numam-spdk/lib/nvme/nvme_rdma.c

2853 lines
77 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over RDMA transport
*/
#include "spdk/stdinc.h"
#include "spdk/assert.h"
#include "spdk/log.h"
#include "spdk/trace.h"
#include "spdk/queue.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/endian.h"
#include "spdk/likely.h"
#include "spdk/config.h"
#include "nvme_internal.h"
#include "spdk_internal/rdma.h"
#define NVME_RDMA_TIME_OUT_IN_MS 2000
#define NVME_RDMA_RW_BUFFER_SIZE 131072
/*
* NVME RDMA qpair Resource Defaults
*/
#define NVME_RDMA_DEFAULT_TX_SGE 2
#define NVME_RDMA_DEFAULT_RX_SGE 1
/* Max number of NVMe-oF SGL descriptors supported by the host */
#define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
/* number of STAILQ entries for holding pending RDMA CM events. */
#define NVME_RDMA_NUM_CM_EVENTS 256
/* CM event processing timeout */
#define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000
/* The default size for a shared rdma completion queue. */
#define DEFAULT_NVME_RDMA_CQ_SIZE 4096
/*
* In the special case of a stale connection we don't expose a mechanism
* for the user to retry the connection so we need to handle it internally.
*/
#define NVME_RDMA_STALE_CONN_RETRY_MAX 5
#define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000
/*
* Maximum value of transport_retry_count used by RDMA controller
*/
#define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7
/*
* Maximum value of transport_ack_timeout used by RDMA controller
*/
#define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31
/*
* Number of poller cycles to keep a pointer to destroyed qpairs
* in the poll group.
*/
#define NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES 50
/*
* The max length of keyed SGL data block (3 bytes)
*/
#define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
#define WC_PER_QPAIR(queue_depth) (queue_depth * 2)
enum nvme_rdma_wr_type {
RDMA_WR_TYPE_RECV,
RDMA_WR_TYPE_SEND,
};
struct nvme_rdma_wr {
/* Using this instead of the enum allows this struct to only occupy one byte. */
uint8_t type;
};
struct spdk_nvmf_cmd {
struct spdk_nvme_cmd cmd;
struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
};
struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
/* Mapping from virtual address to ibv_mr pointer for a protection domain */
struct spdk_nvme_rdma_mr_map {
struct ibv_pd *pd;
struct spdk_mem_map *map;
uint64_t ref;
LIST_ENTRY(spdk_nvme_rdma_mr_map) link;
};
/* STAILQ wrapper for cm events. */
struct nvme_rdma_cm_event_entry {
struct rdma_cm_event *evt;
STAILQ_ENTRY(nvme_rdma_cm_event_entry) link;
};
/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
struct nvme_rdma_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
struct ibv_pd *pd;
uint16_t max_sge;
struct rdma_event_channel *cm_channel;
STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events;
STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events;
struct nvme_rdma_cm_event_entry *cm_events;
};
struct nvme_rdma_destroyed_qpair {
struct nvme_rdma_qpair *destroyed_qpair_tracker;
uint32_t completed_cycles;
STAILQ_ENTRY(nvme_rdma_destroyed_qpair) link;
};
struct nvme_rdma_poller {
struct ibv_context *device;
struct ibv_cq *cq;
int required_num_wc;
int current_num_wc;
STAILQ_ENTRY(nvme_rdma_poller) link;
};
struct nvme_rdma_poll_group {
struct spdk_nvme_transport_poll_group group;
STAILQ_HEAD(, nvme_rdma_poller) pollers;
int num_pollers;
STAILQ_HEAD(, nvme_rdma_destroyed_qpair) destroyed_qpairs;
};
struct spdk_nvme_recv_wr_list {
struct ibv_recv_wr *first;
struct ibv_recv_wr *last;
};
/* Memory regions */
union nvme_rdma_mr {
struct ibv_mr *mr;
uint64_t key;
};
/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
struct nvme_rdma_qpair {
struct spdk_nvme_qpair qpair;
struct spdk_rdma_qp *rdma_qp;
struct rdma_cm_id *cm_id;
struct ibv_cq *cq;
struct spdk_nvme_rdma_req *rdma_reqs;
uint32_t max_send_sge;
uint32_t max_recv_sge;
uint16_t num_entries;
bool delay_cmd_submit;
bool poll_group_disconnect_in_progress;
uint32_t num_completions;
/* Parallel arrays of response buffers + response SGLs of size num_entries */
struct ibv_sge *rsp_sgls;
struct spdk_nvme_rdma_rsp *rsps;
struct ibv_recv_wr *rsp_recv_wrs;
struct spdk_nvme_recv_wr_list recvs_to_post;
/* Memory region describing all rsps for this qpair */
union nvme_rdma_mr rsp_mr;
/*
* Array of num_entries NVMe commands registered as RDMA message buffers.
* Indexed by rdma_req->id.
*/
struct spdk_nvmf_cmd *cmds;
/* Memory region describing all cmds for this qpair */
union nvme_rdma_mr cmd_mr;
struct spdk_nvme_rdma_mr_map *mr_map;
TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
/* Counts of outstanding send and recv objects */
uint16_t current_num_recvs;
uint16_t current_num_sends;
/* Placed at the end of the struct since it is not used frequently */
struct rdma_cm_event *evt;
/* Used by poll group to keep the qpair around until it is ready to remove it. */
bool defer_deletion_to_pg;
};
enum NVME_RDMA_COMPLETION_FLAGS {
NVME_RDMA_SEND_COMPLETED = 1u << 0,
NVME_RDMA_RECV_COMPLETED = 1u << 1,
};
struct spdk_nvme_rdma_req {
uint16_t id;
uint16_t completion_flags: 2;
uint16_t reserved: 14;
/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
* during processing of RDMA_SEND. To complete the request we must know the index
* of nvme_cpl received in RDMA_RECV, so store it in this field */
uint16_t rsp_idx;
struct nvme_rdma_wr rdma_wr;
struct ibv_send_wr send_wr;
struct nvme_request *req;
struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
TAILQ_ENTRY(spdk_nvme_rdma_req) link;
};
enum nvme_rdma_key_type {
NVME_RDMA_MR_RKEY,
NVME_RDMA_MR_LKEY
};
struct spdk_nvme_rdma_rsp {
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair;
uint16_t idx;
struct nvme_rdma_wr rdma_wr;
};
static const char *rdma_cm_event_str[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps);
static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER;
struct nvme_rdma_qpair *nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group,
uint32_t qp_num);
static inline void *
nvme_rdma_calloc(size_t nmemb, size_t size)
{
if (!g_nvme_hooks.get_rkey) {
return calloc(nmemb, size);
} else {
return spdk_zmalloc(nmemb * size, 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
}
}
static inline void
nvme_rdma_free(void *buf)
{
if (!g_nvme_hooks.get_rkey) {
free(buf);
} else {
spdk_free(buf);
}
}
static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
static inline struct nvme_rdma_qpair *
nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
}
static inline struct nvme_rdma_poll_group *
nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
{
return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
}
static inline struct nvme_rdma_ctrlr *
nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
}
static struct spdk_nvme_rdma_req *
nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
if (rdma_req) {
TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
}
return rdma_req;
}
static void
nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
rdma_req->completion_flags = 0;
rdma_req->req = NULL;
TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
}
static void
nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
struct spdk_nvme_cpl *rsp)
{
struct nvme_request *req = rdma_req->req;
struct nvme_rdma_qpair *rqpair;
assert(req != NULL);
rqpair = nvme_rdma_qpair(req->qpair);
TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp);
nvme_free_request(req);
}
static const char *
nvme_rdma_cm_event_str_get(uint32_t event)
{
if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
return rdma_cm_event_str[event];
} else {
return "Undefined";
}
}
static int
nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
{
struct rdma_cm_event *event = rqpair->evt;
struct spdk_nvmf_rdma_accept_private_data *accept_data;
int rc = 0;
if (event) {
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_RESOLVED:
case RDMA_CM_EVENT_ROUTE_ERROR:
break;
case RDMA_CM_EVENT_CONNECT_REQUEST:
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
break;
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
break;
case RDMA_CM_EVENT_CONNECT_RESPONSE:
rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp);
/* fall through */
case RDMA_CM_EVENT_ESTABLISHED:
accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
if (accept_data == NULL) {
rc = -1;
} else {
SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Actually got queue depth %d.\n",
rqpair->num_entries, accept_data->crqsize);
rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);
}
break;
case RDMA_CM_EVENT_DISCONNECTED:
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
break;
case RDMA_CM_EVENT_MULTICAST_JOIN:
case RDMA_CM_EVENT_MULTICAST_ERROR:
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
break;
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
break;
default:
SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
break;
}
rqpair->evt = NULL;
rdma_ack_cm_event(event);
}
return rc;
}
/*
* This function must be called under the nvme controller's lock
* because it touches global controller variables. The lock is taken
* by the generic transport code before invoking a few of the functions
* in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
* and conditionally nvme_rdma_qpair_process_completions when it is calling
* completions on the admin qpair. When adding a new call to this function, please
* verify that it is in a situation where it falls under the lock.
*/
static int
nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
{
struct nvme_rdma_cm_event_entry *entry, *tmp;
struct nvme_rdma_qpair *event_qpair;
struct rdma_cm_event *event;
struct rdma_event_channel *channel = rctrlr->cm_channel;
STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
event_qpair = nvme_rdma_qpair(entry->evt->id->context);
if (event_qpair->evt == NULL) {
event_qpair->evt = entry->evt;
STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
}
}
while (rdma_get_cm_event(channel, &event) == 0) {
event_qpair = nvme_rdma_qpair(event->id->context);
if (event_qpair->evt == NULL) {
event_qpair->evt = event;
} else {
assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
entry = STAILQ_FIRST(&rctrlr->free_cm_events);
if (entry == NULL) {
rdma_ack_cm_event(event);
return -ENOMEM;
}
STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
entry->evt = event;
STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
}
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return 0;
} else {
return errno;
}
}
static int
nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
struct rdma_cm_event *reaped_evt)
{
int rc = -EBADMSG;
if (expected_evt_type == reaped_evt->event) {
return 0;
}
switch (expected_evt_type) {
case RDMA_CM_EVENT_ESTABLISHED:
/*
* There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
* IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
* the same values here.
*/
if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
rc = -ESTALE;
} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
/*
* If we are using a qpair which is not created using rdma cm API
* then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
* RDMA_CM_EVENT_ESTABLISHED.
*/
return 0;
}
break;
default:
break;
}
SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
nvme_rdma_cm_event_str_get(expected_evt_type),
nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
reaped_evt->status);
return rc;
}
static int
nvme_rdma_process_event(struct nvme_rdma_qpair *rqpair,
struct rdma_event_channel *channel,
enum rdma_cm_event_type evt)
{
struct nvme_rdma_ctrlr *rctrlr;
uint64_t timeout_ticks;
int rc = 0, rc2;
if (rqpair->evt != NULL) {
rc = nvme_rdma_qpair_process_cm_event(rqpair);
if (rc) {
return rc;
}
}
timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC +
spdk_get_ticks();
rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
assert(rctrlr != NULL);
while (!rqpair->evt && spdk_get_ticks() < timeout_ticks && rc == 0) {
rc = nvme_rdma_poll_events(rctrlr);
}
if (rc) {
return rc;
}
if (rqpair->evt == NULL) {
return -EADDRNOTAVAIL;
}
rc = nvme_rdma_validate_cm_event(evt, rqpair->evt);
rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
/* bad message takes precedence over the other error codes from processing the event. */
return rc == 0 ? rc2 : rc;
}
static int
nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
{
int rc;
struct spdk_rdma_qp_init_attr attr = {};
struct ibv_device_attr dev_attr;
struct nvme_rdma_ctrlr *rctrlr;
rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
if (rc != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return -1;
}
if (rqpair->qpair.poll_group) {
assert(!rqpair->cq);
rc = nvme_poll_group_connect_qpair(&rqpair->qpair);
if (rc) {
SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
return -1;
}
assert(rqpair->cq);
} else {
rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
if (!rqpair->cq) {
SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
}
rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
if (g_nvme_hooks.get_ibv_pd) {
rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
} else {
rctrlr->pd = NULL;
}
attr.pd = rctrlr->pd;
attr.send_cq = rqpair->cq;
attr.recv_cq = rqpair->cq;
attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr);
if (!rqpair->rdma_qp) {
return -1;
}
/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
rqpair->current_num_recvs = 0;
rqpair->current_num_sends = 0;
rctrlr->pd = rqpair->rdma_qp->qp->pd;
rqpair->cm_id->context = &rqpair->qpair;
return 0;
}
static inline int
nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
{
struct ibv_send_wr *bad_send_wr = NULL;
int rc;
rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
if (spdk_unlikely(rc)) {
SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
rc, spdk_strerror(rc), bad_send_wr);
while (bad_send_wr != NULL) {
assert(rqpair->current_num_sends > 0);
rqpair->current_num_sends--;
bad_send_wr = bad_send_wr->next;
}
return rc;
}
return 0;
}
static inline int
nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
{
struct ibv_recv_wr *bad_recv_wr;
int rc = 0;
if (rqpair->recvs_to_post.first) {
rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->recvs_to_post.first, &bad_recv_wr);
if (spdk_unlikely(rc)) {
SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
rc, spdk_strerror(rc), bad_recv_wr);
while (bad_recv_wr != NULL) {
assert(rqpair->current_num_sends > 0);
rqpair->current_num_recvs--;
bad_recv_wr = bad_recv_wr->next;
}
}
rqpair->recvs_to_post.first = NULL;
}
return rc;
}
/* Append the given send wr structure to the qpair's outstanding sends list. */
/* This function accepts only a single wr. */
static inline int
nvme_rdma_qpair_queue_send_wr(struct nvme_rdma_qpair *rqpair, struct ibv_send_wr *wr)
{
assert(wr->next == NULL);
assert(rqpair->current_num_sends < rqpair->num_entries);
rqpair->current_num_sends++;
spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr);
if (!rqpair->delay_cmd_submit) {
return nvme_rdma_qpair_submit_sends(rqpair);
}
return 0;
}
/* Append the given recv wr structure to the qpair's outstanding recvs list. */
/* This function accepts only a single wr. */
static inline int
nvme_rdma_qpair_queue_recv_wr(struct nvme_rdma_qpair *rqpair, struct ibv_recv_wr *wr)
{
assert(wr->next == NULL);
assert(rqpair->current_num_recvs < rqpair->num_entries);
rqpair->current_num_recvs++;
if (rqpair->recvs_to_post.first == NULL) {
rqpair->recvs_to_post.first = wr;
} else {
rqpair->recvs_to_post.last->next = wr;
}
rqpair->recvs_to_post.last = wr;
if (!rqpair->delay_cmd_submit) {
return nvme_rdma_qpair_submit_recvs(rqpair);
}
return 0;
}
#define nvme_rdma_trace_ibv_sge(sg_list) \
if (sg_list) { \
SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
(void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
}
static int
nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
{
struct ibv_recv_wr *wr;
wr = &rqpair->rsp_recv_wrs[rsp_idx];
wr->next = NULL;
nvme_rdma_trace_ibv_sge(wr->sg_list);
return nvme_rdma_qpair_queue_recv_wr(rqpair, wr);
}
static int
nvme_rdma_reg_mr(struct rdma_cm_id *cm_id, union nvme_rdma_mr *mr, void *mem, size_t length)
{
if (!g_nvme_hooks.get_rkey) {
mr->mr = rdma_reg_msgs(cm_id, mem, length);
if (mr->mr == NULL) {
SPDK_ERRLOG("Unable to register mr: %s (%d)\n",
spdk_strerror(errno), errno);
return -1;
}
} else {
mr->key = g_nvme_hooks.get_rkey(cm_id->pd, mem, length);
}
return 0;
}
static void
nvme_rdma_dereg_mr(union nvme_rdma_mr *mr)
{
if (!g_nvme_hooks.get_rkey) {
if (mr->mr && rdma_dereg_mr(mr->mr)) {
SPDK_ERRLOG("Unable to de-register mr\n");
}
} else {
if (mr->key) {
g_nvme_hooks.put_rkey(mr->key);
}
}
memset(mr, 0, sizeof(*mr));
}
static uint32_t
nvme_rdma_mr_get_lkey(union nvme_rdma_mr *mr)
{
uint32_t lkey;
if (!g_nvme_hooks.get_rkey) {
lkey = mr->mr->lkey;
} else {
lkey = *((uint64_t *) mr->key);
}
return lkey;
}
static void
nvme_rdma_unregister_rsps(struct nvme_rdma_qpair *rqpair)
{
nvme_rdma_dereg_mr(&rqpair->rsp_mr);
}
static void
nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
{
nvme_rdma_free(rqpair->rsps);
rqpair->rsps = NULL;
nvme_rdma_free(rqpair->rsp_sgls);
rqpair->rsp_sgls = NULL;
nvme_rdma_free(rqpair->rsp_recv_wrs);
rqpair->rsp_recv_wrs = NULL;
}
static int
nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
{
rqpair->rsps = NULL;
rqpair->rsp_recv_wrs = NULL;
rqpair->rsp_sgls = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
if (!rqpair->rsp_sgls) {
SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
goto fail;
}
rqpair->rsp_recv_wrs = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_recv_wrs));
if (!rqpair->rsp_recv_wrs) {
SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
goto fail;
}
rqpair->rsps = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
if (!rqpair->rsps) {
SPDK_ERRLOG("can not allocate rdma rsps\n");
goto fail;
}
return 0;
fail:
nvme_rdma_free_rsps(rqpair);
return -ENOMEM;
}
static int
nvme_rdma_register_rsps(struct nvme_rdma_qpair *rqpair)
{
uint16_t i;
int rc;
uint32_t lkey;
rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->rsp_mr,
rqpair->rsps, rqpair->num_entries * sizeof(*rqpair->rsps));
if (rc < 0) {
goto fail;
}
lkey = nvme_rdma_mr_get_lkey(&rqpair->rsp_mr);
for (i = 0; i < rqpair->num_entries; i++) {
struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i];
rsp->rqpair = rqpair;
rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
rsp->idx = i;
rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
rsp_sgl->lkey = lkey;
rqpair->rsp_recv_wrs[i].wr_id = (uint64_t)&rsp->rdma_wr;
rqpair->rsp_recv_wrs[i].next = NULL;
rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
rqpair->rsp_recv_wrs[i].num_sge = 1;
rc = nvme_rdma_post_recv(rqpair, i);
if (rc) {
goto fail;
}
}
rc = nvme_rdma_qpair_submit_recvs(rqpair);
if (rc) {
goto fail;
}
return 0;
fail:
nvme_rdma_unregister_rsps(rqpair);
return rc;
}
static void
nvme_rdma_unregister_reqs(struct nvme_rdma_qpair *rqpair)
{
nvme_rdma_dereg_mr(&rqpair->cmd_mr);
}
static void
nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
{
if (!rqpair->rdma_reqs) {
return;
}
nvme_rdma_free(rqpair->cmds);
rqpair->cmds = NULL;
nvme_rdma_free(rqpair->rdma_reqs);
rqpair->rdma_reqs = NULL;
}
static int
nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
{
uint16_t i;
rqpair->rdma_reqs = nvme_rdma_calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
if (rqpair->rdma_reqs == NULL) {
SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
goto fail;
}
rqpair->cmds = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
if (!rqpair->cmds) {
SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
goto fail;
}
TAILQ_INIT(&rqpair->free_reqs);
TAILQ_INIT(&rqpair->outstanding_reqs);
for (i = 0; i < rqpair->num_entries; i++) {
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvmf_cmd *cmd;
rdma_req = &rqpair->rdma_reqs[i];
rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
cmd = &rqpair->cmds[i];
rdma_req->id = i;
/* The first RDMA sgl element will always point
* at this data structure. Depending on whether
* an NVMe-oF SGL is required, the length of
* this element may change. */
rdma_req->send_sgl[0].addr = (uint64_t)cmd;
rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
rdma_req->send_wr.next = NULL;
rdma_req->send_wr.opcode = IBV_WR_SEND;
rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->send_wr.sg_list = rdma_req->send_sgl;
rdma_req->send_wr.imm_data = 0;
TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
}
return 0;
fail:
nvme_rdma_free_reqs(rqpair);
return -ENOMEM;
}
static int
nvme_rdma_register_reqs(struct nvme_rdma_qpair *rqpair)
{
int i;
int rc;
uint32_t lkey;
rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->cmd_mr,
rqpair->cmds, rqpair->num_entries * sizeof(*rqpair->cmds));
if (rc < 0) {
goto fail;
}
lkey = nvme_rdma_mr_get_lkey(&rqpair->cmd_mr);
for (i = 0; i < rqpair->num_entries; i++) {
rqpair->rdma_reqs[i].send_sgl[0].lkey = lkey;
}
return 0;
fail:
nvme_rdma_unregister_reqs(rqpair);
return -ENOMEM;
}
static int
nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct rdma_event_channel *cm_channel)
{
int ret;
ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
return ret;
}
ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
if (ret) {
SPDK_ERRLOG("RDMA address resolution error\n");
return -1;
}
if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
#ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
RDMA_OPTION_ID_ACK_TIMEOUT,
&timeout, sizeof(timeout));
if (ret) {
SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
}
#else
SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
#endif
}
ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_route\n");
return ret;
}
ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
if (ret) {
SPDK_ERRLOG("RDMA route resolution error\n");
return -1;
}
return 0;
}
static int
nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
{
struct rdma_conn_param param = {};
struct spdk_nvmf_rdma_request_private_data request_data = {};
struct ibv_device_attr attr;
int ret;
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_rdma_ctrlr *rctrlr;
ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
if (ret != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return ret;
}
param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);
ctrlr = rqpair->qpair.ctrlr;
if (!ctrlr) {
return -1;
}
rctrlr = nvme_rdma_ctrlr(ctrlr);
assert(rctrlr != NULL);
request_data.qid = rqpair->qpair.id;
request_data.hrqsize = rqpair->num_entries;
request_data.hsqsize = rqpair->num_entries - 1;
request_data.cntlid = ctrlr->cntlid;
param.private_data = &request_data;
param.private_data_len = sizeof(request_data);
param.retry_count = ctrlr->opts.transport_retry_count;
param.rnr_retry_count = 7;
/* Fields below are ignored by rdma cm if qpair has been
* created using rdma cm API. */
param.srq = 0;
param.qp_num = rqpair->rdma_qp->qp->qp_num;
ret = rdma_connect(rqpair->cm_id, &param);
if (ret) {
SPDK_ERRLOG("nvme rdma connect error\n");
return ret;
}
ret = nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
if (ret == -ESTALE) {
SPDK_NOTICELOG("Received a stale connection notice during connection.\n");
return -EAGAIN;
} else if (ret) {
SPDK_ERRLOG("RDMA connect error %d\n", ret);
return ret;
} else {
return 0;
}
}
static int
nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
return ret;
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static int
nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t size)
{
struct ibv_pd *pd = cb_ctx;
struct ibv_mr *mr;
int rc;
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (!g_nvme_hooks.get_rkey) {
mr = ibv_reg_mr(pd, vaddr, size,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);
if (mr == NULL) {
SPDK_ERRLOG("ibv_reg_mr() failed\n");
return -EFAULT;
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
}
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
g_nvme_hooks.get_rkey(pd, vaddr, size));
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
if (!g_nvme_hooks.get_rkey) {
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
if (mr) {
ibv_dereg_mr(mr);
}
}
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
break;
default:
SPDK_UNREACHABLE();
}
return rc;
}
static int
nvme_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
{
/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
return addr_1 == addr_2;
}
static int
nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair)
{
struct ibv_pd *pd = rqpair->rdma_qp->qp->pd;
struct spdk_nvme_rdma_mr_map *mr_map;
const struct spdk_mem_map_ops nvme_rdma_map_ops = {
.notify_cb = nvme_rdma_mr_map_notify,
.are_contiguous = nvme_rdma_check_contiguous_entries
};
pthread_mutex_lock(&g_rdma_mr_maps_mutex);
/* Look up existing mem map registration for this pd */
LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) {
if (mr_map->pd == pd) {
mr_map->ref++;
rqpair->mr_map = mr_map;
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return 0;
}
}
mr_map = nvme_rdma_calloc(1, sizeof(*mr_map));
if (mr_map == NULL) {
SPDK_ERRLOG("Failed to allocate mr_map\n");
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return -1;
}
mr_map->ref = 1;
mr_map->pd = pd;
mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd);
if (mr_map->map == NULL) {
SPDK_ERRLOG("spdk_mem_map_alloc() failed\n");
nvme_rdma_free(mr_map);
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return -1;
}
rqpair->mr_map = mr_map;
LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link);
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return 0;
}
static void
nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_mr_map *mr_map;
mr_map = rqpair->mr_map;
rqpair->mr_map = NULL;
if (mr_map == NULL) {
return;
}
pthread_mutex_lock(&g_rdma_mr_maps_mutex);
assert(mr_map->ref > 0);
mr_map->ref--;
if (mr_map->ref == 0) {
LIST_REMOVE(mr_map, link);
spdk_mem_map_free(&mr_map->map);
nvme_rdma_free(mr_map);
}
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
}
static int
_nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct sockaddr_storage dst_addr;
struct sockaddr_storage src_addr;
bool src_addr_specified;
int rc;
struct nvme_rdma_ctrlr *rctrlr;
struct nvme_rdma_qpair *rqpair;
int family;
rqpair = nvme_rdma_qpair(qpair);
rctrlr = nvme_rdma_ctrlr(ctrlr);
assert(rctrlr != NULL);
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
return -1;
}
SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&dst_addr, 0, sizeof(dst_addr));
SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
memset(&src_addr, 0, sizeof(src_addr));
rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
if (rc != 0) {
SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
src_addr_specified = true;
} else {
src_addr_specified = false;
}
rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
return -1;
}
rc = nvme_rdma_resolve_addr(rqpair,
src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
(struct sockaddr *)&dst_addr, rctrlr->cm_channel);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
return -1;
}
rc = nvme_rdma_qpair_init(rqpair);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
return -1;
}
rc = nvme_rdma_connect(rqpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect the rqpair\n");
return rc;
}
rc = nvme_rdma_register_reqs(rqpair);
SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
if (rc) {
SPDK_ERRLOG("Unable to register rqpair RDMA requests\n");
return -1;
}
SPDK_DEBUGLOG(nvme, "RDMA requests registered\n");
rc = nvme_rdma_register_rsps(rqpair);
SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
if (rc < 0) {
SPDK_ERRLOG("Unable to register rqpair RDMA responses\n");
return -1;
}
SPDK_DEBUGLOG(nvme, "RDMA responses registered\n");
rc = nvme_rdma_register_mem(rqpair);
if (rc < 0) {
SPDK_ERRLOG("Unable to register memory for RDMA\n");
return -1;
}
rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries);
if (rc < 0) {
rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
return rc;
}
return 0;
}
static int
nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
int rc;
int retry_count = 0;
rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair);
/*
* -EAGAIN represents the special case where the target side still thought it was connected.
* Most NICs will fail the first connection attempt, and the NICs will clean up whatever
* state they need to. After that, subsequent connection attempts will succeed.
*/
if (rc == -EAGAIN) {
SPDK_NOTICELOG("Detected stale connection on Target side for qpid: %d\n", qpair->id);
do {
nvme_delay(NVME_RDMA_STALE_CONN_RETRY_DELAY_US);
nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair);
retry_count++;
} while (rc == -EAGAIN && retry_count < NVME_RDMA_STALE_CONN_RETRY_MAX);
}
return rc;
}
/*
* Build SGL describing empty payload.
*/
static int
nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
/* The RDMA SGL needs one element describing the NVMe command. */
rdma_req->send_wr.num_sge = 1;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = 0;
req->cmd.dptr.sgl1.keyed.key = 0;
req->cmd.dptr.sgl1.address = 0;
return 0;
}
static inline bool
nvme_rdma_get_key(struct spdk_mem_map *map, void *payload, uint64_t size,
enum nvme_rdma_key_type key_type, uint32_t *key)
{
struct ibv_mr *mr;
uint64_t real_size = size;
uint32_t _key = 0;
if (!g_nvme_hooks.get_rkey) {
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)payload, &real_size);
if (spdk_unlikely(!mr)) {
SPDK_ERRLOG("No translation for ptr %p, size %lu\n", payload, size);
return false;
}
switch (key_type) {
case NVME_RDMA_MR_RKEY:
_key = mr->rkey;
break;
case NVME_RDMA_MR_LKEY:
_key = mr->lkey;
break;
default:
SPDK_ERRLOG("Invalid key type %d\n", key_type);
assert(0);
return false;
}
} else {
_key = spdk_mem_map_translate(map, (uint64_t)payload, &real_size);
}
if (spdk_unlikely(real_size < size)) {
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
return false;
}
*key = _key;
return true;
}
/*
* Build inline SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
uint32_t lkey = 0;
void *payload;
payload = req->payload.contig_or_cb_arg + req->payload_offset;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, payload, req->payload_size,
NVME_RDMA_MR_LKEY, &lkey))) {
return -1;
}
rdma_req->send_sgl[1].lkey = lkey;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
rdma_req->send_sgl[1].addr = (uint64_t)payload;
rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
/* The RDMA SGL contains two elements. The first describes
* the NVMe command and the second describes the data
* payload. */
rdma_req->send_wr.num_sge = 2;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
/* Inline only supported for icdoff == 0 currently. This function will
* not get called for controllers with other values. */
req->cmd.dptr.sgl1.address = (uint64_t)0;
return 0;
}
/*
* Build SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
void *payload = req->payload.contig_or_cb_arg + req->payload_offset;
uint32_t rkey = 0;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
return -1;
}
if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, payload, req->payload_size,
NVME_RDMA_MR_RKEY, &rkey))) {
return -1;
}
req->cmd.dptr.sgl1.keyed.key = rkey;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
/* The RDMA SGL needs one element describing the NVMe command. */
rdma_req->send_wr.num_sge = 1;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = req->payload_size;
req->cmd.dptr.sgl1.address = (uint64_t)payload;
return 0;
}
/*
* Build SGL describing scattered payload buffer.
*/
static int
nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
void *virt_addr;
uint32_t remaining_size;
uint32_t sge_length;
int rc, max_num_sgl, num_sgl_desc;
uint32_t rkey = 0;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
max_num_sgl = req->qpair->ctrlr->max_sges;
remaining_size = req->payload_size;
num_sgl_desc = 0;
do {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length);
if (rc) {
return -1;
}
sge_length = spdk_min(remaining_size, sge_length);
if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
return -1;
}
if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, virt_addr, sge_length,
NVME_RDMA_MR_RKEY, &rkey))) {
return -1;
}
cmd->sgl[num_sgl_desc].keyed.key = rkey;
cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
cmd->sgl[num_sgl_desc].keyed.length = sge_length;
cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr;
remaining_size -= sge_length;
num_sgl_desc++;
} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
if (remaining_size > 0) {
return -1;
}
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
/* The RDMA SGL needs one element describing some portion
* of the spdk_nvmf_cmd structure. */
rdma_req->send_wr.num_sge = 1;
/*
* If only one SGL descriptor is required, it can be embedded directly in the command
* as a data block descriptor.
*/
if (num_sgl_desc == 1) {
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
} else {
/*
* Otherwise, The SGL descriptor embedded in the command must point to the list of
* SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
*/
uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
return -1;
}
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
req->cmd.dptr.sgl1.address = (uint64_t)0;
}
return 0;
}
/*
* Build inline SGL describing sgl payload buffer.
*/
static int
nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
uint32_t lkey = 0;
uint32_t length;
void *virt_addr;
int rc;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
if (rc) {
return -1;
}
if (length < req->payload_size) {
SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
return nvme_rdma_build_sgl_request(rqpair, rdma_req);
}
if (length > req->payload_size) {
length = req->payload_size;
}
if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, virt_addr, length,
NVME_RDMA_MR_LKEY, &lkey))) {
return -1;
}
rdma_req->send_sgl[1].addr = (uint64_t)virt_addr;
rdma_req->send_sgl[1].length = length;
rdma_req->send_sgl[1].lkey = lkey;
rdma_req->send_wr.num_sge = 2;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
/* Inline only supported for icdoff == 0 currently. This function will
* not get called for controllers with other values. */
req->cmd.dptr.sgl1.address = (uint64_t)0;
return 0;
}
static int
nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
struct spdk_nvme_rdma_req *rdma_req)
{
struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
enum nvme_payload_type payload_type;
bool icd_supported;
int rc;
assert(rdma_req->req == NULL);
rdma_req->req = req;
req->cmd.cid = rdma_req->id;
payload_type = nvme_payload_type(&req->payload);
/*
* Check if icdoff is non zero, to avoid interop conflicts with
* targets with non-zero icdoff. Both SPDK and the Linux kernel
* targets use icdoff = 0. For targets with non-zero icdoff, we
* will currently just not use inline data for now.
*/
icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
if (req->payload_size == 0) {
rc = nvme_rdma_build_null_request(rdma_req);
} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
if (icd_supported) {
rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
} else {
rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
}
} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
if (icd_supported) {
rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
} else {
rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
}
} else {
rc = -1;
}
if (rc) {
rdma_req->req = NULL;
return rc;
}
memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, uint32_t qsize,
enum spdk_nvme_qprio qprio,
uint32_t num_requests,
bool delay_cmd_submit)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_qpair *qpair;
int rc;
rqpair = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_qpair));
if (!rqpair) {
SPDK_ERRLOG("failed to get create rqpair\n");
return NULL;
}
rqpair->num_entries = qsize;
rqpair->delay_cmd_submit = delay_cmd_submit;
qpair = &rqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
if (rc != 0) {
return NULL;
}
rc = nvme_rdma_alloc_reqs(rqpair);
SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
if (rc) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
nvme_rdma_free(rqpair);
return NULL;
}
SPDK_DEBUGLOG(nvme, "RDMA requests allocated\n");
rc = nvme_rdma_alloc_rsps(rqpair);
SPDK_DEBUGLOG(nvme, "rc =%d\n", rc);
if (rc < 0) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free(rqpair);
return NULL;
}
SPDK_DEBUGLOG(nvme, "RDMA responses allocated\n");
return qpair;
}
static void
nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct nvme_rdma_ctrlr *rctrlr = NULL;
struct nvme_rdma_cm_event_entry *entry, *tmp;
nvme_rdma_unregister_mem(rqpair);
nvme_rdma_unregister_reqs(rqpair);
nvme_rdma_unregister_rsps(rqpair);
if (rqpair->evt) {
rdma_ack_cm_event(rqpair->evt);
rqpair->evt = NULL;
}
/*
* This works because we have the controller lock both in
* this function and in the function where we add new events.
*/
if (qpair->ctrlr != NULL) {
rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
if (nvme_rdma_qpair(entry->evt->id->context) == rqpair) {
STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
rdma_ack_cm_event(entry->evt);
STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
}
}
}
if (rqpair->cm_id) {
if (rqpair->rdma_qp) {
spdk_rdma_qp_disconnect(rqpair->rdma_qp);
if (rctrlr != NULL) {
if (nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_DISCONNECTED)) {
SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
}
}
spdk_rdma_qp_destroy(rqpair->rdma_qp);
rqpair->rdma_qp = NULL;
}
rdma_destroy_id(rqpair->cm_id);
rqpair->cm_id = NULL;
}
if (rqpair->cq) {
ibv_destroy_cq(rqpair->cq);
rqpair->cq = NULL;
}
}
static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
static int
nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair;
rqpair = nvme_rdma_qpair(qpair);
nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
if (rqpair->defer_deletion_to_pg) {
nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
return 0;
}
nvme_rdma_qpair_abort_reqs(qpair, 1);
nvme_qpair_deinit(qpair);
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free_rsps(rqpair);
nvme_rdma_free(rqpair);
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
opts->io_queue_requests,
opts->delay_cmd_submit);
}
static int
nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
/* do nothing here */
return 0;
}
static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
static struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_rdma_ctrlr *rctrlr;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
struct ibv_context **contexts;
struct ibv_device_attr dev_attr;
int i, flag, rc;
rctrlr = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_ctrlr));
if (rctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
rctrlr->ctrlr.opts = *opts;
rctrlr->ctrlr.trid = *trid;
if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
}
if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
}
contexts = rdma_get_devices(NULL);
if (contexts == NULL) {
SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
nvme_rdma_free(rctrlr);
return NULL;
}
i = 0;
rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
while (contexts[i] != NULL) {
rc = ibv_query_device(contexts[i], &dev_attr);
if (rc < 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
rdma_free_devices(contexts);
nvme_rdma_free(rctrlr);
return NULL;
}
rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
i++;
}
rdma_free_devices(contexts);
rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
if (rc != 0) {
nvme_rdma_free(rctrlr);
return NULL;
}
STAILQ_INIT(&rctrlr->pending_cm_events);
STAILQ_INIT(&rctrlr->free_cm_events);
rctrlr->cm_events = nvme_rdma_calloc(NVME_RDMA_NUM_CM_EVENTS, sizeof(*rctrlr->cm_events));
if (rctrlr->cm_events == NULL) {
SPDK_ERRLOG("unable to allocat buffers to hold CM events.\n");
goto destruct_ctrlr;
}
for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
}
rctrlr->cm_channel = rdma_create_event_channel();
if (rctrlr->cm_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed\n");
goto destruct_ctrlr;
}
flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
SPDK_ERRLOG("Cannot set event channel to non blocking\n");
goto destruct_ctrlr;
}
rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
rctrlr->ctrlr.opts.admin_queue_size, 0,
rctrlr->ctrlr.opts.admin_queue_size, false);
if (!rctrlr->ctrlr.adminq) {
SPDK_ERRLOG("failed to create admin qpair\n");
goto destruct_ctrlr;
}
rc = nvme_transport_ctrlr_connect_qpair(&rctrlr->ctrlr, rctrlr->ctrlr.adminq);
if (rc < 0) {
SPDK_ERRLOG("failed to connect admin qpair\n");
goto destruct_ctrlr;
}
if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
goto destruct_ctrlr;
}
if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
SPDK_ERRLOG("get_vs() failed\n");
goto destruct_ctrlr;
}
if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
goto destruct_ctrlr;
}
nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);
SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
return &rctrlr->ctrlr;
destruct_ctrlr:
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
static int
nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
struct nvme_rdma_cm_event_entry *entry;
if (ctrlr->adminq) {
nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
}
STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
rdma_ack_cm_event(entry->evt);
}
STAILQ_INIT(&rctrlr->free_cm_events);
STAILQ_INIT(&rctrlr->pending_cm_events);
nvme_rdma_free(rctrlr->cm_events);
if (rctrlr->cm_channel) {
rdma_destroy_event_channel(rctrlr->cm_channel);
rctrlr->cm_channel = NULL;
}
nvme_ctrlr_destruct_finish(ctrlr);
nvme_rdma_free(rctrlr);
return 0;
}
static int
nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct ibv_send_wr *wr;
rqpair = nvme_rdma_qpair(qpair);
assert(rqpair != NULL);
assert(req != NULL);
rdma_req = nvme_rdma_req_get(rqpair);
if (!rdma_req) {
/* Inform the upper layer to try again later. */
return -EAGAIN;
}
if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
nvme_rdma_req_put(rqpair, rdma_req);
return -1;
}
wr = &rdma_req->send_wr;
wr->next = NULL;
nvme_rdma_trace_ibv_sge(wr->sg_list);
return nvme_rdma_qpair_queue_send_wr(rqpair, wr);
}
static int
nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
static void
nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.dnr = dnr;
/*
* We cannot abort requests at the RDMA layer without
* unregistering them. If we do, we can still get error
* free completions on the shared completion queue.
*/
if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
nvme_ctrlr_disconnect_qpair(qpair);
}
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
nvme_rdma_req_complete(rdma_req, &cpl);
nvme_rdma_req_put(rqpair, rdma_req);
}
}
static void
nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
static inline int
nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
nvme_rdma_req_complete(rdma_req, &rqpair->rsps[rdma_req->rsp_idx].cpl);
nvme_rdma_req_put(rqpair, rdma_req);
return nvme_rdma_post_recv(rqpair, rdma_req->rsp_idx);
}
#define MAX_COMPLETIONS_PER_POLL 128
static void
nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
{
if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
}
nvme_ctrlr_disconnect_qpair(qpair);
}
static void
nvme_rdma_conditional_fail_qpair(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poll_group *group)
{
struct nvme_rdma_destroyed_qpair *qpair_tracker;
assert(rqpair);
if (group) {
STAILQ_FOREACH(qpair_tracker, &group->destroyed_qpairs, link) {
if (qpair_tracker->destroyed_qpair_tracker == rqpair) {
return;
}
}
}
nvme_rdma_fail_qpair(&rqpair->qpair, 0);
}
static int
nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
struct nvme_rdma_poll_group *group,
struct nvme_rdma_qpair *rdma_qpair)
{
struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_rdma_rsp *rdma_rsp;
struct nvme_rdma_wr *rdma_wr;
uint32_t reaped = 0;
int completion_rc = 0;
int rc, i;
rc = ibv_poll_cq(cq, batch_size, wc);
if (rc < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -ECANCELED;
} else if (rc == 0) {
return 0;
}
for (i = 0; i < rc; i++) {
rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
switch (rdma_wr->type) {
case RDMA_WR_TYPE_RECV:
rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
rqpair = rdma_rsp->rqpair;
assert(rqpair->current_num_recvs > 0);
rqpair->current_num_recvs--;
if (wc[i].status) {
SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
nvme_rdma_conditional_fail_qpair(rqpair, group);
completion_rc = -ENXIO;
continue;
}
SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
nvme_rdma_conditional_fail_qpair(rqpair, group);
completion_rc = -ENXIO;
continue;
}
rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
rdma_req->rsp_idx = rdma_rsp->idx;
if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) != 0) {
if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
nvme_rdma_conditional_fail_qpair(rqpair, group);
completion_rc = -ENXIO;
continue;
}
reaped++;
rqpair->num_completions++;
}
break;
case RDMA_WR_TYPE_SEND:
rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
/* If we are flushing I/O */
if (wc[i].status) {
rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
if (!rqpair) {
rqpair = rdma_qpair != NULL ? rdma_qpair : nvme_rdma_poll_group_get_qpair_by_id(group,
wc[i].qp_num);
}
assert(rqpair);
assert(rqpair->current_num_sends > 0);
rqpair->current_num_sends--;
nvme_rdma_conditional_fail_qpair(rqpair, group);
SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
completion_rc = -ENXIO;
continue;
}
rqpair = nvme_rdma_qpair(rdma_req->req->qpair);
rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
rqpair->current_num_sends--;
if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) != 0) {
if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
nvme_rdma_conditional_fail_qpair(rqpair, group);
completion_rc = -ENXIO;
continue;
}
reaped++;
rqpair->num_completions++;
}
break;
default:
SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
return -ECANCELED;
}
}
if (completion_rc) {
return completion_rc;
}
return reaped;
}
static void
dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
}
static int
nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
int rc = 0, batch_size;
struct ibv_cq *cq;
struct nvme_rdma_ctrlr *rctrlr;
/*
* This is used during the connection phase. It's possible that we are still reaping error completions
* from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
* is shared.
*/
if (qpair->poll_group != NULL) {
return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
dummy_disconnected_qpair_cb);
}
if (max_completions == 0) {
max_completions = rqpair->num_entries;
} else {
max_completions = spdk_min(max_completions, rqpair->num_entries);
}
if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
nvme_rdma_poll_events(rctrlr);
}
nvme_rdma_qpair_process_cm_event(rqpair);
if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
nvme_rdma_fail_qpair(qpair, 0);
return -ENXIO;
}
cq = rqpair->cq;
rqpair->num_completions = 0;
do {
batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair);
if (rc == 0) {
break;
/* Handle the case where we fail to poll the cq. */
} else if (rc == -ECANCELED) {
nvme_rdma_fail_qpair(qpair, 0);
return -ENXIO;
} else if (rc == -ENXIO) {
return rc;
}
} while (rqpair->num_completions < max_completions);
if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
nvme_rdma_qpair_submit_recvs(rqpair))) {
nvme_rdma_fail_qpair(qpair, 0);
return -ENXIO;
}
if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
nvme_rdma_qpair_check_timeout(qpair);
}
return rqpair->num_completions;
}
static uint32_t
nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/* max_mr_size by ibv_query_device indicates the largest value that we can
* set for a registered memory region. It is independent from the actual
* I/O size and is very likely to be larger than 2 MiB which is the
* granularity we currently register memory regions. Hence return
* UINT32_MAX here and let the generic layer use the controller data to
* moderate this value.
*/
return UINT32_MAX;
}
static uint16_t
nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
return rctrlr->max_sge;
}
static int
nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
int (*iter_fn)(struct nvme_request *req, void *arg),
void *arg)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct spdk_nvme_rdma_req *rdma_req, *tmp;
int rc;
assert(iter_fn != NULL);
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
rc = iter_fn(rdma_req->req, arg);
if (rc != 0) {
return rc;
}
}
return 0;
}
static void
nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
continue;
}
nvme_rdma_req_complete(rdma_req, &cpl);
nvme_rdma_req_put(rqpair, rdma_req);
}
}
static int
nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
{
struct nvme_rdma_poller *poller;
poller = calloc(1, sizeof(*poller));
if (poller == NULL) {
SPDK_ERRLOG("Unable to allocate poller.\n");
return -ENOMEM;
}
poller->device = ctx;
poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0);
if (poller->cq == NULL) {
free(poller);
return -EINVAL;
}
STAILQ_INSERT_HEAD(&group->pollers, poller, link);
group->num_pollers++;
poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE;
poller->required_num_wc = 0;
return 0;
}
static void
nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
{
struct nvme_rdma_poller *poller, *tmp_poller;
STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
if (poller->cq) {
ibv_destroy_cq(poller->cq);
}
STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
free(poller);
}
}
static struct spdk_nvme_transport_poll_group *
nvme_rdma_poll_group_create(void)
{
struct nvme_rdma_poll_group *group;
struct ibv_context **contexts;
int i = 0;
group = calloc(1, sizeof(*group));
if (group == NULL) {
SPDK_ERRLOG("Unable to allocate poll group.\n");
return NULL;
}
STAILQ_INIT(&group->pollers);
contexts = rdma_get_devices(NULL);
if (contexts == NULL) {
SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
free(group);
return NULL;
}
while (contexts[i] != NULL) {
if (nvme_rdma_poller_create(group, contexts[i])) {
nvme_rdma_poll_group_free_pollers(group);
free(group);
rdma_free_devices(contexts);
return NULL;
}
i++;
}
rdma_free_devices(contexts);
STAILQ_INIT(&group->destroyed_qpairs);
return &group->group;
}
struct nvme_rdma_qpair *
nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, uint32_t qp_num)
{
struct spdk_nvme_qpair *qpair;
struct nvme_rdma_destroyed_qpair *rqpair_tracker;
struct nvme_rdma_qpair *rqpair;
STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
rqpair = nvme_rdma_qpair(qpair);
if (rqpair->rdma_qp->qp->qp_num == qp_num) {
return rqpair;
}
}
STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
rqpair = nvme_rdma_qpair(qpair);
if (rqpair->rdma_qp->qp->qp_num == qp_num) {
return rqpair;
}
}
STAILQ_FOREACH(rqpair_tracker, &group->destroyed_qpairs, link) {
rqpair = rqpair_tracker->destroyed_qpair_tracker;
if (rqpair->rdma_qp->qp->qp_num == qp_num) {
return rqpair;
}
}
return NULL;
}
static int
nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
{
int current_num_wc, required_num_wc;
required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
current_num_wc = poller->current_num_wc;
if (current_num_wc < required_num_wc) {
current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
}
if (poller->current_num_wc != current_num_wc) {
SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
current_num_wc);
if (ibv_resize_cq(poller->cq, current_num_wc)) {
SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
poller->current_num_wc = current_num_wc;
}
poller->required_num_wc = required_num_wc;
return 0;
}
static int
nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
struct nvme_rdma_poller *poller;
assert(rqpair->cq == NULL);
STAILQ_FOREACH(poller, &group->pollers, link) {
if (poller->device == rqpair->cm_id->verbs) {
if (nvme_rdma_resize_cq(rqpair, poller)) {
return -EPROTO;
}
rqpair->cq = poller->cq;
break;
}
}
if (rqpair->cq == NULL) {
SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
return -EINVAL;
}
return 0;
}
static int
nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct nvme_rdma_poll_group *group;
struct nvme_rdma_destroyed_qpair *destroyed_qpair;
enum nvme_qpair_state state;
if (rqpair->poll_group_disconnect_in_progress) {
return -EINPROGRESS;
}
rqpair->poll_group_disconnect_in_progress = true;
state = nvme_qpair_get_state(qpair);
group = nvme_rdma_poll_group(qpair->poll_group);
rqpair->cq = NULL;
/*
* We want to guard against an endless recursive loop while making
* sure the qpair is disconnected before we disconnect it from the qpair.
*/
if (state > NVME_QPAIR_DISCONNECTING && state != NVME_QPAIR_DESTROYING) {
nvme_ctrlr_disconnect_qpair(qpair);
}
/*
* If this fails, the system is in serious trouble,
* just let the qpair get cleaned up immediately.
*/
destroyed_qpair = calloc(1, sizeof(*destroyed_qpair));
if (destroyed_qpair == NULL) {
return 0;
}
destroyed_qpair->destroyed_qpair_tracker = rqpair;
destroyed_qpair->completed_cycles = 0;
STAILQ_INSERT_TAIL(&group->destroyed_qpairs, destroyed_qpair, link);
rqpair->defer_deletion_to_pg = true;
rqpair->poll_group_disconnect_in_progress = false;
return 0;
}
static int
nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
return 0;
}
static int
nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
if (qpair->poll_group_tailq_head == &tgroup->connected_qpairs) {
return nvme_poll_group_disconnect_qpair(qpair);
}
return 0;
}
static void
nvme_rdma_poll_group_delete_qpair(struct nvme_rdma_poll_group *group,
struct nvme_rdma_destroyed_qpair *qpair_tracker)
{
struct nvme_rdma_qpair *rqpair = qpair_tracker->destroyed_qpair_tracker;
rqpair->defer_deletion_to_pg = false;
if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) {
nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair);
}
STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link);
free(qpair_tracker);
}
static int64_t
nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
{
struct spdk_nvme_qpair *qpair, *tmp_qpair;
struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker;
struct nvme_rdma_qpair *rqpair;
struct nvme_rdma_poll_group *group;
struct nvme_rdma_poller *poller;
int num_qpairs = 0, batch_size, rc;
int64_t total_completions = 0;
uint64_t completions_allowed = 0;
uint64_t completions_per_poller = 0;
uint64_t poller_completions = 0;
if (completions_per_qpair == 0) {
completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
}
group = nvme_rdma_poll_group(tgroup);
STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
disconnected_qpair_cb(qpair, tgroup->group->ctx);
}
STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
rqpair = nvme_rdma_qpair(qpair);
rqpair->num_completions = 0;
nvme_rdma_qpair_process_cm_event(rqpair);
if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
nvme_rdma_fail_qpair(qpair, 0);
disconnected_qpair_cb(qpair, tgroup->group->ctx);
continue;
}
num_qpairs++;
}
completions_allowed = completions_per_qpair * num_qpairs;
completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
STAILQ_FOREACH(poller, &group->pollers, link) {
poller_completions = 0;
do {
batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, group, NULL);
if (rc <= 0) {
if (rc == -ECANCELED) {
return -EIO;
}
break;
}
poller_completions += rc;
} while (poller_completions < completions_per_poller);
total_completions += poller_completions;
}
STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
rqpair = nvme_rdma_qpair(qpair);
if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
nvme_rdma_qpair_check_timeout(qpair);
}
nvme_rdma_qpair_submit_sends(rqpair);
nvme_rdma_qpair_submit_recvs(rqpair);
nvme_qpair_resubmit_requests(&rqpair->qpair, rqpair->num_completions);
}
/*
* Once a qpair is disconnected, we can still get flushed completions for those disconnected qpairs.
* For most pieces of hardware, those requests will complete immediately. However, there are certain
* cases where flushed requests will linger. Default is to destroy qpair after all completions are freed,
* but have a fallback for other cases where we don't get all of our completions back.
*/
STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) {
qpair_tracker->completed_cycles++;
rqpair = qpair_tracker->destroyed_qpair_tracker;
if ((rqpair->current_num_sends == 0 && rqpair->current_num_recvs == 0) ||
qpair_tracker->completed_cycles > NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES) {
nvme_rdma_poll_group_delete_qpair(group, qpair_tracker);
}
}
return total_completions;
}
static int
nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
{
struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup);
struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker;
struct nvme_rdma_qpair *rqpair;
if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
return -EBUSY;
}
STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) {
rqpair = qpair_tracker->destroyed_qpair_tracker;
if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) {
rqpair->defer_deletion_to_pg = false;
nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair);
}
STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link);
free(qpair_tracker);
}
nvme_rdma_poll_group_free_pollers(group);
free(group);
return 0;
}
void
spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
{
g_nvme_hooks = *hooks;
}
const struct spdk_nvme_transport_ops rdma_ops = {
.name = "RDMA",
.type = SPDK_NVME_TRANSPORT_RDMA,
.ctrlr_construct = nvme_rdma_ctrlr_construct,
.ctrlr_scan = nvme_fabric_ctrlr_scan,
.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
.ctrlr_enable = nvme_rdma_ctrlr_enable,
.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
.qpair_reset = nvme_rdma_qpair_reset,
.qpair_submit_request = nvme_rdma_qpair_submit_request,
.qpair_process_completions = nvme_rdma_qpair_process_completions,
.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
.poll_group_create = nvme_rdma_poll_group_create,
.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
.poll_group_add = nvme_rdma_poll_group_add,
.poll_group_remove = nvme_rdma_poll_group_remove,
.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
.poll_group_destroy = nvme_rdma_poll_group_destroy,
};
SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);