env: Split spdk_mem_map* functions into a separate file

This makes the separation between the vtophys map
and the generic memory map code clearer.

Change-Id: I3e8686e432a4594339008698de156d3978e9768a
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-on: https://review.gerrithub.io/375640
Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
This commit is contained in:
Ben Walker 2017-08-24 14:20:12 -07:00 committed by Jim Harris
parent 5d92c3e68d
commit 1d24e67d63
5 changed files with 577 additions and 518 deletions

View File

@ -35,7 +35,7 @@ SPDK_ROOT_DIR := $(abspath $(CURDIR)/../..)
include $(SPDK_ROOT_DIR)/mk/spdk.common.mk
CFLAGS += $(ENV_CFLAGS)
C_SRCS = env.c pci.c vtophys.c init.c threads.c
C_SRCS = env.c memory.c pci.c vtophys.c init.c threads.c
C_SRCS += pci_nvme.c pci_ioat.c
LIBNAME = env_dpdk

View File

@ -50,6 +50,22 @@ extern struct rte_pci_bus rte_pci_bus;
#include <rte_pci.h>
#include <rte_dev.h>
/* x86-64 userspace virtual addresses use only the low 47 bits [0..46],
* which is enough to cover 128 TB.
*/
#define SHIFT_128TB 47 /* (1 << 47) == 128 TB */
#define MASK_128TB ((1ULL << SHIFT_128TB) - 1)
#define SHIFT_1GB 30 /* (1 << 30) == 1 GB */
#define MASK_1GB ((1ULL << SHIFT_1GB) - 1)
#define SHIFT_2MB 21 /* (1 << 21) == 2MB */
#define MASK_2MB ((1ULL << SHIFT_2MB) - 1)
#define VALUE_2MB (1 << SHIFT_2MB)
#define SHIFT_4KB 12 /* (1 << 12) == 4KB */
#define MASK_4KB ((1ULL << SHIFT_4KB) - 1)
struct spdk_pci_enum_ctx {
struct rte_pci_driver driver;
spdk_pci_enum_cb cb_fn;
@ -65,6 +81,7 @@ int spdk_pci_enumerate(struct spdk_pci_enum_ctx *ctx, spdk_pci_enum_cb enum_cb,
int spdk_pci_device_attach(struct spdk_pci_enum_ctx *ctx, spdk_pci_enum_cb enum_cb, void *enum_ctx,
struct spdk_pci_addr *pci_address);
void spdk_vtophys_register_dpdk_mem(void);
void spdk_mem_map_init(void);
void spdk_vtophys_init(void);
#endif

View File

@ -284,5 +284,6 @@ void spdk_env_init(const struct spdk_env_opts *opts)
exit(-1);
}
spdk_vtophys_register_dpdk_mem();
spdk_mem_map_init();
spdk_vtophys_init();
}

555
lib/env_dpdk/memory.c Normal file
View File

@ -0,0 +1,555 @@
/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include "spdk_internal/assert.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#if DEBUG
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_128TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB + 1)) - 1))
/* Max value for a 16-bit ref count. */
#define VTOPHYS_MAX_REF_COUNT (0xFFFF)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB + 1)];
uint16_t ref_count[1ULL << (SHIFT_1GB - SHIFT_2MB + 1)];
};
/* Top-level map table indexed by bits [30..46] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_128tb {
struct map_1gb *map[1ULL << (SHIFT_128TB - SHIFT_1GB + 1)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_128tb map_128tb;
pthread_mutex_t mutex;
uint64_t default_translation;
spdk_mem_map_notify_cb notify_cb;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
static struct spdk_mem_map *g_mem_reg_map;
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static void
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_128tb;
uint64_t contig_start = 0;
uint64_t contig_end = 0;
#define END_RANGE() \
do { \
if (contig_start != 0) { \
/* End of of a virtually contiguous range */ \
map->notify_cb(map->cb_ctx, map, action, \
(void *)contig_start, \
contig_end - contig_start + 2 * 1024 * 1024); \
} \
contig_start = 0; \
} while (0)
if (!g_mem_reg_map) {
return;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_128tb = 0;
idx_128tb < sizeof(g_mem_reg_map->map_128tb.map) / sizeof(g_mem_reg_map->map_128tb.map[0]);
idx_128tb++) {
const struct map_1gb *map_1gb = g_mem_reg_map->map_128tb.map[idx_128tb];
uint64_t idx_1gb;
if (!map_1gb) {
END_RANGE();
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if (map_1gb->map[idx_1gb].translation_2mb != 0) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_128tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == 0) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
END_RANGE();
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, spdk_mem_map_notify_cb notify_cb, void *cb_ctx)
{
struct spdk_mem_map *map;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->notify_cb = notify_cb;
map->cb_ctx = cb_ctx;
pthread_mutex_lock(&g_spdk_mem_map_mutex);
if (notify_cb) {
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
for (i = 0; i < sizeof(map->map_128tb.map) / sizeof(map->map_128tb.map[0]); i++) {
free(map->map_128tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
uint64_t ref_count;
/* In g_mem_reg_map, the "translation" is the reference count */
ref_count = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, ref_count + 1);
if (ref_count > 0) {
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
seg_vaddr = vaddr + VALUE_2MB;
seg_len = 0;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t ref_count;
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
ref_count = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr);
if (ref_count == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
/* In g_mem_reg_map, the "translation" is the reference count */
ref_count = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, ref_count - 1);
if (ref_count > 1) {
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
seg_vaddr = vaddr + VALUE_2MB;
seg_len = 0;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_128tb = MAP_128TB_IDX(vfn_2mb);
size_t i;
map_1gb = map->map_128tb.map[idx_128tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_128tb.map[idx_128tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
memset(map_1gb->ref_count, 0, sizeof(map_1gb->ref_count));
map->map_128tb.map[idx_128tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
uint16_t *ref_count;
/* For now, only 2 MB-aligned registrations are supported */
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
ref_count = &map_1gb->ref_count[idx_1gb];
if (*ref_count == VTOPHYS_MAX_REF_COUNT) {
DEBUG_PRINT("ref count for %p already at %d\n",
(void *)vaddr, VTOPHYS_MAX_REF_COUNT);
return -EBUSY;
}
map_2mb->translation_2mb = translation;
(*ref_count)++;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
uint16_t *ref_count;
/* For now, only 2 MB-aligned registrations are supported */
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
ref_count = &map_1gb->ref_count[idx_1gb];
if (*ref_count == 0) {
DEBUG_PRINT("vaddr %p not registered\n", (void *)vaddr);
return -EINVAL;
}
(*ref_count)--;
if (*ref_count == 0) {
map_2mb->translation_2mb = map->default_translation;
}
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_128tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
if (spdk_unlikely(vaddr & ~MASK_128TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_128tb = MAP_128TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_128tb.map[idx_128tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
map_2mb = &map_1gb->map[idx_1gb];
return map_2mb->translation_2mb;
}
void
spdk_mem_map_init(void)
{
struct rte_mem_config *mcfg;
size_t seg_idx;
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
abort();
}
/*
* Walk all DPDK memory segments and register them
* with the master memory map
*/
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
spdk_mem_register(seg->addr, seg->len);
}
}

View File

@ -51,496 +51,7 @@
#define DEBUG_PRINT(...)
#endif
/* x86-64 userspace virtual addresses use only the low 47 bits [0..46],
* which is enough to cover 128 TB.
*/
#define SHIFT_128TB 47 /* (1 << 47) == 128 TB */
#define MASK_128TB ((1ULL << SHIFT_128TB) - 1)
#define SHIFT_1GB 30 /* (1 << 30) == 1 GB */
#define MASK_1GB ((1ULL << SHIFT_1GB) - 1)
#define SHIFT_2MB 21 /* (1 << 21) == 2MB */
#define MASK_2MB ((1ULL << SHIFT_2MB) - 1)
#define VALUE_2MB (1 << SHIFT_2MB)
#define SHIFT_4KB 12 /* (1 << 12) == 4KB */
#define MASK_4KB ((1ULL << SHIFT_4KB) - 1)
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_128TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB + 1)) - 1))
/* Max value for a 16-bit ref count. */
#define VTOPHYS_MAX_REF_COUNT (0xFFFF)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB + 1)];
uint16_t ref_count[1ULL << (SHIFT_1GB - SHIFT_2MB + 1)];
};
/* Top-level map table indexed by bits [30..46] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_128tb {
struct map_1gb *map[1ULL << (SHIFT_128TB - SHIFT_1GB + 1)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_128tb map_128tb;
pthread_mutex_t mutex;
uint64_t default_translation;
spdk_mem_map_notify_cb notify_cb;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
static struct spdk_mem_map *g_mem_reg_map;
static struct spdk_mem_map *g_vtophys_map;
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static void
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_128tb;
uint64_t contig_start = 0;
uint64_t contig_end = 0;
#define END_RANGE() \
do { \
if (contig_start != 0) { \
/* End of of a virtually contiguous range */ \
map->notify_cb(map->cb_ctx, map, action, \
(void *)contig_start, \
contig_end - contig_start + 2 * 1024 * 1024); \
} \
contig_start = 0; \
} while (0)
if (!g_mem_reg_map) {
return;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_128tb = 0;
idx_128tb < sizeof(g_mem_reg_map->map_128tb.map) / sizeof(g_mem_reg_map->map_128tb.map[0]);
idx_128tb++) {
const struct map_1gb *map_1gb = g_mem_reg_map->map_128tb.map[idx_128tb];
uint64_t idx_1gb;
if (!map_1gb) {
END_RANGE();
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if (map_1gb->map[idx_1gb].translation_2mb != 0) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_128tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == 0) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
END_RANGE();
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, spdk_mem_map_notify_cb notify_cb, void *cb_ctx)
{
struct spdk_mem_map *map;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->notify_cb = notify_cb;
map->cb_ctx = cb_ctx;
pthread_mutex_lock(&g_spdk_mem_map_mutex);
if (notify_cb) {
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
for (i = 0; i < sizeof(map->map_128tb.map) / sizeof(map->map_128tb.map[0]); i++) {
free(map->map_128tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
uint64_t ref_count;
/* In g_mem_reg_map, the "translation" is the reference count */
ref_count = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, ref_count + 1);
if (ref_count > 0) {
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
seg_vaddr = vaddr + VALUE_2MB;
seg_len = 0;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t ref_count;
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
ref_count = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr);
if (ref_count == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
/* In g_mem_reg_map, the "translation" is the reference count */
ref_count = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, ref_count - 1);
if (ref_count > 1) {
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
seg_vaddr = vaddr + VALUE_2MB;
seg_len = 0;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_128tb = MAP_128TB_IDX(vfn_2mb);
size_t i;
map_1gb = map->map_128tb.map[idx_128tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_128tb.map[idx_128tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
memset(map_1gb->ref_count, 0, sizeof(map_1gb->ref_count));
map->map_128tb.map[idx_128tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
uint16_t *ref_count;
/* For now, only 2 MB-aligned registrations are supported */
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
ref_count = &map_1gb->ref_count[idx_1gb];
if (*ref_count == VTOPHYS_MAX_REF_COUNT) {
DEBUG_PRINT("ref count for %p already at %d\n",
(void *)vaddr, VTOPHYS_MAX_REF_COUNT);
return -EBUSY;
}
map_2mb->translation_2mb = translation;
(*ref_count)++;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
uint16_t *ref_count;
/* For now, only 2 MB-aligned registrations are supported */
if ((uintptr_t)vaddr & ~MASK_128TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
ref_count = &map_1gb->ref_count[idx_1gb];
if (*ref_count == 0) {
DEBUG_PRINT("vaddr %p not registered\n", (void *)vaddr);
return -EINVAL;
}
(*ref_count)--;
if (*ref_count == 0) {
map_2mb->translation_2mb = map->default_translation;
}
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_128tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
if (spdk_unlikely(vaddr & ~MASK_128TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_128tb = MAP_128TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_128tb.map[idx_128tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
map_2mb = &map_1gb->map[idx_1gb];
return map_2mb->translation_2mb;
}
/* Try to get the paddr from the DPDK memsegs */
static uint64_t
@ -651,33 +162,8 @@ spdk_vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
}
void
spdk_vtophys_register_dpdk_mem(void)
spdk_vtophys_init(void)
{
struct rte_mem_config *mcfg;
size_t seg_idx;
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
abort();
}
/*
* Walk all DPDK memory segments and register them
* with the master memory map
*/
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
spdk_mem_register(seg->addr, seg->len);
}
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, spdk_vtophys_notify, NULL);
if (g_vtophys_map == NULL) {
DEBUG_PRINT("vtophys map allocation failed\n");