numam-spdk/lib/nvmf/tcp.c

2990 lines
91 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/accel_engine.h"
#include "spdk/stdinc.h"
#include "spdk/crc32.h"
#include "spdk/endian.h"
#include "spdk/assert.h"
#include "spdk/thread.h"
#include "spdk/nvmf_transport.h"
#include "spdk/string.h"
#include "spdk/trace.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "spdk_internal/assert.h"
#include "spdk_internal/nvme_tcp.h"
#include "spdk_internal/sock.h"
#include "nvmf_internal.h"
#define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
#define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
#define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
#define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
#define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
/* spdk nvmf related structure */
enum spdk_nvmf_tcp_req_state {
/* The request is not currently in use */
TCP_REQUEST_STATE_FREE = 0,
/* Initial state when request first received */
TCP_REQUEST_STATE_NEW,
/* The request is queued until a data buffer is available. */
TCP_REQUEST_STATE_NEED_BUFFER,
/* The request is currently transferring data from the host to the controller. */
TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
/* The request is waiting for the R2T send acknowledgement. */
TCP_REQUEST_STATE_AWAITING_R2T_ACK,
/* The request is ready to execute at the block device */
TCP_REQUEST_STATE_READY_TO_EXECUTE,
/* The request is currently executing at the block device */
TCP_REQUEST_STATE_EXECUTING,
/* The request finished executing at the block device */
TCP_REQUEST_STATE_EXECUTED,
/* The request is ready to send a completion */
TCP_REQUEST_STATE_READY_TO_COMPLETE,
/* The request is currently transferring final pdus from the controller to the host. */
TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
/* The request completed and can be marked free. */
TCP_REQUEST_STATE_COMPLETED,
/* Terminator */
TCP_REQUEST_NUM_STATES,
};
static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
"Invalid PDU Header Field",
"PDU Sequence Error",
"Header Digiest Error",
"Data Transfer Out of Range",
"R2T Limit Exceeded",
"Unsupported parameter",
};
#define OBJECT_NVMF_TCP_IO 0x80
#define TRACE_GROUP_NVMF_TCP 0x5
#define TRACE_TCP_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x0)
#define TRACE_TCP_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x1)
nvmf/tcp: Support single r2t usage According to the TP 8000 spec in Page 26: Maximum Number of Outstanding R2T (MAXR2T): Specifies the maximum number of outstanding R2T PDUs for a command at any point in time on the connection. Note that by the spec, the target may only support single r2t (which is the minimum possible), it doesn't have to use multiple r2ts even if the initiator supports that. So remove the maxr2t and pending_r2t variable in the tcp qpair structure. In the original design, we think that maxr2t is the maximal active r2t numbers for each connection. So if the initiator sends out maxr2t=16, it means that all the commands of a qpair can use such number of R2T pdus. So we need to wait for the available R2Ts for the request when the maxr2t reaches the maximal value. But it is the wrong understanding of the spec. In fact, each command has its own number of maximal r2t numbers, then we do not need to use the wait method for R2T method anymore. So we remove the state TCP_REQUEST_STATE_DATA_PENDING_FOR_R2T. Futhermore, we adjust the related SPDK_TPOINT_ID definition. In current patch, the target will support one active R2T for each write NVMe command. Thus, we remove the function spdk_nvmf_tcp_handle_queued_r2t_req. Reported-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Ziye Yang <ziye.yang@intel.com> Change-Id: I7547b8facbc39139b4584637ccc51ba8b33ca285 Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/455763 Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Or Gerlitz <gerlitz.or@gmail.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2019-05-27 12:45:58 +00:00
#define TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x2)
#define TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x3)
#define TRACE_TCP_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x4)
#define TRACE_TCP_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x5)
#define TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x6)
#define TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x7)
#define TRACE_TCP_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x8)
#define TRACE_TCP_FLUSH_WRITEBUF_START SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0x9)
#define TRACE_TCP_FLUSH_WRITEBUF_DONE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0xA)
#define TRACE_TCP_READ_FROM_SOCKET_DONE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0xB)
#define TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK SPDK_TPOINT_ID(TRACE_GROUP_NVMF_TCP, 0xC)
SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
{
spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
spdk_trace_register_description("TCP_REQ_NEW",
TRACE_TCP_REQUEST_STATE_NEW,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 1,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_EXECUTING",
TRACE_TCP_REQUEST_STATE_EXECUTING,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_EXECUTED",
TRACE_TCP_REQUEST_STATE_EXECUTED,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_COMPLETED",
TRACE_TCP_REQUEST_STATE_COMPLETED,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_WRITE_START",
TRACE_TCP_FLUSH_WRITEBUF_START,
OWNER_NONE, OBJECT_NONE, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_WRITE_DONE",
TRACE_TCP_FLUSH_WRITEBUF_DONE,
OWNER_NONE, OBJECT_NONE, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_READ_DONE",
TRACE_TCP_READ_FROM_SOCKET_DONE,
OWNER_NONE, OBJECT_NONE, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
OWNER_NONE, OBJECT_NVMF_TCP_IO, 0,
SPDK_TRACE_ARG_TYPE_INT, "");
}
struct spdk_nvmf_tcp_req {
struct spdk_nvmf_request req;
struct spdk_nvme_cpl rsp;
struct spdk_nvme_cmd cmd;
/* A PDU that can be used for sending responses. This is
* not the incoming PDU! */
struct nvme_tcp_pdu *pdu;
/* In-capsule data buffer */
uint8_t *buf;
/*
* The PDU for a request may be used multiple times in serial over
* the request's lifetime. For example, first to send an R2T, then
* to send a completion. To catch mistakes where the PDU is used
* twice at the same time, add a debug flag here for init/fini.
*/
bool pdu_in_use;
bool has_incapsule_data;
/* transfer_tag */
uint16_t ttag;
enum spdk_nvmf_tcp_req_state state;
/*
* h2c_offset is used when we receive the h2c_data PDU.
*/
uint32_t h2c_offset;
STAILQ_ENTRY(spdk_nvmf_tcp_req) link;
TAILQ_ENTRY(spdk_nvmf_tcp_req) state_link;
};
struct spdk_nvmf_tcp_qpair {
struct spdk_nvmf_qpair qpair;
struct spdk_nvmf_tcp_poll_group *group;
struct spdk_sock *sock;
enum nvme_tcp_pdu_recv_state recv_state;
enum nvme_tcp_qpair_state state;
/* PDU being actively received */
struct nvme_tcp_pdu *pdu_in_progress;
/* Queues to track the requests in all states */
TAILQ_HEAD(, spdk_nvmf_tcp_req) tcp_req_working_queue;
TAILQ_HEAD(, spdk_nvmf_tcp_req) tcp_req_free_queue;
/* Number of requests in each state */
uint32_t state_cntr[TCP_REQUEST_NUM_STATES];
uint8_t cpda;
bool host_hdgst_enable;
bool host_ddgst_enable;
/* This is a spare PDU used for sending special management
* operations. Primarily, this is used for the initial
* connection response and c2h termination request. */
struct nvme_tcp_pdu *mgmt_pdu;
2020-01-08 19:20:28 +00:00
/* Arrays of in-capsule buffers, requests, and pdus.
* Each array is 'resource_count' number of elements */
void *bufs;
struct spdk_nvmf_tcp_req *reqs;
struct nvme_tcp_pdu *pdus;
uint32_t resource_count;
uint32_t recv_buf_size;
2020-01-08 19:20:28 +00:00
struct spdk_nvmf_tcp_port *port;
/* IP address */
char initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
char target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
/* IP port */
uint16_t initiator_port;
uint16_t target_port;
/* Timer used to destroy qpair after detecting transport error issue if initiator does
* not close the connection.
*/
struct spdk_poller *timeout_poller;
TAILQ_ENTRY(spdk_nvmf_tcp_qpair) link;
};
struct spdk_nvmf_tcp_control_msg {
STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
};
struct spdk_nvmf_tcp_control_msg_list {
void *msg_buf;
STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
};
struct spdk_nvmf_tcp_poll_group {
struct spdk_nvmf_transport_poll_group group;
struct spdk_sock_group *sock_group;
TAILQ_HEAD(, spdk_nvmf_tcp_qpair) qpairs;
TAILQ_HEAD(, spdk_nvmf_tcp_qpair) await_req;
struct spdk_io_channel *accel_channel;
struct spdk_nvmf_tcp_control_msg_list *control_msg_list;
};
struct spdk_nvmf_tcp_port {
const struct spdk_nvme_transport_id *trid;
struct spdk_sock *listen_sock;
TAILQ_ENTRY(spdk_nvmf_tcp_port) link;
};
struct tcp_transport_opts {
bool c2h_success;
uint16_t control_msg_num;
uint32_t sock_priority;
};
struct spdk_nvmf_tcp_transport {
struct spdk_nvmf_transport transport;
struct tcp_transport_opts tcp_opts;
pthread_mutex_t lock;
TAILQ_HEAD(, spdk_nvmf_tcp_port) ports;
};
static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
{
"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
spdk_json_decode_bool, true
},
{
"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
spdk_json_decode_uint16, true
},
{
"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
spdk_json_decode_uint32, true
},
};
static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_req *tcp_req);
static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_req *tcp_req);
static void
nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
enum spdk_nvmf_tcp_req_state state)
{
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_tcp_qpair *tqpair;
qpair = tcp_req->req.qpair;
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
assert(tqpair->state_cntr[tcp_req->state] > 0);
tqpair->state_cntr[tcp_req->state]--;
tqpair->state_cntr[state]++;
tcp_req->state = state;
}
static inline struct nvme_tcp_pdu *
nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
{
assert(tcp_req->pdu_in_use == false);
tcp_req->pdu_in_use = true;
memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
return tcp_req->pdu;
}
static inline void
nvmf_tcp_req_pdu_fini(struct spdk_nvmf_tcp_req *tcp_req)
{
tcp_req->pdu_in_use = false;
}
static struct spdk_nvmf_tcp_req *
nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
{
struct spdk_nvmf_tcp_req *tcp_req;
tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
if (!tcp_req) {
return NULL;
}
memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
tcp_req->h2c_offset = 0;
tcp_req->has_incapsule_data = false;
tcp_req->req.dif.dif_insert_or_strip = false;
TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
return tcp_req;
}
static inline void
nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
{
TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
}
static void
nvmf_tcp_request_free(void *cb_arg)
{
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
assert(tcp_req != NULL);
SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
struct spdk_nvmf_tcp_transport, transport);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
nvmf_tcp_req_process(ttransport, tcp_req);
}
static int
nvmf_tcp_req_free(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
nvmf_tcp_request_free(tcp_req);
return 0;
}
static void
nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
enum spdk_nvmf_tcp_req_state state)
{
struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
assert(state != TCP_REQUEST_STATE_FREE);
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
if (state == tcp_req->state) {
nvmf_tcp_request_free(tcp_req);
}
}
}
static void
nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
{
struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
/* Wipe the requests waiting for buffer from the global list */
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
spdk_nvmf_request, buf_link);
}
}
nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
}
static void
nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
{
int i;
struct spdk_nvmf_tcp_req *tcp_req;
SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
if ((int)tcp_req->state == i) {
SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
}
}
}
}
static void
nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
{
int err = 0;
SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
err = spdk_sock_close(&tqpair->sock);
assert(err == 0);
nvmf_tcp_cleanup_all_states(tqpair);
2020-01-08 19:20:28 +00:00
if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
2020-01-08 19:20:28 +00:00
tqpair->resource_count);
err++;
}
if (err > 0) {
nvmf_tcp_dump_qpair_req_contents(tqpair);
}
2020-01-08 19:20:28 +00:00
spdk_dma_free(tqpair->pdus);
free(tqpair->reqs);
spdk_free(tqpair->bufs);
free(tqpair);
SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
}
static void
nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
{
struct spdk_nvmf_tcp_transport *ttransport;
assert(w != NULL);
ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
}
static int
nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
{
struct spdk_nvmf_tcp_transport *ttransport;
assert(transport != NULL);
ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
pthread_mutex_destroy(&ttransport->lock);
free(ttransport);
if (cb_fn) {
cb_fn(cb_arg);
}
return 0;
}
static struct spdk_nvmf_transport *
nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
{
struct spdk_nvmf_tcp_transport *ttransport;
uint32_t sge_count;
uint32_t min_shared_buffers;
ttransport = calloc(1, sizeof(*ttransport));
if (!ttransport) {
return NULL;
}
TAILQ_INIT(&ttransport->ports);
ttransport->transport.ops = &spdk_nvmf_transport_tcp;
ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
if (opts->transport_specific != NULL &&
spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
SPDK_COUNTOF(tcp_transport_opts_decoder),
&ttransport->tcp_opts)) {
SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
free(ttransport);
return NULL;
}
SPDK_NOTICELOG("*** TCP Transport Init ***\n");
SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
" Transport opts: max_ioq_depth=%d, max_io_size=%d,\n"
" max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
" in_capsule_data_size=%d, max_aq_depth=%d\n"
" num_shared_buffers=%d, c2h_success=%d,\n"
" dif_insert_or_strip=%d, sock_priority=%d\n"
" abort_timeout_sec=%d, control_msg_num=%hu\n",
opts->max_queue_depth,
opts->max_io_size,
opts->max_qpairs_per_ctrlr - 1,
opts->io_unit_size,
opts->in_capsule_data_size,
opts->max_aq_depth,
opts->num_shared_buffers,
ttransport->tcp_opts.c2h_success,
opts->dif_insert_or_strip,
ttransport->tcp_opts.sock_priority,
opts->abort_timeout_sec,
ttransport->tcp_opts.control_msg_num);
if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
"you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
free(ttransport);
return NULL;
}
if (ttransport->tcp_opts.control_msg_num == 0 &&
opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
}
/* I/O unit size cannot be larger than max I/O size */
if (opts->io_unit_size > opts->max_io_size) {
opts->io_unit_size = opts->max_io_size;
}
sge_count = opts->max_io_size / opts->io_unit_size;
if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
free(ttransport);
return NULL;
}
min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
if (min_shared_buffers > opts->num_shared_buffers) {
SPDK_ERRLOG("There are not enough buffers to satisfy"
"per-poll group caches for each thread. (%" PRIu32 ")"
"supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
free(ttransport);
return NULL;
}
pthread_mutex_init(&ttransport->lock, NULL);
return &ttransport->transport;
}
static int
nvmf_tcp_trsvcid_to_int(const char *trsvcid)
{
unsigned long long ull;
char *end = NULL;
ull = strtoull(trsvcid, &end, 10);
if (end == NULL || end == trsvcid || *end != '\0') {
return -1;
}
/* Valid TCP/IP port numbers are in [0, 65535] */
if (ull > 65535) {
return -1;
}
return (int)ull;
}
/**
* Canonicalize a listen address trid.
*/
static int
nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
const struct spdk_nvme_transport_id *trid)
{
int trsvcid_int;
trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
if (trsvcid_int < 0) {
return -EINVAL;
}
memset(canon_trid, 0, sizeof(*canon_trid));
spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
canon_trid->adrfam = trid->adrfam;
snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
return 0;
}
/**
* Find an existing listening port.
*
* Caller must hold ttransport->lock.
*/
static struct spdk_nvmf_tcp_port *
nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvme_transport_id canon_trid;
struct spdk_nvmf_tcp_port *port;
if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
return NULL;
}
TAILQ_FOREACH(port, &ttransport->ports, link) {
if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
return port;
}
}
return NULL;
}
static int
nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_listen_opts *listen_opts)
{
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_tcp_port *port;
int trsvcid_int;
uint8_t adrfam;
struct spdk_sock_opts opts;
if (!strlen(trid->trsvcid)) {
SPDK_ERRLOG("Service id is required\n");
return -EINVAL;
}
ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
if (trsvcid_int < 0) {
SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
return -EINVAL;
}
pthread_mutex_lock(&ttransport->lock);
port = calloc(1, sizeof(*port));
if (!port) {
SPDK_ERRLOG("Port allocation failed\n");
pthread_mutex_unlock(&ttransport->lock);
return -ENOMEM;
}
port->trid = trid;
opts.opts_size = sizeof(opts);
spdk_sock_get_default_opts(&opts);
opts.priority = ttransport->tcp_opts.sock_priority;
port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
NULL, &opts);
if (port->listen_sock == NULL) {
SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
trid->traddr, trsvcid_int,
spdk_strerror(errno), errno);
free(port);
pthread_mutex_unlock(&ttransport->lock);
return -errno;
}
if (spdk_sock_is_ipv4(port->listen_sock)) {
adrfam = SPDK_NVMF_ADRFAM_IPV4;
} else if (spdk_sock_is_ipv6(port->listen_sock)) {
adrfam = SPDK_NVMF_ADRFAM_IPV6;
} else {
SPDK_ERRLOG("Unhandled socket type\n");
adrfam = 0;
}
if (adrfam != trid->adrfam) {
SPDK_ERRLOG("Socket address family mismatch\n");
spdk_sock_close(&port->listen_sock);
free(port);
pthread_mutex_unlock(&ttransport->lock);
return -EINVAL;
}
SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
trid->traddr, trid->trsvcid);
TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
pthread_mutex_unlock(&ttransport->lock);
return 0;
}
static void
nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_tcp_port *port;
ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
trid->traddr, trid->trsvcid);
pthread_mutex_lock(&ttransport->lock);
port = nvmf_tcp_find_port(ttransport, trid);
if (port) {
TAILQ_REMOVE(&ttransport->ports, port, link);
spdk_sock_close(&port->listen_sock);
free(port);
}
pthread_mutex_unlock(&ttransport->lock);
}
static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
enum nvme_tcp_pdu_recv_state state);
static void
nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
{
SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
tqpair->state = NVME_TCP_QPAIR_STATE_EXITING;
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
spdk_poller_unregister(&tqpair->timeout_poller);
/* This will end up calling nvmf_tcp_close_qpair */
spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
}
}
static void
_pdu_write_done(void *_pdu, int err)
{
struct nvme_tcp_pdu *pdu = _pdu;
struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
if (err != 0) {
nvmf_tcp_qpair_disconnect(tqpair);
return;
}
assert(pdu->cb_fn != NULL);
pdu->cb_fn(pdu->cb_arg);
}
static void
_tcp_write_pdu(struct nvme_tcp_pdu *pdu)
{
uint32_t mapped_length = 0;
ssize_t rc;
struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
&mapped_length);
pdu->sock_req.cb_fn = _pdu_write_done;
pdu->sock_req.cb_arg = pdu;
if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
if (rc == mapped_length) {
_pdu_write_done(pdu, 0);
} else {
SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
_pdu_write_done(pdu, -1);
}
} else {
spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
}
}
static void
data_crc32_accel_done(void *cb_arg, int status)
{
struct nvme_tcp_pdu *pdu = cb_arg;
if (spdk_unlikely(status)) {
SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
_pdu_write_done(pdu, status);
return;
}
pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
_tcp_write_pdu(pdu);
}
static void
pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
{
struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
uint32_t crc32c;
/* Data Digest */
if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
/* Only suport this limitated case for the first step */
if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
&& tqpair->group)) {
spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32,
pdu->data_iov, pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
return;
}
crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
MAKE_DIGEST_WORD(pdu->data_digest, crc32c);
}
_tcp_write_pdu(pdu);
}
static void
header_crc32_accel_done(void *cb_arg, int status)
{
struct nvme_tcp_pdu *pdu = cb_arg;
pdu->header_digest_crc32 ^= SPDK_CRC32C_XOR;
MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, pdu->header_digest_crc32);
if (spdk_unlikely(status)) {
SPDK_ERRLOG("Failed to compute header digest on pdu=%p\n", pdu);
_pdu_write_done(pdu, status);
return;
}
pdu_data_crc32_compute(pdu);
}
static void
nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu,
nvme_tcp_qpair_xfer_complete_cb cb_fn,
void *cb_arg)
{
int hlen;
assert(tqpair->pdu_in_progress != pdu);
hlen = pdu->hdr.common.hlen;
pdu->cb_fn = cb_fn;
pdu->cb_arg = cb_arg;
pdu->iov[0].iov_base = &pdu->hdr.raw;
pdu->iov[0].iov_len = hlen;
/* Header Digest */
if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable && tqpair->group) {
spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->header_digest_crc32,
pdu->iov, 1, 0, header_crc32_accel_done, pdu);
return;
}
pdu_data_crc32_compute(pdu);
}
static int
nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
{
2020-01-08 19:20:28 +00:00
uint32_t i;
struct spdk_nvmf_transport_opts *opts;
uint32_t in_capsule_data_size;
2020-01-08 19:20:28 +00:00
opts = &tqpair->qpair.transport->opts;
in_capsule_data_size = opts->in_capsule_data_size;
if (opts->dif_insert_or_strip) {
in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
}
2020-01-08 19:20:28 +00:00
tqpair->resource_count = opts->max_queue_depth;
tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
if (!tqpair->reqs) {
SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
return -1;
}
if (in_capsule_data_size) {
tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
if (!tqpair->bufs) {
SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
return -1;
}
2020-01-08 19:20:28 +00:00
}
/* Add addtional 2 members, which will be used for mgmt_pdu and pdu_in_progress owned by the tqpair */
tqpair->pdus = spdk_dma_malloc((tqpair->resource_count + 2) * sizeof(*tqpair->pdus), 0x1000, NULL);
if (!tqpair->pdus) {
SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
return -1;
}
2020-01-08 19:20:28 +00:00
for (i = 0; i < tqpair->resource_count; i++) {
struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
2020-01-08 19:20:28 +00:00
tcp_req->ttag = i + 1;
tcp_req->req.qpair = &tqpair->qpair;
tcp_req->pdu = &tqpair->pdus[i];
tcp_req->pdu->qpair = tqpair;
/* Set up memory to receive commands */
2020-01-08 19:20:28 +00:00
if (tqpair->bufs) {
tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
}
/* Set the cmdn and rsp */
tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
/* Initialize request state to FREE */
tcp_req->state = TCP_REQUEST_STATE_FREE;
TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
2020-01-08 19:20:28 +00:00
tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
}
tqpair->mgmt_pdu = &tqpair->pdus[i];
tqpair->mgmt_pdu->qpair = tqpair;
tqpair->pdu_in_progress = &tqpair->pdus[i + 1];
tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
return 0;
}
static int
nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_tcp_qpair *tqpair;
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
/* Initialise request state queues of the qpair */
TAILQ_INIT(&tqpair->tcp_req_free_queue);
TAILQ_INIT(&tqpair->tcp_req_working_queue);
tqpair->host_hdgst_enable = true;
tqpair->host_ddgst_enable = true;
return 0;
}
static int
nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
{
int rc;
/* set low water mark */
rc = spdk_sock_set_recvlowat(tqpair->sock, sizeof(struct spdk_nvme_tcp_common_pdu_hdr));
if (rc != 0) {
SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
return rc;
}
return 0;
}
static void
nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
struct spdk_nvmf_tcp_port *port,
struct spdk_sock *sock)
{
struct spdk_nvmf_tcp_qpair *tqpair;
int rc;
SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
port->trid->traddr, port->trid->trsvcid);
tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
if (tqpair == NULL) {
SPDK_ERRLOG("Could not allocate new connection.\n");
spdk_sock_close(&sock);
return;
}
tqpair->sock = sock;
2020-01-08 19:20:28 +00:00
tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
tqpair->port = port;
tqpair->qpair.transport = transport;
rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
sizeof(tqpair->target_addr), &tqpair->target_port,
tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
&tqpair->initiator_port);
if (rc < 0) {
SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
nvmf_tcp_qpair_destroy(tqpair);
return;
}
spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
}
static uint32_t
nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
{
struct spdk_sock *sock;
uint32_t count = 0;
int i;
for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
sock = spdk_sock_accept(port->listen_sock);
if (sock == NULL) {
break;
}
count++;
nvmf_tcp_handle_connect(transport, port, sock);
}
return count;
}
static uint32_t
nvmf_tcp_accept(struct spdk_nvmf_transport *transport)
{
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_tcp_port *port;
uint32_t count = 0;
ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
TAILQ_FOREACH(port, &ttransport->ports, link) {
count += nvmf_tcp_port_accept(transport, port);
}
return count;
}
static void
nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_discovery_log_page_entry *entry)
{
entry->trtype = SPDK_NVMF_TRTYPE_TCP;
entry->adrfam = trid->adrfam;
entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
}
static struct spdk_nvmf_tcp_control_msg_list *
nvmf_tcp_control_msg_list_create(uint16_t num_messages)
{
struct spdk_nvmf_tcp_control_msg_list *list;
struct spdk_nvmf_tcp_control_msg *msg;
uint16_t i;
list = calloc(1, sizeof(*list));
if (!list) {
SPDK_ERRLOG("Failed to allocate memory for list structure\n");
return NULL;
}
list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!list->msg_buf) {
SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
free(list);
return NULL;
}
STAILQ_INIT(&list->free_msgs);
for (i = 0; i < num_messages; i++) {
msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
}
return list;
}
static void
nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
{
if (!list) {
return;
}
spdk_free(list->msg_buf);
free(list);
}
static struct spdk_nvmf_transport_poll_group *
nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport)
{
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_tcp_poll_group *tgroup;
tgroup = calloc(1, sizeof(*tgroup));
if (!tgroup) {
return NULL;
}
tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
if (!tgroup->sock_group) {
goto cleanup;
}
TAILQ_INIT(&tgroup->qpairs);
TAILQ_INIT(&tgroup->await_req);
ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
"Creating control messages list\n", transport->opts.in_capsule_data_size,
SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
if (!tgroup->control_msg_list) {
goto cleanup;
}
}
tgroup->accel_channel = spdk_accel_engine_get_io_channel();
if (spdk_unlikely(!tgroup->accel_channel)) {
SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
goto cleanup;
}
return &tgroup->group;
cleanup:
nvmf_tcp_poll_group_destroy(&tgroup->group);
return NULL;
}
static struct spdk_nvmf_transport_poll_group *
nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_tcp_qpair *tqpair;
struct spdk_sock_group *group = NULL;
int rc;
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group);
if (!rc && group != NULL) {
return spdk_sock_group_get_ctx(group);
}
return NULL;
}
static void
nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_tcp_poll_group *tgroup;
tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
spdk_sock_group_close(&tgroup->sock_group);
if (tgroup->control_msg_list) {
nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
}
if (tgroup->accel_channel) {
spdk_put_io_channel(tgroup->accel_channel);
}
free(tgroup);
}
static void
nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
enum nvme_tcp_pdu_recv_state state)
{
if (tqpair->recv_state == state) {
SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
tqpair, state);
return;
}
if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
/* When leaving the await req state, move the qpair to the main list */
TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
}
SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
tqpair->recv_state = state;
switch (state) {
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
break;
case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
break;
case NVME_TCP_PDU_RECV_STATE_ERROR:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
memset(tqpair->pdu_in_progress, 0, sizeof(*(tqpair->pdu_in_progress)));
break;
default:
SPDK_ERRLOG("The state(%d) is invalid\n", state);
abort();
break;
}
}
static int
nvmf_tcp_qpair_handle_timeout(void *ctx)
{
struct spdk_nvmf_tcp_qpair *tqpair = ctx;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
nvmf_tcp_qpair_disconnect(tqpair);
return SPDK_POLLER_BUSY;
}
static void
nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
{
struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
if (!tqpair->timeout_poller) {
tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
}
}
static void
nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
{
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
uint32_t copy_len;
rsp_pdu = tqpair->mgmt_pdu;
c2h_term_req = &rsp_pdu->hdr.term_req;
c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
c2h_term_req->common.hlen = c2h_term_req_hdr_len;
if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
(fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
DSET32(&c2h_term_req->fei, error_offset);
}
copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
/* Copy the error info into the buffer */
memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
/* Contain the header of the wrong received pdu */
c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
nvmf_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvmf_tcp_send_c2h_term_req_complete, tqpair);
}
static void
nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvmf_tcp_req *tcp_req;
assert(pdu->psh_valid_bytes == pdu->psh_len);
assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
tcp_req = nvmf_tcp_req_get(tqpair);
if (!tcp_req) {
/* Directly return and make the allocation retry again */
if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0) {
return;
}
/* The host sent more commands than the maximum queue depth. */
SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
nvmf_tcp_qpair_disconnect(tqpair);
return;
}
pdu->req = tcp_req;
assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
nvmf_tcp_req_process(ttransport, tcp_req);
}
static void
nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvmf_tcp_req *tcp_req;
struct spdk_nvme_tcp_cmd *capsule_cmd;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
capsule_cmd = &pdu->hdr.capsule_cmd;
tcp_req = pdu->req;
assert(tcp_req != NULL);
if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
goto err;
}
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
nvmf_tcp_req_process(ttransport, tcp_req);
return;
err:
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
}
static int
nvmf_tcp_find_req_in_state(struct spdk_nvmf_tcp_qpair *tqpair,
enum spdk_nvmf_tcp_req_state state,
uint16_t cid, uint16_t tag,
struct spdk_nvmf_tcp_req **req)
{
struct spdk_nvmf_tcp_req *tcp_req = NULL;
TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
if (tcp_req->state != state) {
continue;
}
if (tcp_req->req.cmd->nvme_cmd.cid != cid) {
continue;
}
if (tcp_req->ttag == tag) {
*req = tcp_req;
return 0;
}
*req = NULL;
return -1;
}
/* Didn't find it, but not an error */
*req = NULL;
return 0;
}
static void
nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvmf_tcp_req *tcp_req;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes = 0;
struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
int rc;
h2c_data = &pdu->hdr.h2c_data;
SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
rc = nvmf_tcp_find_req_in_state(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
h2c_data->cccid, h2c_data->ttag, &tcp_req);
if (rc == 0 && tcp_req == NULL) {
rc = nvmf_tcp_find_req_in_state(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK, h2c_data->cccid,
h2c_data->ttag, &tcp_req);
}
if (!tcp_req) {
SPDK_DEBUGLOG(nvmf_tcp, "tcp_req is not found for tqpair=%p\n", tqpair);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
if (rc == 0) {
error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
} else {
error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
}
goto err;
}
if (tcp_req->h2c_offset != h2c_data->datao) {
SPDK_DEBUGLOG(nvmf_tcp,
"tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
goto err;
}
if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
SPDK_DEBUGLOG(nvmf_tcp,
"tcp_req(%p), tqpair=%p, (datao=%u + datal=%u) execeeds requested length=%u\n",
tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
goto err;
}
pdu->req = tcp_req;
if (spdk_unlikely(tcp_req->req.dif.dif_insert_or_strip)) {
pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
}
nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
h2c_data->datao, h2c_data->datal);
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
return;
err:
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
struct spdk_nvmf_tcp_qpair *tqpair)
{
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_rsp *capsule_resp;
SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
assert(rsp_pdu != NULL);
capsule_resp = &rsp_pdu->hdr.capsule_resp;
capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
if (tqpair->host_hdgst_enable) {
capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
}
nvmf_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvmf_tcp_request_free, tcp_req);
}
static void
nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
{
struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
struct spdk_nvmf_tcp_qpair, qpair);
assert(tqpair != NULL);
if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
tcp_req->req.length);
_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
return;
}
if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
nvmf_tcp_request_free(tcp_req);
} else {
nvmf_tcp_req_pdu_fini(tcp_req);
nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
}
}
static void
nvmf_tcp_r2t_complete(void *cb_arg)
{
struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
struct spdk_nvmf_tcp_transport *ttransport;
nvmf_tcp_req_pdu_fini(tcp_req);
ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
struct spdk_nvmf_tcp_transport, transport);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
if (tcp_req->h2c_offset == tcp_req->req.length) {
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
nvmf_tcp_req_process(ttransport, tcp_req);
}
}
static void
nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_req *tcp_req)
{
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_r2t_hdr *r2t;
rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
assert(rsp_pdu != NULL);
r2t = &rsp_pdu->hdr.r2t;
r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
if (tqpair->host_hdgst_enable) {
r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
}
r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
r2t->ttag = tcp_req->ttag;
r2t->r2to = tcp_req->h2c_offset;
r2t->r2tl = tcp_req->req.length;
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
SPDK_DEBUGLOG(nvmf_tcp,
"tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
nvmf_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvmf_tcp_r2t_complete, tcp_req);
}
static void
nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvmf_tcp_req *tcp_req;
tcp_req = pdu->req;
assert(tcp_req != NULL);
SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
tcp_req->h2c_offset += pdu->data_len;
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
* acknowledged before moving on. */
if (tcp_req->h2c_offset == tcp_req->req.length &&
tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
nvmf_tcp_req_process(ttransport, tcp_req);
}
}
static void
nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
{
SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
(h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
DGET32(h2c_term_req->fei));
}
}
static void
nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
goto end;
}
/* set the data buffer */
nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
h2c_term_req->common.plen - h2c_term_req->common.hlen);
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
return;
end:
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
nvmf_tcp_h2c_term_req_dump(h2c_term_req);
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
}
static void
_nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_transport *ttransport)
{
struct nvme_tcp_pdu *pdu = tqpair->pdu_in_progress;
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
break;
default:
/* The code should not go to here */
SPDK_ERRLOG("The code should not go to here\n");
break;
}
}
static void
nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_transport *ttransport)
{
int rc = 0;
struct nvme_tcp_pdu *pdu;
uint32_t crc32c, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
pdu = tqpair->pdu_in_progress;
SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
/* check data digest if need */
if (pdu->ddgst_enable) {
crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c);
if (rc == 0) {
SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
return;
}
}
_nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
}
static void
nvmf_tcp_send_icresp_complete(void *cb_arg)
{
struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
tqpair->state = NVME_TCP_QPAIR_STATE_RUNNING;
}
static void
nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_ic_resp *ic_resp;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
/* Only PFV 0 is defined currently */
if (ic_req->pfv != 0) {
SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
goto end;
}
/* MAXR2T is 0's based */
SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
if (!tqpair->host_hdgst_enable) {
tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
}
tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
if (!tqpair->host_ddgst_enable) {
tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
}
tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
/* Now that we know whether digests are enabled, properly size the receive buffer */
if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
tqpair,
tqpair->recv_buf_size);
/* Not fatal. */
}
tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
rsp_pdu = tqpair->mgmt_pdu;
ic_resp = &rsp_pdu->hdr.ic_resp;
ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
ic_resp->common.hlen = ic_resp->common.plen = sizeof(*ic_resp);
ic_resp->pfv = 0;
ic_resp->cpda = tqpair->cpda;
ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
tqpair->state = NVME_TCP_QPAIR_STATE_INITIALIZING;
nvmf_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvmf_tcp_send_icresp_complete, tqpair);
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
return;
end:
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_transport *ttransport)
{
struct nvme_tcp_pdu *pdu;
int rc;
uint32_t crc32c, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
pdu = tqpair->pdu_in_progress;
SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
pdu->hdr.common.pdu_type);
/* check header digest if needed */
if (pdu->has_hdgst) {
SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
if (rc == 0) {
SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
return;
}
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
break;
case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
break;
default:
SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = 1;
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
break;
}
}
static void
nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
{
struct nvme_tcp_pdu *pdu;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
uint8_t expected_hlen, pdo;
bool plen_error = false, pdo_error = false;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
pdu = tqpair->pdu_in_progress;
if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
goto err;
}
expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
if (pdu->hdr.common.plen != expected_hlen) {
plen_error = true;
}
} else {
if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
SPDK_ERRLOG("The TCP/IP connection is not negotitated\n");
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
goto err;
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
pdo = pdu->hdr.common.pdo;
if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
pdo_error = true;
break;
}
if (pdu->hdr.common.plen < expected_hlen) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
pdo = pdu->hdr.common.pdo;
if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
pdo_error = true;
break;
}
if (pdu->hdr.common.plen < expected_hlen) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
if ((pdu->hdr.common.plen <= expected_hlen) ||
(pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
plen_error = true;
}
break;
default:
SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
goto err;
}
}
if (pdu->hdr.common.hlen != expected_hlen) {
SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
pdu->hdr.common.pdu_type,
expected_hlen, pdu->hdr.common.hlen, tqpair);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
goto err;
} else if (pdo_error) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
} else if (plen_error) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
goto err;
} else {
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
return;
}
err:
nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
}
static int
nvmf_tcp_pdu_payload_insert_dif(struct nvme_tcp_pdu *pdu, uint32_t read_offset,
int read_len)
{
int rc;
rc = spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt,
read_offset, read_len, pdu->dif_ctx);
if (rc != 0) {
SPDK_ERRLOG("DIF generate failed\n");
}
return rc;
}
static int
nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
{
int rc = 0;
struct nvme_tcp_pdu *pdu;
enum nvme_tcp_pdu_recv_state prev_state;
uint32_t data_len;
struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
struct spdk_nvmf_tcp_transport, transport);
/* The loop here is to allow for several back-to-back state changes. */
do {
prev_state = tqpair->recv_state;
SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
pdu = tqpair->pdu_in_progress;
switch (tqpair->recv_state) {
/* Wait for the common header */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
return rc;
}
rc = nvme_tcp_read_data(tqpair->sock,
sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
if (rc < 0) {
SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
return NVME_TCP_PDU_FATAL;
} else if (rc > 0) {
pdu->ch_valid_bytes += rc;
spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, 0, rc, 0, 0);
if (spdk_likely(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY)) {
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
}
}
if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
return NVME_TCP_PDU_IN_PROGRESS;
}
/* The command header of this PDU has now been read from the socket. */
nvmf_tcp_pdu_ch_handle(tqpair);
break;
/* Wait for the pdu specific header */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
rc = nvme_tcp_read_data(tqpair->sock,
pdu->psh_len - pdu->psh_valid_bytes,
(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
if (rc < 0) {
return NVME_TCP_PDU_FATAL;
} else if (rc > 0) {
spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE,
0, rc, 0, 0);
pdu->psh_valid_bytes += rc;
}
if (pdu->psh_valid_bytes < pdu->psh_len) {
return NVME_TCP_PDU_IN_PROGRESS;
}
/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
break;
/* Wait for the req slot */
case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
break;
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
/* check whether the data is valid, if not we just return */
if (!pdu->data_len) {
return NVME_TCP_PDU_IN_PROGRESS;
}
data_len = pdu->data_len;
/* data digest */
if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
tqpair->host_ddgst_enable)) {
data_len += SPDK_NVME_TCP_DIGEST_LEN;
pdu->ddgst_enable = true;
}
rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
if (rc < 0) {
return NVME_TCP_PDU_FATAL;
}
pdu->rw_offset += rc;
if (spdk_unlikely(pdu->dif_ctx != NULL)) {
rc = nvmf_tcp_pdu_payload_insert_dif(pdu, pdu->rw_offset - rc, rc);
if (rc != 0) {
return NVME_TCP_PDU_FATAL;
}
}
if (pdu->rw_offset < data_len) {
return NVME_TCP_PDU_IN_PROGRESS;
}
/* All of this PDU has now been read from the socket. */
nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
break;
case NVME_TCP_PDU_RECV_STATE_ERROR:
if (!spdk_sock_is_connected(tqpair->sock)) {
return NVME_TCP_PDU_FATAL;
}
break;
default:
assert(0);
SPDK_ERRLOG("code should not come to here");
break;
}
} while (tqpair->recv_state != prev_state);
return rc;
}
static inline void *
nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
{
struct spdk_nvmf_tcp_control_msg *msg;
assert(list);
msg = STAILQ_FIRST(&list->free_msgs);
if (!msg) {
SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
return NULL;
}
STAILQ_REMOVE_HEAD(&list->free_msgs, link);
return msg;
}
static inline void
nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
{
struct spdk_nvmf_tcp_control_msg *msg = _msg;
assert(list);
STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
}
static int
nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
struct spdk_nvmf_transport *transport,
struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_request *req = &tcp_req->req;
struct spdk_nvme_cmd *cmd;
struct spdk_nvme_cpl *rsp;
struct spdk_nvme_sgl_descriptor *sgl;
struct spdk_nvmf_tcp_poll_group *tgroup;
uint32_t length;
cmd = &req->cmd->nvme_cmd;
rsp = &req->rsp->nvme_cpl;
sgl = &cmd->dptr.sgl1;
length = sgl->unkeyed.length;
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
if (length > transport->opts.max_io_size) {
SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
length, transport->opts.max_io_size);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
/* fill request length and populate iovs */
req->length = length;
SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
req->dif.orig_length = length;
length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
req->dif.elba_length = length;
}
if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
/* No available buffers. Queue this request up. */
SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
tcp_req);
return 0;
}
/* backward compatible */
req->data = req->iov[0].iov_base;
SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
tcp_req, req->iovcnt, req->data);
return 0;
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
uint64_t offset = sgl->address;
uint32_t max_len = transport->opts.in_capsule_data_size;
assert(tcp_req->has_incapsule_data);
SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
offset, length);
if (offset > max_len) {
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
offset, max_len);
rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
return -1;
}
max_len -= (uint32_t)offset;
if (spdk_unlikely(length > max_len)) {
/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
(cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
/* Get a buffer from dedicated list */
SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
assert(tgroup->control_msg_list);
req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
if (!req->data) {
/* No available buffers. Queue this request up. */
SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
return 0;
}
} else {
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
length, max_len);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
} else {
req->data = tcp_req->buf;
}
req->length = length;
req->data_from_pool = false;
if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
req->dif.elba_length = length;
}
req->iov[0].iov_base = req->data;
req->iov[0].iov_len = length;
req->iovcnt = 1;
return 0;
}
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
return -1;
}
static inline enum spdk_nvme_media_error_status_code
nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
enum spdk_nvme_media_error_status_code result;
switch (err_type)
{
case SPDK_DIF_REFTAG_ERROR:
result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
break;
case SPDK_DIF_APPTAG_ERROR:
result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
break;
case SPDK_DIF_GUARD_ERROR:
result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
break;
default:
SPDK_UNREACHABLE();
break;
}
return result;
}
static void
_nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_req *tcp_req)
{
struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
uint32_t plen, pdo, alignment;
int rc;
SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
rsp_pdu = tcp_req->pdu;
assert(rsp_pdu != NULL);
assert(tcp_req->pdu_in_use);
c2h_data = &rsp_pdu->hdr.c2h_data;
c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
plen = c2h_data->common.hlen = sizeof(*c2h_data);
if (tqpair->host_hdgst_enable) {
plen += SPDK_NVME_TCP_DIGEST_LEN;
c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
}
/* set the psh */
c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
c2h_data->datao = tcp_req->pdu->rw_offset;
/* set the padding */
rsp_pdu->padding_len = 0;
pdo = plen;
if (tqpair->cpda) {
alignment = (tqpair->cpda + 1) << 2;
if (plen % alignment != 0) {
pdo = (plen + alignment) / alignment * alignment;
rsp_pdu->padding_len = pdo - plen;
plen = pdo;
}
}
c2h_data->common.pdo = pdo;
plen += c2h_data->datal;
if (tqpair->host_ddgst_enable) {
c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
c2h_data->common.plen = plen;
if (spdk_unlikely(tcp_req->req.dif.dif_insert_or_strip)) {
rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
}
nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
c2h_data->datao, c2h_data->datal);
c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
/* Need to send the capsule response if response is not all 0 */
if (ttransport->tcp_opts.c2h_success &&
tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
}
if (spdk_unlikely(tcp_req->req.dif.dif_insert_or_strip)) {
struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
struct spdk_dif_error err_blk = {};
uint32_t mapped_length = 0;
uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
uint32_t ddgst_len = 0;
if (tqpair->host_ddgst_enable) {
/* Data digest consumes additional iov entry */
available_iovs--;
/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
c2h_data->common.plen -= ddgst_len;
}
/* Temp call to estimate if data can be described by limited number of iovs.
* iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
false, &mapped_length);
if (mapped_length != c2h_data->common.plen) {
c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
SPDK_DEBUGLOG(nvmf_tcp,
"Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
c2h_data->common.plen = mapped_length;
/* Rebuild pdu->data_iov since data length is changed */
nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
c2h_data->datal);
c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
}
c2h_data->common.plen += ddgst_len;
assert(rsp_pdu->rw_offset <= tcp_req->req.length);
rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
if (rc != 0) {
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
nvmf_tcp_req_pdu_fini(tcp_req);
nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
return;
}
}
rsp_pdu->rw_offset += c2h_data->datal;
nvmf_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
}
static void
nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_req *tcp_req)
{
nvmf_tcp_req_pdu_init(tcp_req);
_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
}
static int
request_transfer_out(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_tcp_req *tcp_req;
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_tcp_qpair *tqpair;
struct spdk_nvme_cpl *rsp;
SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
qpair = req->qpair;
rsp = &req->rsp->nvme_cpl;
tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
/* Advance our sq_head pointer */
if (qpair->sq_head == qpair->sq_head_max) {
qpair->sq_head = 0;
} else {
qpair->sq_head++;
}
rsp->sqhd = qpair->sq_head;
tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
nvmf_tcp_send_c2h_data(tqpair, tcp_req);
} else {
nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
}
return 0;
}
static void
nvmf_tcp_set_incapsule_data(struct spdk_nvmf_tcp_qpair *tqpair,
struct spdk_nvmf_tcp_req *tcp_req)
{
struct nvme_tcp_pdu *pdu;
uint32_t plen = 0;
pdu = tqpair->pdu_in_progress;
plen = pdu->hdr.common.hlen;
if (tqpair->host_hdgst_enable) {
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
if (pdu->hdr.common.plen != plen) {
tcp_req->has_incapsule_data = true;
}
}
static bool
nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
struct spdk_nvmf_tcp_req *tcp_req)
{
struct spdk_nvmf_tcp_qpair *tqpair;
int rc;
enum spdk_nvmf_tcp_req_state prev_state;
bool progress = false;
struct spdk_nvmf_transport *transport = &ttransport->transport;
struct spdk_nvmf_transport_poll_group *group;
struct spdk_nvmf_tcp_poll_group *tgroup;
tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
group = &tqpair->group->group;
assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
/* If the qpair is not active, we need to abort the outstanding requests. */
if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
}
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
}
/* The loop here is to allow for several back-to-back state changes. */
do {
prev_state = tcp_req->state;
SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
tqpair);
switch (tcp_req->state) {
case TCP_REQUEST_STATE_FREE:
/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
* to escape this state. */
break;
case TCP_REQUEST_STATE_NEW:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, 0, 0, (uintptr_t)tcp_req, 0);
/* copy the cmd from the receive pdu */
tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
tcp_req->req.dif.dif_insert_or_strip = true;
tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
}
/* The next state transition depends on the data transfer needs of this request. */
tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SC_INVALID_OPCODE;
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
break;
}
/* If no data to transfer, ready to execute. */
if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
/* Reset the tqpair receving pdu state */
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
break;
}
nvmf_tcp_set_incapsule_data(tqpair, tcp_req);
if (!tcp_req->has_incapsule_data) {
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
}
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
break;
case TCP_REQUEST_STATE_NEED_BUFFER:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, 0, 0, (uintptr_t)tcp_req, 0);
assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
if (!tcp_req->has_incapsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
SPDK_DEBUGLOG(nvmf_tcp,
"Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
tcp_req, tqpair);
/* This request needs to wait in line to obtain a buffer */
break;
}
/* Try to get a data buffer */
rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
if (rc < 0) {
STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
/* Reset the tqpair receving pdu state */
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
break;
}
if (!tcp_req->req.data) {
SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
tcp_req, tqpair);
/* No buffers available. */
break;
}
STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
/* If data is transferring from host to controller, we need to do a transfer from the host. */
if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
if (tcp_req->req.data_from_pool) {
SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
} else {
struct nvme_tcp_pdu *pdu;
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
pdu = tqpair->pdu_in_progress;
SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
tqpair);
/* No need to send r2t, contained in the capsuled data */
nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
0, tcp_req->req.length);
nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
}
break;
}
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
break;
case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, 0, 0, (uintptr_t)tcp_req, 0);
/* The R2T completion or the h2c data incoming will kick it out of this state. */
break;
case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
(uintptr_t)tcp_req, 0);
/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
* to escape this state. */
break;
case TCP_REQUEST_STATE_READY_TO_EXECUTE:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, (uintptr_t)tcp_req, 0);
if (spdk_unlikely(tcp_req->req.dif.dif_insert_or_strip)) {
assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
tcp_req->req.length = tcp_req->req.dif.elba_length;
}
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
spdk_nvmf_request_exec(&tcp_req->req);
break;
case TCP_REQUEST_STATE_EXECUTING:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, 0, 0, (uintptr_t)tcp_req, 0);
/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
* to escape this state. */
break;
case TCP_REQUEST_STATE_EXECUTED:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, 0, 0, (uintptr_t)tcp_req, 0);
if (spdk_unlikely(tcp_req->req.dif.dif_insert_or_strip)) {
tcp_req->req.length = tcp_req->req.dif.orig_length;
}
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
break;
case TCP_REQUEST_STATE_READY_TO_COMPLETE:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, (uintptr_t)tcp_req, 0);
rc = request_transfer_out(&tcp_req->req);
assert(rc == 0); /* No good way to handle this currently */
break;
case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
(uintptr_t)tcp_req,
0);
/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
* to escape this state. */
break;
case TCP_REQUEST_STATE_COMPLETED:
spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, 0, 0, (uintptr_t)tcp_req, 0);
if (tcp_req->req.data_from_pool) {
spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
} else if (spdk_unlikely(tcp_req->has_incapsule_data && (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
assert(tgroup->control_msg_list);
SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
}
tcp_req->req.length = 0;
tcp_req->req.iovcnt = 0;
tcp_req->req.data = NULL;
nvmf_tcp_req_pdu_fini(tcp_req);
nvmf_tcp_req_put(tqpair, tcp_req);
break;
case TCP_REQUEST_NUM_STATES:
default:
assert(0);
break;
}
if (tcp_req->state != prev_state) {
progress = true;
}
} while (tcp_req->state != prev_state);
return progress;
}
static void
nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
{
struct spdk_nvmf_tcp_qpair *tqpair = arg;
int rc;
assert(tqpair != NULL);
rc = nvmf_tcp_sock_process(tqpair);
/* If there was a new socket error, disconnect */
if (rc < 0) {
nvmf_tcp_qpair_disconnect(tqpair);
}
}
static int
nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_tcp_poll_group *tgroup;
struct spdk_nvmf_tcp_qpair *tqpair;
int rc;
tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
nvmf_tcp_sock_cb, tqpair);
if (rc != 0) {
SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
spdk_strerror(errno), errno);
return -1;
}
rc = nvmf_tcp_qpair_sock_init(tqpair);
if (rc != 0) {
SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
return -1;
}
rc = nvmf_tcp_qpair_init(&tqpair->qpair);
if (rc < 0) {
SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
return -1;
}
rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
if (rc < 0) {
SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
return -1;
}
tqpair->group = tgroup;
tqpair->state = NVME_TCP_QPAIR_STATE_INVALID;
TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
return 0;
}
static int
nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_tcp_poll_group *tgroup;
struct spdk_nvmf_tcp_qpair *tqpair;
int rc;
tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
assert(tqpair->group == tgroup);
SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
} else {
TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
}
rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
if (rc != 0) {
SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
spdk_strerror(errno), errno);
}
return rc;
}
static int
nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_tcp_req *tcp_req;
ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
nvmf_tcp_req_process(ttransport, tcp_req);
return 0;
}
static void
nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
{
struct spdk_nvmf_tcp_qpair *tqpair;
SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
tqpair->state = NVME_TCP_QPAIR_STATE_EXITED;
nvmf_tcp_qpair_destroy(tqpair);
if (cb_fn) {
cb_fn(cb_arg);
}
}
static int
nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_tcp_poll_group *tgroup;
int rc;
struct spdk_nvmf_request *req, *req_tmp;
struct spdk_nvmf_tcp_req *tcp_req;
struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
nvmf/tcp: Remove spdk_nvmf_tcp_qpair_process_pending Phenomenon: Test case: Using the following command to test ./test/nvmf/target/shutdown.sh --iso --transport=tcp without this patch, it will cause coredump. The error is that the NVMe/TCP request in data buffer waiting list has "FREE" state. We do not need call this function in spdk_nvmf_tcp_qpair_flush_pdus_internal, it causes the bug during shutdown test since it will call the function recursively, and it does not work for the shutdown path. There are two possible recursive calls: (1)spdk_nvmf_tcp_qpair_flush_pdus_internal -> spdk_nvmf_tcp_qpair_process_pending -> spdk_nvmf_tcp_qpair_flush_pdus_internal -> >.. (2) spdk_nvmf_tcp_qpair_flush_pdus_internal-> pdu completion (pdu->cb) ->.. -> spdk_nvmf_tcp_qpair_flush_pdus_internal. And we need to move the processing for NVMe/TCP requests which are waiting buffer in another function to handle in order to avoid the complicated possbile recursive function calls. (Previously, we found the simliar issue in spdk_nvmf_tcp_qpair_flush_pdus_internal for pdu sending handling) But we cannot remove this feature, otherwise, the initiator will hang for waiting the I/O. So we add the same functionality in spdk_nvmf_tcp_poll_group_poll function. Purpose: To fix the NVMe/TCP shutdown issue. And this patch also reables the test for shutdown and bdevio. Change-Id: Ifa193faa3f685429dcba7557df5b311bd566e297 Signed-off-by: Ziye Yang <ziye.yang@intel.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/462658 Reviewed-by: Seth Howell <seth.howell@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2019-07-20 13:06:23 +00:00
struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
struct spdk_nvmf_tcp_transport, transport);
tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
return 0;
}
STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
nvmf/tcp: Remove spdk_nvmf_tcp_qpair_process_pending Phenomenon: Test case: Using the following command to test ./test/nvmf/target/shutdown.sh --iso --transport=tcp without this patch, it will cause coredump. The error is that the NVMe/TCP request in data buffer waiting list has "FREE" state. We do not need call this function in spdk_nvmf_tcp_qpair_flush_pdus_internal, it causes the bug during shutdown test since it will call the function recursively, and it does not work for the shutdown path. There are two possible recursive calls: (1)spdk_nvmf_tcp_qpair_flush_pdus_internal -> spdk_nvmf_tcp_qpair_process_pending -> spdk_nvmf_tcp_qpair_flush_pdus_internal -> >.. (2) spdk_nvmf_tcp_qpair_flush_pdus_internal-> pdu completion (pdu->cb) ->.. -> spdk_nvmf_tcp_qpair_flush_pdus_internal. And we need to move the processing for NVMe/TCP requests which are waiting buffer in another function to handle in order to avoid the complicated possbile recursive function calls. (Previously, we found the simliar issue in spdk_nvmf_tcp_qpair_flush_pdus_internal for pdu sending handling) But we cannot remove this feature, otherwise, the initiator will hang for waiting the I/O. So we add the same functionality in spdk_nvmf_tcp_poll_group_poll function. Purpose: To fix the NVMe/TCP shutdown issue. And this patch also reables the test for shutdown and bdevio. Change-Id: Ifa193faa3f685429dcba7557df5b311bd566e297 Signed-off-by: Ziye Yang <ziye.yang@intel.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/462658 Reviewed-by: Seth Howell <seth.howell@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2019-07-20 13:06:23 +00:00
break;
}
}
rc = spdk_sock_group_poll(tgroup->sock_group);
if (rc < 0) {
SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
}
TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
nvmf_tcp_sock_process(tqpair);
}
return rc;
}
static int
nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid, bool peer)
{
struct spdk_nvmf_tcp_qpair *tqpair;
uint16_t port;
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
if (peer) {
snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
port = tqpair->initiator_port;
} else {
snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
port = tqpair->target_port;
}
if (spdk_sock_is_ipv4(tqpair->sock)) {
trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
} else if (spdk_sock_is_ipv6(tqpair->sock)) {
trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
} else {
return -1;
}
snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
return 0;
}
static int
nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
}
static int
nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
}
static int
nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
}
static void
nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
struct spdk_nvmf_tcp_req *tcp_req_to_abort)
{
tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
}
static int
_nvmf_tcp_qpair_abort_request(void *ctx)
{
struct spdk_nvmf_request *req = ctx;
struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
struct spdk_nvmf_tcp_req, req);
struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
struct spdk_nvmf_tcp_qpair, qpair);
int rc;
spdk_poller_unregister(&req->poller);
switch (tcp_req_to_abort->state) {
case TCP_REQUEST_STATE_EXECUTING:
rc = nvmf_ctrlr_abort_request(req);
if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
return SPDK_POLLER_BUSY;
}
break;
case TCP_REQUEST_STATE_NEED_BUFFER:
STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
&tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
break;
case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
break;
case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
if (spdk_get_ticks() < req->timeout_tsc) {
req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
return SPDK_POLLER_BUSY;
}
break;
default:
break;
}
spdk_nvmf_request_complete(req);
return SPDK_POLLER_BUSY;
}
static void
nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
struct spdk_nvmf_request *req)
{
struct spdk_nvmf_tcp_qpair *tqpair;
struct spdk_nvmf_tcp_transport *ttransport;
struct spdk_nvmf_transport *transport;
uint16_t cid;
uint32_t i;
struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
transport = &ttransport->transport;
cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
for (i = 0; i < tqpair->resource_count; i++) {
if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
tcp_req_to_abort = &tqpair->reqs[i];
break;
}
}
if (tcp_req_to_abort == NULL) {
spdk_nvmf_request_complete(req);
return;
}
req->req_to_abort = &tcp_req_to_abort->req;
req->timeout_tsc = spdk_get_ticks() +
transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
req->poller = NULL;
_nvmf_tcp_qpair_abort_request(req);
}
#define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
#define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
#define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
#define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
#define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
#define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
#define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
#define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
#define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
#define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
static void
nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
{
opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
opts->max_qpairs_per_ctrlr = SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
opts->in_capsule_data_size = SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
opts->max_io_size = SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
opts->io_unit_size = SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
opts->num_shared_buffers = SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
opts->buf_cache_size = SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
opts->dif_insert_or_strip = SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
opts->abort_timeout_sec = SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
opts->transport_specific = NULL;
}
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
.name = "TCP",
.type = SPDK_NVME_TRANSPORT_TCP,
.opts_init = nvmf_tcp_opts_init,
.create = nvmf_tcp_create,
.dump_opts = nvmf_tcp_dump_opts,
.destroy = nvmf_tcp_destroy,
.listen = nvmf_tcp_listen,
.stop_listen = nvmf_tcp_stop_listen,
.accept = nvmf_tcp_accept,
.listener_discover = nvmf_tcp_discover,
.poll_group_create = nvmf_tcp_poll_group_create,
.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
.poll_group_destroy = nvmf_tcp_poll_group_destroy,
.poll_group_add = nvmf_tcp_poll_group_add,
.poll_group_remove = nvmf_tcp_poll_group_remove,
.poll_group_poll = nvmf_tcp_poll_group_poll,
.req_free = nvmf_tcp_req_free,
.req_complete = nvmf_tcp_req_complete,
.qpair_fini = nvmf_tcp_close_qpair,
.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
.qpair_abort_request = nvmf_tcp_qpair_abort_request,
};
SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)