numam-spdk/test/env/memory/memory_ut.c

517 lines
16 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "env_dpdk/memory.c"
#define UNIT_TEST_NO_VTOPHYS
#define UNIT_TEST_NO_PCI_ADDR
#include "common/lib/test_env.c"
#include "spdk_cunit.h"
#include "spdk/bit_array.h"
#define PAGE_ARRAY_SIZE (100)
static struct spdk_bit_array *g_page_array;
static void *g_vaddr_to_fail = (void *)UINT64_MAX;
static int
test_mem_map_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t len)
{
uint32_t i, end;
SPDK_CU_ASSERT_FATAL(((uintptr_t)vaddr & MASK_2MB) == 0);
SPDK_CU_ASSERT_FATAL((len & MASK_2MB) == 0);
/*
* This is a test requirement - the bit array we use to verify
* pages are valid is only so large.
*/
SPDK_CU_ASSERT_FATAL((uintptr_t)vaddr < (VALUE_2MB * PAGE_ARRAY_SIZE));
i = (uintptr_t)vaddr >> SHIFT_2MB;
end = i + (len >> SHIFT_2MB);
for (; i < end; i++) {
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
/* This page should not already be registered */
SPDK_CU_ASSERT_FATAL(spdk_bit_array_get(g_page_array, i) == false);
SPDK_CU_ASSERT_FATAL(spdk_bit_array_set(g_page_array, i) == 0);
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
SPDK_CU_ASSERT_FATAL(spdk_bit_array_get(g_page_array, i) == true);
spdk_bit_array_clear(g_page_array, i);
break;
default:
SPDK_UNREACHABLE();
}
}
return 0;
}
static int
test_mem_map_notify_fail(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action, void *vaddr, size_t size)
{
struct spdk_mem_map *reg_map = cb_ctx;
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (vaddr == g_vaddr_to_fail) {
/* Test the error handling. */
return -1;
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
/* Clear the same region in the other mem_map to be able to
* verify that there was no memory left still registered after
* the mem_map creation failure.
*/
spdk_mem_map_clear_translation(reg_map, (uint64_t)vaddr, size);
break;
}
return 0;
}
static int
test_mem_map_notify_checklen(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action, void *vaddr, size_t size)
{
size_t *len_arr = cb_ctx;
/*
* This is a test requirement - the len array we use to verify
* pages are valid is only so large.
*/
SPDK_CU_ASSERT_FATAL((uintptr_t)vaddr < (VALUE_2MB * PAGE_ARRAY_SIZE));
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
assert(size == len_arr[(uintptr_t)vaddr / VALUE_2MB]);
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
CU_ASSERT(size == len_arr[(uintptr_t)vaddr / VALUE_2MB]);
break;
}
return 0;
}
static int
test_check_regions_contiguous(uint64_t addr1, uint64_t addr2)
{
return addr1 == addr2;
}
const struct spdk_mem_map_ops test_mem_map_ops = {
.notify_cb = test_mem_map_notify,
.are_contiguous = test_check_regions_contiguous
};
const struct spdk_mem_map_ops test_mem_map_ops_no_contig = {
.notify_cb = test_mem_map_notify,
.are_contiguous = NULL
};
struct spdk_mem_map_ops test_map_ops_notify_fail = {
.notify_cb = test_mem_map_notify_fail,
.are_contiguous = NULL
};
struct spdk_mem_map_ops test_map_ops_notify_checklen = {
.notify_cb = test_mem_map_notify_checklen,
.are_contiguous = NULL
};
static void
test_mem_map_alloc_free(void)
{
struct spdk_mem_map *map, *failed_map;
uint64_t default_translation = 0xDEADBEEF0BADF00D;
int i;
map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops, NULL);
SPDK_CU_ASSERT_FATAL(map != NULL);
spdk_mem_map_free(&map);
CU_ASSERT(map == NULL);
map = spdk_mem_map_alloc(default_translation, NULL, NULL);
SPDK_CU_ASSERT_FATAL(map != NULL);
/* Register some memory for the initial memory walk in
* spdk_mem_map_alloc(). We'll fail registering the last region
* and will check if the mem_map cleaned up all its previously
* initialized translations.
*/
for (i = 0; i < 5; i++) {
spdk_mem_register((void *)(uintptr_t)(2 * i * VALUE_2MB), VALUE_2MB);
}
/* The last region */
g_vaddr_to_fail = (void *)(8 * VALUE_2MB);
failed_map = spdk_mem_map_alloc(default_translation, &test_map_ops_notify_fail, map);
CU_ASSERT(failed_map == NULL);
for (i = 0; i < 4; i++) {
uint64_t reg, size = VALUE_2MB;
reg = spdk_mem_map_translate(map, 2 * i * VALUE_2MB, &size);
/* check if `failed_map` didn't leave any translations behind */
CU_ASSERT(reg == default_translation);
}
for (i = 0; i < 5; i++) {
spdk_mem_unregister((void *)(uintptr_t)(2 * i * VALUE_2MB), VALUE_2MB);
}
spdk_mem_map_free(&map);
CU_ASSERT(map == NULL);
}
static void
test_mem_map_translation(void)
{
struct spdk_mem_map *map;
uint64_t default_translation = 0xDEADBEEF0BADF00D;
uint64_t addr;
uint64_t mapping_length;
int rc;
map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops, NULL);
SPDK_CU_ASSERT_FATAL(map != NULL);
/* Try to get translation for address with no translation */
addr = spdk_mem_map_translate(map, 10, NULL);
CU_ASSERT(addr == default_translation);
/* Set translation for region of non-2MB multiple size */
rc = spdk_mem_map_set_translation(map, VALUE_2MB, 1234, VALUE_2MB);
CU_ASSERT(rc == -EINVAL);
/* Set translation for vaddr that isn't 2MB aligned */
rc = spdk_mem_map_set_translation(map, 1234, VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == -EINVAL);
/* Set translation for one 2MB page */
rc = spdk_mem_map_set_translation(map, VALUE_2MB, VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == 0);
/* Set translation for region that overlaps the previous translation */
rc = spdk_mem_map_set_translation(map, 0, 3 * VALUE_2MB, 0);
CU_ASSERT(rc == 0);
/* Make sure we indicate that the three regions are contiguous */
mapping_length = VALUE_2MB * 3;
addr = spdk_mem_map_translate(map, 0, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == VALUE_2MB * 3)
/* Translate an unaligned address */
mapping_length = VALUE_2MB * 3;
addr = spdk_mem_map_translate(map, VALUE_4KB, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == VALUE_2MB * 3 - VALUE_4KB);
/* Clear translation for the middle page of the larger region. */
rc = spdk_mem_map_clear_translation(map, VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == 0);
/* Get translation for first page */
addr = spdk_mem_map_translate(map, 0, NULL);
CU_ASSERT(addr == 0);
/* Make sure we indicate that the three regions are no longer contiguous */
mapping_length = VALUE_2MB * 3;
addr = spdk_mem_map_translate(map, 0, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == VALUE_2MB)
/* Get translation for an unallocated block. Make sure size is 0 */
mapping_length = VALUE_2MB * 3;
addr = spdk_mem_map_translate(map, VALUE_2MB, &mapping_length);
CU_ASSERT(addr == default_translation);
CU_ASSERT(mapping_length == VALUE_2MB)
/* Verify translation for 2nd page is the default */
addr = spdk_mem_map_translate(map, VALUE_2MB, NULL);
CU_ASSERT(addr == default_translation);
/* Get translation for third page */
addr = spdk_mem_map_translate(map, 2 * VALUE_2MB, NULL);
/*
* Note that addr should be 0, not 4MB. When we set the
* translation above, we said the whole 6MB region
* should translate to 0.
*/
CU_ASSERT(addr == 0);
/* Translate only a subset of a 2MB page */
mapping_length = 543;
addr = spdk_mem_map_translate(map, 0, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == 543);
/* Translate another subset of a 2MB page */
mapping_length = 543;
addr = spdk_mem_map_translate(map, VALUE_4KB, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == 543);
/* Try to translate an unaligned region that is only partially registered */
mapping_length = 543;
addr = spdk_mem_map_translate(map, 3 * VALUE_2MB - 196, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == 196);
/* Clear translation for the first page */
rc = spdk_mem_map_clear_translation(map, 0, VALUE_2MB);
CU_ASSERT(rc == 0);
/* Get translation for the first page */
addr = spdk_mem_map_translate(map, 0, NULL);
CU_ASSERT(addr == default_translation);
/* Clear translation for the third page */
rc = spdk_mem_map_clear_translation(map, 2 * VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == 0);
/* Get translation for the third page */
addr = spdk_mem_map_translate(map, 2 * VALUE_2MB, NULL);
CU_ASSERT(addr == default_translation);
/* Set translation for the last valid 2MB region */
rc = spdk_mem_map_set_translation(map, 0xffffffe00000ULL, VALUE_2MB, 0x1234);
CU_ASSERT(rc == 0);
/* Verify translation for last valid 2MB region */
addr = spdk_mem_map_translate(map, 0xffffffe00000ULL, NULL);
CU_ASSERT(addr == 0x1234);
/* Attempt to set translation for the first invalid address */
rc = spdk_mem_map_set_translation(map, 0x1000000000000ULL, VALUE_2MB, 0x5678);
CU_ASSERT(rc == -EINVAL);
/* Attempt to set translation starting at a valid address but exceeding the valid range */
rc = spdk_mem_map_set_translation(map, 0xffffffe00000ULL, VALUE_2MB * 2, 0x123123);
CU_ASSERT(rc != 0);
spdk_mem_map_free(&map);
CU_ASSERT(map == NULL);
/* Allocate a map without a contiguous region checker */
map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops_no_contig, NULL);
SPDK_CU_ASSERT_FATAL(map != NULL);
/* map three contiguous regions */
rc = spdk_mem_map_set_translation(map, 0, 3 * VALUE_2MB, 0);
CU_ASSERT(rc == 0);
/* Since we can't check their contiguity, make sure we only return the size of one page */
mapping_length = VALUE_2MB * 3;
addr = spdk_mem_map_translate(map, 0, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == VALUE_2MB)
/* Translate only a subset of a 2MB page */
mapping_length = 543;
addr = spdk_mem_map_translate(map, 0, &mapping_length);
CU_ASSERT(addr == 0);
CU_ASSERT(mapping_length == 543);
/* Clear the translation */
rc = spdk_mem_map_clear_translation(map, 0, VALUE_2MB * 3);
CU_ASSERT(rc == 0);
spdk_mem_map_free(&map);
CU_ASSERT(map == NULL);
}
static void
test_mem_map_registration(void)
{
int rc;
struct spdk_mem_map *map;
uint64_t default_translation = 0xDEADBEEF0BADF00D;
map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops, NULL);
SPDK_CU_ASSERT_FATAL(map != NULL);
/* Unregister memory region that wasn't previously registered */
rc = spdk_mem_unregister((void *)VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == -EINVAL);
/* Register non-2MB multiple size */
rc = spdk_mem_register((void *)VALUE_2MB, 1234);
CU_ASSERT(rc == -EINVAL);
/* Register region that isn't 2MB aligned */
rc = spdk_mem_register((void *)1234, VALUE_2MB);
CU_ASSERT(rc == -EINVAL);
/* Register one 2MB page */
rc = spdk_mem_register((void *)VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == 0);
/* Register an overlapping address range */
rc = spdk_mem_register((void *)0, 3 * VALUE_2MB);
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 13:36:22 +02:00
CU_ASSERT(rc == -EBUSY);
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 13:36:22 +02:00
/* Unregister a 2MB page */
rc = spdk_mem_unregister((void *)VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == 0);
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 13:36:22 +02:00
/* Register non overlapping address range */
rc = spdk_mem_register((void *)0, 3 * VALUE_2MB);
CU_ASSERT(rc == 0);
/* Unregister the middle page of the larger region. */
rc = spdk_mem_unregister((void *)VALUE_2MB, VALUE_2MB);
CU_ASSERT(rc == -ERANGE);
/* Unregister the first page */
rc = spdk_mem_unregister((void *)0, VALUE_2MB);
CU_ASSERT(rc == -ERANGE);
/* Unregister the third page */
rc = spdk_mem_unregister((void *)(2 * VALUE_2MB), VALUE_2MB);
CU_ASSERT(rc == -ERANGE);
/* Unregister the entire address range */
rc = spdk_mem_unregister((void *)0, 3 * VALUE_2MB);
CU_ASSERT(rc == 0);
spdk_mem_map_free(&map);
CU_ASSERT(map == NULL);
}
static void
test_mem_map_registration_adjacent(void)
{
struct spdk_mem_map *map, *newmap;
uint64_t default_translation = 0xDEADBEEF0BADF00D;
uintptr_t vaddr;
unsigned i;
size_t notify_len[PAGE_ARRAY_SIZE] = {0};
size_t chunk_len[] = { 2, 1, 3, 2, 1, 1 };
map = spdk_mem_map_alloc(default_translation,
&test_map_ops_notify_checklen, notify_len);
SPDK_CU_ASSERT_FATAL(map != NULL);
vaddr = 0;
for (i = 0; i < SPDK_COUNTOF(chunk_len); i++) {
notify_len[vaddr / VALUE_2MB] = chunk_len[i] * VALUE_2MB;
spdk_mem_register((void *)vaddr, notify_len[vaddr / VALUE_2MB]);
vaddr += notify_len[vaddr / VALUE_2MB];
}
/* Verify the memory is translated in the same chunks it was registered */
newmap = spdk_mem_map_alloc(default_translation,
&test_map_ops_notify_checklen, notify_len);
SPDK_CU_ASSERT_FATAL(newmap != NULL);
spdk_mem_map_free(&newmap);
CU_ASSERT(newmap == NULL);
vaddr = 0;
for (i = 0; i < SPDK_COUNTOF(chunk_len); i++) {
notify_len[vaddr / VALUE_2MB] = chunk_len[i] * VALUE_2MB;
spdk_mem_unregister((void *)vaddr, notify_len[vaddr / VALUE_2MB]);
vaddr += notify_len[vaddr / VALUE_2MB];
}
/* Register all chunks again just to unregister them again, but this
* time with only a single unregister() call.
*/
vaddr = 0;
for (i = 0; i < SPDK_COUNTOF(chunk_len); i++) {
notify_len[vaddr / VALUE_2MB] = chunk_len[i] * VALUE_2MB;
spdk_mem_register((void *)vaddr, notify_len[vaddr / VALUE_2MB]);
vaddr += notify_len[vaddr / VALUE_2MB];
}
spdk_mem_unregister(0, vaddr);
spdk_mem_map_free(&map);
CU_ASSERT(map == NULL);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
/*
* These tests can use PAGE_ARRAY_SIZE 2MB pages of memory.
* Note that the tests just verify addresses - this memory
* is not actually allocated.
*/
g_page_array = spdk_bit_array_create(PAGE_ARRAY_SIZE);
/* Initialize the memory map */
if (spdk_mem_map_init() < 0) {
return CUE_NOMEMORY;
}
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("memory", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "alloc and free memory map", test_mem_map_alloc_free) == NULL ||
CU_add_test(suite, "mem map translation", test_mem_map_translation) == NULL ||
CU_add_test(suite, "mem map registration", test_mem_map_registration) == NULL ||
CU_add_test(suite, "mem map adjacent registrations", test_mem_map_registration_adjacent) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
spdk_bit_array_free(&g_page_array);
return num_failures;
}