch = ctx;
spdk_for_each_channel(ch->bdev, _spdk_bdev_reset_freeze_channel,
ch, _spdk_bdev_reset_dev);
}
static void
_spdk_bdev_channel_start_reset(struct spdk_bdev_channel *ch)
{
struct spdk_bdev *bdev = ch->bdev;
assert(!TAILQ_EMPTY(&ch->queued_resets));
pthread_mutex_lock(&bdev->mutex);
if (bdev->reset_in_progress == NULL) {
bdev->reset_in_progress = TAILQ_FIRST(&ch->queued_resets);
/*
* Take a channel reference for the target bdev for the life of this
* reset. This guards against the channel getting destroyed while
* spdk_for_each_channel() calls related to this reset IO are in
* progress. We will release the reference when this reset is
* completed.
*/
bdev->reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(bdev);
_spdk_bdev_start_reset(ch);
}
pthread_mutex_unlock(&bdev->mutex);
}
int
spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed duing reset\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_RESET;
bdev_io->u.reset.ch_ref = NULL;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
pthread_mutex_lock(&bdev->mutex);
TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, link);
pthread_mutex_unlock(&bdev->mutex);
_spdk_bdev_channel_start_reset(channel);
return 0;
}
void
spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
struct spdk_bdev_io_stat *stat)
{
#ifdef SPDK_CONFIG_VTUNE
SPDK_ERRLOG("Calling spdk_bdev_get_io_stat is not allowed when VTune integration is enabled.\n");
memset(stat, 0, sizeof(*stat));
return;
#endif
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
channel->stat.ticks_rate = spdk_get_ticks_hz();
*stat = channel->stat;
memset(&channel->stat, 0, sizeof(channel->stat));
}
int
spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed during nvme_admin_passthru\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = NULL;
bdev_io->u.nvme_passthru.md_len = 0;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
/*
* Do not try to parse the NVMe command - we could maybe use bits in the opcode
* to easily determine if the command is a read or write, but for now just
* do not allow io_passthru with a read-only descriptor.
*/
return -EBADF;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed during nvme_admin_passthru\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = NULL;
bdev_io->u.nvme_passthru.md_len = 0;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
/*
* Do not try to parse the NVMe command - we could maybe use bits in the opcode
* to easily determine if the command is a read or write, but for now just
* do not allow io_passthru with a read-only descriptor.
*/
return -EBADF;
}
bdev_io = spdk_bdev_get_io(channel->mgmt_channel);
if (!bdev_io) {
SPDK_ERRLOG("bdev_io memory allocation failed during nvme_admin_passthru\n");
return -ENOMEM;
}
bdev_io->ch = channel;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = md_buf;
bdev_io->u.nvme_passthru.md_len = md_len;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_free_io(struct spdk_bdev_io *bdev_io)
{
if (!bdev_io) {
SPDK_ERRLOG("bdev_io is NULL\n");
return -1;
}
if (bdev_io->status == SPDK_BDEV_IO_STATUS_PENDING) {
SPDK_ERRLOG("bdev_io is in pending state\n");
assert(false);
return -1;
}
spdk_bdev_put_io(bdev_io);
return 0;
}
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
static void
_spdk_bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch)
{
struct spdk_bdev *bdev = bdev_ch->bdev;
struct spdk_bdev_module_channel *shared_ch = bdev_ch->module_ch;
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
struct spdk_bdev_io *bdev_io;
if (shared_ch->io_outstanding > shared_ch->nomem_threshold) {
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
/*
* Allow some more I/O to complete before retrying the nomem_io queue.
* Some drivers (such as nvme) cannot immediately take a new I/O in
* the context of a completion, because the resources for the I/O are
* not released until control returns to the bdev poller. Also, we
* may require several small I/O to complete before a larger I/O
* (that requires splitting) can be submitted.
*/
return;
}
while (!TAILQ_EMPTY(&shared_ch->nomem_io)) {
bdev_io = TAILQ_FIRST(&shared_ch->nomem_io);
TAILQ_REMOVE(&shared_ch->nomem_io, bdev_io, link);
shared_ch->io_outstanding++;
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
bdev_io->status = SPDK_BDEV_IO_STATUS_PENDING;
bdev->fn_table->submit_request(bdev_io->ch->channel, bdev_io);
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
if (bdev_io->status == SPDK_BDEV_IO_STATUS_NOMEM) {
break;
}
}
}
static void
_spdk_bdev_io_complete(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
assert(bdev_io->cb != NULL);
bdev_io->cb(bdev_io, bdev_io->status == SPDK_BDEV_IO_STATUS_SUCCESS, bdev_io->caller_ctx);
}
static void
_spdk_bdev_reset_complete(struct spdk_io_channel_iter *i, int status)
{
struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i);
if (bdev_io->u.reset.ch_ref != NULL) {
spdk_put_io_channel(bdev_io->u.reset.ch_ref);
bdev_io->u.reset.ch_ref = NULL;
}
_spdk_bdev_io_complete(bdev_io);
}
static void
_spdk_bdev_unfreeze_channel(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS;
if (!TAILQ_EMPTY(&ch->queued_resets)) {
_spdk_bdev_channel_start_reset(ch);
}
spdk_for_each_channel_continue(i, 0);
}
void
spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->ch;
struct spdk_bdev_module_channel *shared_ch = bdev_ch->module_ch;
bdev_io->status = status;
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) {
bool unlock_channels = false;
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
if (status == SPDK_BDEV_IO_STATUS_NOMEM) {
SPDK_ERRLOG("NOMEM returned for reset\n");
}
pthread_mutex_lock(&bdev->mutex);
if (bdev_io == bdev->reset_in_progress) {
bdev->reset_in_progress = NULL;
unlock_channels = true;
}
pthread_mutex_unlock(&bdev->mutex);
if (unlock_channels) {
spdk_for_each_channel(bdev, _spdk_bdev_unfreeze_channel, bdev_io,
_spdk_bdev_reset_complete);
return;
}
} else {
assert(shared_ch->io_outstanding > 0);
shared_ch->io_outstanding--;
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
if (spdk_likely(status != SPDK_BDEV_IO_STATUS_NOMEM)) {
if (spdk_unlikely(!TAILQ_EMPTY(&shared_ch->nomem_io))) {
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
_spdk_bdev_ch_retry_io(bdev_ch);
}
} else {
TAILQ_INSERT_HEAD(&shared_ch->nomem_io, bdev_io, link);
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
/*
* Wait for some of the outstanding I/O to complete before we
* retry any of the nomem_io. Normally we will wait for
* NOMEM_THRESHOLD_COUNT I/O to complete but for low queue
* depth channels we will instead wait for half to complete.
*/
shared_ch->nomem_threshold = spdk_max((int64_t)shared_ch->io_outstanding / 2,
(int64_t)shared_ch->io_outstanding - NOMEM_THRESHOLD_COUNT);
bdev: add ENOMEM handling At very high queue depths, bdev modules may not have enough internal resources to track all of the incoming I/O. For example, we allocate a finite number of nvme_request objects per allocated queue pair. Currently if these resources are exhausted, the bdev module will return failure (with no indication why) which gets propagated all the way back to the application. So instead, add SPDK_BDEV_IO_STATUS_NOMEM to allow bdev modules to indicate this type of failure. Also add handling for this status type in the generic bdev layer, involving queuing these I/O for later retry after other I/O on the failing channel have completed. This does place an expectation on the bdev module that these internal resources are allocated per io_channel. Otherwise we cannot guarantee forward progress solely on reception of completions. For example, without this guarantee, a bdev module could theoretically return ENOMEM even if there were no I/O oustanding for that io_channel. nvme, aio, rbd, virtio and null drivers comply with this expectation already. malloc only complies though when not using copy offload. This patch will fix malloc w/ copy engine to at least return ENOMEM when no copy descriptors are available. If the condition above occurs, I/O waiting for resources will get failed as part of a subsequent reset which matches the behavior it has today. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: Iea7cd51a611af8abe882794d0b2361fdbb74e84e Reviewed-on: https://review.gerrithub.io/378853 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2017-09-15 20:47:17 +00:00
return;
}
}
if (status == SPDK_BDEV_IO_STATUS_SUCCESS) {
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
bdev_ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev->blocklen;
bdev_ch->stat.num_read_ops++;
bdev_ch->stat.read_latency_ticks += (spdk_get_ticks() - bdev_io->submit_tsc);
break;
case SPDK_BDEV_IO_TYPE_WRITE:
bdev_ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev->blocklen;
bdev_ch->stat.num_write_ops++;
bdev_ch->stat.write_latency_ticks += (spdk_get_ticks() - bdev_io->submit_tsc);
break;
default:
break;
}
}
#ifdef SPDK_CONFIG_VTUNE
uint64_t now_tsc = spdk_get_ticks();
if (now_tsc > (bdev_ch->start_tsc + bdev_ch->interval_tsc)) {
uint64_t data[5];
data[0] = bdev_ch->stat.num_read_ops;
data[1] = bdev_ch->stat.bytes_read;
data[2] = bdev_ch->stat.num_write_ops;
data[3] = bdev_ch->stat.bytes_written;
data[4] = bdev->fn_table->get_spin_time ?
bdev->fn_table->get_spin_time(bdev_ch->channel) : 0;
__itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_ch->handle,
__itt_metadata_u64, 5, data);
memset(&bdev_ch->stat, 0, sizeof(bdev_ch->stat));
bdev_ch->start_tsc = now_tsc;
}
#endif
if (bdev_io->in_submit_request) {
/*
* Defer completion to avoid potential infinite recursion if the
* user's completion callback issues a new I/O.
*/
spdk_thread_send_msg(spdk_io_channel_get_thread(bdev_ch->channel),
_spdk_bdev_io_complete, bdev_io);
} else {
_spdk_bdev_io_complete(bdev_io);
}
}
void
spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc,
enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq)
{
if (sc == SPDK_SCSI_STATUS_GOOD) {
bdev_io->status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
bdev_io->status = SPDK_BDEV_IO_STATUS_SCSI_ERROR;
bdev_io->error.scsi.sc = sc;
bdev_io->error.scsi.sk = sk;
bdev_io->error.scsi.asc = asc;
bdev_io->error.scsi.ascq = ascq;
}
spdk_bdev_io_complete(bdev_io, bdev_io->status);
}
void
spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io,
int *sc, int *sk, int *asc, int *ascq)
{
assert(sc != NULL);
assert(sk != NULL);
assert(asc != NULL);
assert(ascq != NULL);
switch (bdev_io->status) {
case SPDK_BDEV_IO_STATUS_SUCCESS:
*sc = SPDK_SCSI_STATUS_GOOD;
*sk = SPDK_SCSI_SENSE_NO_SENSE;
*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
break;
case SPDK_BDEV_IO_STATUS_NVME_ERROR:
spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq);
break;
case SPDK_BDEV_IO_STATUS_SCSI_ERROR:
*sc = bdev_io->error.scsi.sc;
*sk = bdev_io->error.scsi.sk;
*asc = bdev_io->error.scsi.asc;
*ascq = bdev_io->error.scsi.ascq;
break;
default:
*sc = SPDK_SCSI_STATUS_CHECK_CONDITION;
*sk = SPDK_SCSI_SENSE_ABORTED_COMMAND;
*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
break;
}
}
void
spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, int sct, int sc)
{
if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) {
bdev_io->status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
bdev_io->error.nvme.sct = sct;
bdev_io->error.nvme.sc = sc;
bdev_io->status = SPDK_BDEV_IO_STATUS_NVME_ERROR;
}
spdk_bdev_io_complete(bdev_io, bdev_io->status);
}
void
spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, int *sct, int *sc)
{
assert(sct != NULL);
assert(sc != NULL);
if (bdev_io->status == SPDK_BDEV_IO_STATUS_NVME_ERROR) {
*sct = bdev_io->error.nvme.sct;
*sc = bdev_io->error.nvme.sc;
} else if (bdev_io->status == SPDK_BDEV_IO_STATUS_SUCCESS) {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_SUCCESS;
} else {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
struct spdk_thread *
spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io)
{
return spdk_io_channel_get_thread(bdev_io->ch->channel);
}
static int
_spdk_bdev_register(struct spdk_bdev *bdev)
{
struct spdk_bdev_module_if *module;
assert(bdev->module != NULL);
if (!bdev->name) {
SPDK_ERRLOG("Bdev name is NULL\n");
return -EINVAL;
}
if (spdk_bdev_get_by_name(bdev->name)) {
SPDK_ERRLOG("Bdev name:%s already exists\n", bdev->name);
return -EEXIST;
}
bdev->status = SPDK_BDEV_STATUS_READY;
TAILQ_INIT(&bdev->open_descs);
TAILQ_INIT(&bdev->vbdevs);
TAILQ_INIT(&bdev->base_bdevs);
TAILQ_INIT(&bdev->aliases);
bdev->reset_in_progress = NULL;
spdk_io_device_register(bdev, spdk_bdev_channel_create, spdk_bdev_channel_destroy,
sizeof(struct spdk_bdev_channel));
pthread_mutex_init(&bdev->mutex, NULL);
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Inserting bdev %s into list\n", bdev->name);
TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, link);
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, tailq) {
if (module->examine) {
module->action_in_progress++;
module->examine(bdev);
}
}
return 0;
}
int
spdk_bdev_register(struct spdk_bdev *bdev)
{
return _spdk_bdev_register(bdev);
}
int
spdk_vbdev_register(struct spdk_bdev *vbdev, struct spdk_bdev **base_bdevs, int base_bdev_count)
{
int i, rc;
rc = _spdk_bdev_register(vbdev);
if (rc) {
return rc;
}
for (i = 0; i < base_bdev_count; i++) {
assert(base_bdevs[i] != NULL);
TAILQ_INSERT_TAIL(&vbdev->base_bdevs, base_bdevs[i], base_bdev_link);
TAILQ_INSERT_TAIL(&base_bdevs[i]->vbdevs, vbdev, vbdev_link);
}
return 0;
}
void
spdk_bdev_unregister_done(struct spdk_bdev *bdev, int bdeverrno)
{
if (bdev->unregister_cb != NULL) {
bdev->unregister_cb(bdev->unregister_ctx, bdeverrno);
}
}
void
spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg)
{
struct spdk_bdev_desc *desc, *tmp;
int rc;
bool do_destruct = true;
struct spdk_bdev *base_bdev;
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Removing bdev %s from list\n", bdev->name);
pthread_mutex_lock(&bdev->mutex);
if (!TAILQ_EMPTY(&bdev->base_bdevs)) {
TAILQ_FOREACH(base_bdev, &bdev->base_bdevs, base_bdev_link) {
TAILQ_REMOVE(&base_bdev->vbdevs, bdev, vbdev_link);
}
}
bdev->status = SPDK_BDEV_STATUS_REMOVING;
bdev->unregister_cb = cb_fn;
bdev->unregister_ctx = cb_arg;
TAILQ_FOREACH_SAFE(desc, &bdev->open_descs, link, tmp) {
if (desc->remove_cb) {
pthread_mutex_unlock(&bdev->mutex);
do_destruct = false;
desc->remove_cb(desc->remove_ctx);
pthread_mutex_lock(&bdev->mutex);
}
}
if (!do_destruct) {
pthread_mutex_unlock(&bdev->mutex);
return;
}
TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, link);
pthread_mutex_unlock(&bdev->mutex);
pthread_mutex_destroy(&bdev->mutex);
spdk_io_device_unregister(bdev, NULL);
rc = bdev->fn_table->destruct(bdev->ctxt);
if (rc < 0) {
SPDK_ERRLOG("destruct failed\n");
}
if (rc <= 0 && cb_fn != NULL) {
cb_fn(cb_arg, rc);
}
}
int
spdk_bdev_open(struct spdk_bdev *bdev, bool write, spdk_bdev_remove_cb_t remove_cb,
void *remove_ctx, struct spdk_bdev_desc **_desc)
{
struct spdk_bdev_desc *desc;
desc = calloc(1, sizeof(*desc));
if (desc == NULL) {
SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n");
return -ENOMEM;
}
pthread_mutex_lock(&bdev->mutex);
if (write && bdev->claim_module) {
SPDK_INFOLOG(SPDK_LOG_BDEV, "Could not open %s - already claimed\n", bdev->name);
free(desc);
pthread_mutex_unlock(&bdev->mutex);
return -EPERM;
}
TAILQ_INSERT_TAIL(&bdev->open_descs, desc, link);
desc->bdev = bdev;
desc->remove_cb = remove_cb;
desc->remove_ctx = remove_ctx;
desc->write = write;
*_desc = desc;
pthread_mutex_unlock(&bdev->mutex);
return 0;
}
void
spdk_bdev_close(struct spdk_bdev_desc *desc)
{
struct spdk_bdev *bdev = desc->bdev;
bool do_unregister = false;
pthread_mutex_lock(&bdev->mutex);
TAILQ_REMOVE(&bdev->open_descs, desc, link);
free(desc);
if (bdev->status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->open_descs)) {
do_unregister = true;
}
pthread_mutex_unlock(&bdev->mutex);
if (do_unregister == true) {
spdk_bdev_unregister(bdev, bdev->unregister_cb, bdev->unregister_ctx);
}
}
int
spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
struct spdk_bdev_module_if *module)
{
if (bdev->claim_module != NULL) {
SPDK_ERRLOG("bdev %s already claimed by module %s\n", bdev->name,
bdev->claim_module->name);
return -EPERM;
}
if (desc && !desc->write) {
desc->write = true;
}
bdev->claim_module = module;
return 0;
}
void
spdk_bdev_module_release_bdev(struct spdk_bdev *bdev)
{
assert(bdev->claim_module != NULL);
bdev->claim_module = NULL;
}
struct spdk_bdev *
spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc)
{
return desc->bdev;
}
void
spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp)
{
struct iovec *iovs;
int iovcnt;
if (bdev_io == NULL) {
return;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
iovs = bdev_io->u.bdev.iovs;
iovcnt = bdev_io->u.bdev.iovcnt;
break;
case SPDK_BDEV_IO_TYPE_WRITE:
iovs = bdev_io->u.bdev.iovs;
iovcnt = bdev_io->u.bdev.iovcnt;
break;
default:
iovs = NULL;
iovcnt = 0;
break;
}
if (iovp) {
*iovp = iovs;
}
if (iovcntp) {
*iovcntp = iovcnt;
}
}
void
spdk_bdev_module_list_add(struct spdk_bdev_module_if *bdev_module)
{
/*
* Modules with examine callbacks must be initialized first, so they are
* ready to handle examine callbacks from later modules that will
* register physical bdevs.
*/
if (bdev_module->examine != NULL) {
TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, tailq);
} else {
TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, tailq);
}
}
void
spdk_bdev_part_base_free(struct spdk_bdev_part_base *base)
{
if (base->desc) {
spdk_bdev_close(base->desc);
base->desc = NULL;
}
base->base_free_fn(base);
}
void
spdk_bdev_part_free(struct spdk_bdev_part *part)
{
struct spdk_bdev_part_base *base;
assert(part);
assert(part->base);
base = part->base;
spdk_io_device_unregister(&part->base, NULL);
TAILQ_REMOVE(base->tailq, part, tailq);
free(part->bdev.name);
free(part);
if (__sync_sub_and_fetch(&base->ref, 1) == 0) {
spdk_bdev_module_release_bdev(base->bdev);
spdk_bdev_part_base_free(base);
}
}
void
spdk_bdev_part_base_hotremove(struct spdk_bdev *base_bdev, struct bdev_part_tailq *tailq)
{
struct spdk_bdev_part *part, *tmp;
TAILQ_FOREACH_SAFE(part, tailq, tailq, tmp) {
if (part->base->bdev == base_bdev) {
spdk_bdev_unregister(&part->bdev, NULL, NULL);
}
}
}
static bool
spdk_bdev_part_io_type_supported(void *_part, enum spdk_bdev_io_type io_type)
{
struct spdk_bdev_part *part = _part;
return part->base->bdev->fn_table->io_type_supported(part->base->bdev, io_type);
}
static struct spdk_io_channel *
spdk_bdev_part_get_io_channel(void *_part)
{
struct spdk_bdev_part *part = _part;
return spdk_get_io_channel(&part->base);
}
static void
spdk_bdev_part_complete_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *part_io = cb_arg;
int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
spdk_bdev_io_complete(part_io, status);
spdk_bdev_free_io(bdev_io);
}
static void
spdk_bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
uint64_t len;
if (!success) {
bdev_io->cb = bdev_io->stored_user_cb;
_spdk_bdev_io_complete(bdev_io);
return;
}
/* no need to perform the error checking from write_zeroes_blocks because this request already passed those checks. */
len = spdk_min(spdk_bdev_get_block_size(bdev_io->bdev) * bdev_io->split_remaining_num_blocks,
ZERO_BUFFER_SIZE);
bdev_io->u.bdev.offset_blocks = bdev_io->split_current_offset_blocks;
bdev_io->u.bdev.iov.iov_len = len;
bdev_io->u.bdev.num_blocks = len / spdk_bdev_get_block_size(bdev_io->bdev);
bdev_io->split_remaining_num_blocks -= bdev_io->u.bdev.num_blocks;
bdev_io->split_current_offset_blocks += bdev_io->u.bdev.num_blocks;
/* if this round completes the i/o, change the callback to be the original user callback */
if (bdev_io->split_remaining_num_blocks == 0) {
spdk_bdev_io_init(bdev_io, bdev_io->bdev, cb_arg, bdev_io->stored_user_cb);
} else {
spdk_bdev_io_init(bdev_io, bdev_io->bdev, cb_arg, spdk_bdev_write_zeroes_split);
}
spdk_bdev_io_submit(bdev_io);
}
void
spdk_bdev_part_submit_request(struct spdk_bdev_part_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_part *part = ch->part;
struct spdk_io_channel *base_ch = ch->base_ch;
struct spdk_bdev_desc *base_desc = part->base->desc;
uint64_t offset;
int rc = 0;
/* Modify the I/O to adjust for the offset within the base bdev. */
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
offset = bdev_io->u.bdev.offset_blocks + part->offset_blocks;
rc = spdk_bdev_readv_blocks(base_desc, base_ch, bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt, offset,
bdev_io->u.bdev.num_blocks, spdk_bdev_part_complete_io,
bdev_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE:
offset = bdev_io->u.bdev.offset_blocks + part->offset_blocks;
rc = spdk_bdev_writev_blocks(base_desc, base_ch, bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt, offset,
bdev_io->u.bdev.num_blocks, spdk_bdev_part_complete_io,
bdev_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
offset = bdev_io->u.bdev.offset_blocks + part->offset_blocks;
rc = spdk_bdev_write_zeroes_blocks(base_desc, base_ch, offset, bdev_io->u.bdev.num_blocks,
spdk_bdev_part_complete_io, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
offset = bdev_io->u.bdev.offset_blocks + part->offset_blocks;
rc = spdk_bdev_unmap_blocks(base_desc, base_ch, offset, bdev_io->u.bdev.num_blocks,
spdk_bdev_part_complete_io, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_FLUSH:
offset = bdev_io->u.bdev.offset_blocks + part->offset_blocks;
rc = spdk_bdev_flush_blocks(base_desc, base_ch, offset, bdev_io->u.bdev.num_blocks,
spdk_bdev_part_complete_io, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_RESET:
rc = spdk_bdev_reset(base_desc, base_ch,
spdk_bdev_part_complete_io, bdev_io);
break;
default:
SPDK_ERRLOG("split: unknown I/O type %d\n", bdev_io->type);
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
if (rc != 0) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static int
spdk_bdev_part_channel_create_cb(void *io_device, void *ctx_buf)
{
struct spdk_bdev_part *part = SPDK_CONTAINEROF(io_device, struct spdk_bdev_part, base);
struct spdk_bdev_part_channel *ch = ctx_buf;
ch->part = part;
ch->base_ch = spdk_bdev_get_io_channel(part->base->desc);
if (ch->base_ch == NULL) {
return -1;
}
if (part->base->ch_create_cb) {
return part->base->ch_create_cb(io_device, ctx_buf);
} else {
return 0;
}
}
static void
spdk_bdev_part_channel_destroy_cb(void *io_device, void *ctx_buf)
{
struct spdk_bdev_part *part = SPDK_CONTAINEROF(io_device, struct spdk_bdev_part, base);
struct spdk_bdev_part_channel *ch = ctx_buf;
if (part->base->ch_destroy_cb) {
part->base->ch_destroy_cb(io_device, ctx_buf);
}
spdk_put_io_channel(ch->base_ch);
}
int
spdk_bdev_part_base_construct(struct spdk_bdev_part_base *base, struct spdk_bdev *bdev,
spdk_bdev_remove_cb_t remove_cb, struct spdk_bdev_module_if *module,
struct spdk_bdev_fn_table *fn_table, struct bdev_part_tailq *tailq,
spdk_bdev_part_base_free_fn free_fn,
uint32_t channel_size, spdk_io_channel_create_cb ch_create_cb,
spdk_io_channel_destroy_cb ch_destroy_cb)
{
int rc;
fn_table->get_io_channel = spdk_bdev_part_get_io_channel;
fn_table->io_type_supported = spdk_bdev_part_io_type_supported;
base->bdev = bdev;
base->desc = NULL;
base->ref = 0;
base->module = module;
base->fn_table = fn_table;
base->tailq = tailq;
base->claimed = false;
base->channel_size = channel_size;
base->ch_create_cb = ch_create_cb;
base->ch_destroy_cb = ch_destroy_cb;
base->base_free_fn = free_fn;
rc = spdk_bdev_open(bdev, false, remove_cb, bdev, &base->desc);
if (rc) {
spdk_bdev_part_base_free(base);
SPDK_ERRLOG("could not open bdev %s\n", spdk_bdev_get_name(bdev));
return -1;
}
return 0;
}
int
spdk_bdev_part_construct(struct spdk_bdev_part *part, struct spdk_bdev_part_base *base,
char *name, uint64_t offset_blocks, uint64_t num_blocks,
char *product_name)
{
part->bdev.name = name;
part->bdev.blocklen = base->bdev->blocklen;
part->bdev.blockcnt = num_blocks;
part->offset_blocks = offset_blocks;
part->bdev.write_cache = base->bdev->write_cache;
part->bdev.need_aligned_buffer = base->bdev->need_aligned_buffer;
part->bdev.product_name = product_name;
part->bdev.ctxt = part;
part->bdev.module = base->module;
part->bdev.fn_table = base->fn_table;
__sync_fetch_and_add(&base->ref, 1);
part->base = base;
if (!base->claimed) {
int rc;
rc = spdk_bdev_module_claim_bdev(base->bdev, base->desc, base->module);
if (rc) {
SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(base->bdev));
free(part->bdev.name);
return -1;
}
base->claimed = true;
}
spdk_io_device_register(&part->base, spdk_bdev_part_channel_create_cb,
spdk_bdev_part_channel_destroy_cb,
base->channel_size);
spdk_vbdev_register(&part->bdev, &base->bdev, 1);
TAILQ_INSERT_TAIL(base->tailq, part, tailq);
return 0;
}
SPDK_LOG_REGISTER_COMPONENT("bdev", SPDK_LOG_BDEV)