histogram: move nvme/perf histogram code to a common header

Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: Ia0083365b2da63cb38aebb9f7bbc02f4dfd1ae94

Reviewed-on: https://review.gerrithub.io/365263
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
This commit is contained in:
Jim Harris 2017-06-13 08:48:55 -07:00
parent ad20a6ddc2
commit 5044e4f65a
2 changed files with 231 additions and 127 deletions

View File

@ -43,6 +43,7 @@
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
#include "spdk/histogram_data.h"
#if HAVE_LIBAIO
#include <libaio.h>
@ -81,41 +82,6 @@ struct ns_entry {
char name[1024];
};
/*
* Latency tracking is done with ranges of bucket arrays. The bucket
* for any given I/O is determined solely by the TSC delta - any
* translation to microseconds is only done after the test is finished
* and statistics are printed.
*
* Each range has a number of buckets determined by NUM_BUCKETS_PER_RANGE
* which is 128. The buckets in ranges 0 and 1 each map to one specific
* TSC delta. The buckets in subsequent ranges each map to twice as many
* TSC deltas as buckets in the range before it:
*
* Range 0: 1 TSC each - 128 buckets cover 0 to 127 (2^7-1)
* Range 1: 1 TSC each - 128 buckets cover 128 to 255 (2^8-1)
* Range 2: 2 TSC each - 128 buckets cover 256 to 511 (2^9-1)
* Range 3: 4 TSC each - 128 buckets cover 512 to 1023 (2^10-1)
* Range 4: 8 TSC each - 128 buckets cover 1024 to 2047 (2^11-1)
* Range 5: 16 TSC each - 128 buckets cover 2048 to 4095 (2^12-1)
* ...
* Range 55: 2^54 TSC each - 128 buckets cover 2^61 to 2^62-1
* Range 56: 2^55 TSC each - 128 buckets cover 2^62 to 2^63-1
* Range 57: 2^56 TSC each - 128 buckets cover 2^63 to 2^64-1
*
* On a 2.3GHz processor, this strategy results in 50ns buckets in the
* 7-14us range (sweet spot for Intel Optane SSD latency testing).
*
* Buckets can be made more granular by increasing BUCKET_SHIFT. This
* comes at the cost of additional storage per namespace context to
* store the bucket data.
*/
#define BUCKET_SHIFT 7
#define BUCKET_LSB (64 - BUCKET_SHIFT)
#define NUM_BUCKETS_PER_RANGE (1ULL << BUCKET_SHIFT)
#define BUCKET_MASK (NUM_BUCKETS_PER_RANGE - 1)
#define NUM_BUCKET_RANGES (BUCKET_LSB + 1)
static const double g_latency_cutoffs[] = {
0.01,
0.10,
@ -157,7 +123,7 @@ struct ns_worker_ctx {
struct ns_worker_ctx *next;
uint64_t bucket[NUM_BUCKET_RANGES][NUM_BUCKETS_PER_RANGE];
struct spdk_histogram_data histogram;
};
struct perf_task {
@ -215,63 +181,6 @@ static int g_aio_optind; /* Index of first AIO filename in argv */
static void
task_complete(struct perf_task *task);
static uint32_t
get_bucket_range(uint64_t tsc)
{
uint32_t clz, range;
assert(tsc != 0);
clz = __builtin_clzll(tsc);
if (clz <= BUCKET_LSB) {
range = BUCKET_LSB - clz;
} else {
range = 0;
}
return range;
}
static uint32_t
get_bucket_index(uint64_t tsc, uint32_t range)
{
uint32_t shift;
if (range == 0) {
shift = 0;
} else {
shift = range - 1;
}
return (tsc >> shift) & BUCKET_MASK;
}
static double
get_us_from_bucket(uint32_t range, uint32_t index)
{
uint64_t tsc;
index += 1;
if (range > 0) {
tsc = 1ULL << (range + BUCKET_SHIFT - 1);
tsc += (uint64_t)index << (range - 1);
} else {
tsc = index;
}
return (double)tsc * 1000 * 1000 / g_tsc_rate;
}
static void
track_latency(struct ns_worker_ctx *ns_ctx, uint64_t tsc)
{
uint32_t range = get_bucket_range(tsc);
uint32_t index = get_bucket_index(tsc, range);
ns_ctx->bucket[range][index]++;
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
@ -607,7 +516,7 @@ task_complete(struct perf_task *task)
ns_ctx->max_tsc = tsc_diff;
}
if (g_latency_sw_tracking_level > 0) {
track_latency(ns_ctx, tsc_diff);
spdk_histogram_data_tally(&ns_ctx->histogram, tsc_diff);
}
rte_mempool_put(task_pool, task);
@ -792,6 +701,41 @@ static void usage(char *program_name)
printf("\t[-i shared memory group ID]\n");
}
static void
check_cutoff(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
double **cutoff = ctx;
if (count == 0) {
return;
}
so_far_pct = (double)so_far / total;
while (so_far_pct >= **cutoff && **cutoff > 0) {
printf("%8.4f%% : %9.3fus\n", **cutoff * 100, (double)end * 1000 * 1000 / g_tsc_rate);
(*cutoff)++;
}
}
static void
print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
if (count == 0) {
return;
}
so_far_pct = (double)so_far * 100 / total;
printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n",
(double)start * 1000 * 1000 / g_tsc_rate,
(double)end * 1000 * 1000 / g_tsc_rate,
so_far_pct, count);
}
static void
print_performance(void)
{
@ -858,27 +802,13 @@ print_performance(void)
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
uint64_t i, j, so_far = 0;
double so_far_pct = 0, bucket = 0;
const double *cutoff = g_latency_cutoffs;
printf("Summary latency data for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
printf("=================================================================================\n");
for (i = 0; i < NUM_BUCKET_RANGES; i++) {
for (j = 0; j < NUM_BUCKETS_PER_RANGE; j++) {
so_far += ns_ctx->bucket[i][j];
so_far_pct = (double)so_far / total_io_completed;
bucket = get_us_from_bucket(i, j);
if (ns_ctx->bucket[i][j] == 0) {
continue;
}
while (so_far_pct >= *cutoff && *cutoff > 0) {
printf("%8.4f%% : %9.3fus\n", *cutoff * 100, bucket);
cutoff++;
}
}
}
spdk_histogram_data_iterate(&ns_ctx->histogram, check_cutoff, &cutoff);
printf("\n");
ns_ctx = ns_ctx->next;
}
@ -893,27 +823,11 @@ print_performance(void)
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
uint64_t i, j, so_far = 0;
float so_far_pct = 0;
double last_bucket, bucket = 0;
printf("Latency histogram for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
printf("==============================================================================\n");
printf(" Range in us Cumulative IO count\n");
for (i = 0; i < NUM_BUCKET_RANGES; i++) {
for (j = 0; j < NUM_BUCKETS_PER_RANGE; j++) {
so_far += ns_ctx->bucket[i][j];
so_far_pct = (float)so_far * 100 / total_io_completed;
last_bucket = bucket;
bucket = get_us_from_bucket(i, j);
if (ns_ctx->bucket[i][j] == 0) {
continue;
}
printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n",
last_bucket, bucket, so_far_pct, ns_ctx->bucket[i][j]);
}
}
spdk_histogram_data_iterate(&ns_ctx->histogram, print_bucket, NULL);
printf("\n");
ns_ctx = ns_ctx->next;
}
@ -1376,6 +1290,7 @@ associate_workers_with_ns(void)
ns_ctx->min_tsc = UINT64_MAX;
ns_ctx->entry = entry;
ns_ctx->next = worker->ns_ctx;
spdk_histogram_data_reset(&ns_ctx->histogram);
worker->ns_ctx = ns_ctx;
worker = worker->next;

View File

@ -0,0 +1,189 @@
/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* Generic histogram library
*/
#ifndef _SPDK_HISTOGRAM_DATA_H_
#define _SPDK_HISTOGRAM_DATA_H_
#include "spdk/stdinc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define SPDK_HISTOGRAM_BUCKET_SHIFT 7
#define SPDK_HISTOGRAM_BUCKET_LSB (64 - SPDK_HISTOGRAM_BUCKET_SHIFT)
#define SPDK_HISTOGRAM_NUM_BUCKETS_PER_RANGE (1ULL << SPDK_HISTOGRAM_BUCKET_SHIFT)
#define SPDK_HISTOGRAM_BUCKET_MASK (SPDK_HISTOGRAM_NUM_BUCKETS_PER_RANGE - 1)
#define SPDK_HISTOGRAM_NUM_BUCKET_RANGES (SPDK_HISTOGRAM_BUCKET_LSB + 1)
/*
* SPDK histograms are implemented using ranges of bucket arrays. The most common usage
* model is using TSC datapoints to capture an I/O latency histogram. For this usage model,
* the histogram tracks only TSC deltas - any translation to microseconds is done by the
* histogram user calling spdk_histogram_data_iterate() to iterate over the buckets to perform
* the translations.
*
* Each range has a number of buckets determined by SPDK_HISTOGRAM_NUM_BUCKETS_PER_RANGE
* which is 128. The buckets in ranges 0 and 1 each map to one specific datapoint value.
* The buckets in subsequent ranges each map to twice as many datapoint values as buckets
* in the range before it:
*
* Range 0: 1 value each - 128 buckets cover 0 to 127 (2^7-1)
* Range 1: 1 value each - 128 buckets cover 128 to 255 (2^8-1)
* Range 2: 2 values each - 128 buckets cover 256 to 511 (2^9-1)
* Range 3: 4 values each - 128 buckets cover 512 to 1023 (2^10-1)
* Range 4: 8 values each - 128 buckets cover 1024 to 2047 (2^11-1)
* Range 5: 16 values each - 128 buckets cover 2048 to 4095 (2^12-1)
* ...
* Range 55: 2^54 values each - 128 buckets cover 2^61 to 2^62-1
* Range 56: 2^55 values each - 128 buckets cover 2^62 to 2^63-1
* Range 57: 2^56 values each - 128 buckets cover 2^63 to 2^64-1
*
* On a 2.3GHz processor, this strategy results in 50ns buckets in the 7-14us range (sweet
* spot for Intel Optane SSD latency testing).
*
* Buckets can be made more granular by increasing SPDK_HISTOGRAM_BUCKET_SHIFT. This
* comes at the cost of additional storage per namespace context to store the bucket data.
*/
struct spdk_histogram_data {
uint64_t bucket[SPDK_HISTOGRAM_NUM_BUCKET_RANGES][SPDK_HISTOGRAM_NUM_BUCKETS_PER_RANGE];
};
static inline void
spdk_histogram_data_reset(struct spdk_histogram_data *histogram)
{
memset(histogram, 0, sizeof(*histogram));
}
static inline uint32_t
__spdk_histogram_data_get_bucket_range(uint64_t datapoint)
{
uint32_t clz, range;
assert(datapoint != 0);
clz = __builtin_clzll(datapoint);
if (clz <= SPDK_HISTOGRAM_BUCKET_LSB) {
range = SPDK_HISTOGRAM_BUCKET_LSB - clz;
} else {
range = 0;
}
return range;
}
static inline uint32_t
__spdk_histogram_data_get_bucket_index(uint64_t datapoint, uint32_t range)
{
uint32_t shift;
if (range == 0) {
shift = 0;
} else {
shift = range - 1;
}
return (datapoint >> shift) & SPDK_HISTOGRAM_BUCKET_MASK;
}
static inline void
spdk_histogram_data_tally(struct spdk_histogram_data *histogram, uint64_t datapoint)
{
uint32_t range = __spdk_histogram_data_get_bucket_range(datapoint);
uint32_t index = __spdk_histogram_data_get_bucket_index(datapoint, range);
histogram->bucket[range][index]++;
}
static inline uint64_t
__spdk_histogram_data_get_bucket_start(uint32_t range, uint32_t index)
{
uint64_t bucket;
index += 1;
if (range > 0) {
bucket = 1ULL << (range + SPDK_HISTOGRAM_BUCKET_SHIFT - 1);
bucket += (uint64_t)index << (range - 1);
} else {
bucket = index;
}
return bucket;
}
typedef void (*spdk_histogram_data_fn)(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far);
static inline void
spdk_histogram_data_iterate(const struct spdk_histogram_data *histogram,
spdk_histogram_data_fn fn, void *ctx)
{
uint64_t i, j, count, so_far, total;
uint64_t bucket, last_bucket;
total = 0;
for (i = 0; i < SPDK_HISTOGRAM_NUM_BUCKET_RANGES; i++) {
for (j = 0; j < SPDK_HISTOGRAM_NUM_BUCKETS_PER_RANGE; j++) {
total += histogram->bucket[i][j];
}
}
so_far = 0;
bucket = 0;
for (i = 0; i < SPDK_HISTOGRAM_NUM_BUCKET_RANGES; i++) {
for (j = 0; j < SPDK_HISTOGRAM_NUM_BUCKETS_PER_RANGE; j++) {
count = histogram->bucket[i][j];
so_far += count;
last_bucket = bucket;
bucket = __spdk_histogram_data_get_bucket_start(i, j);
fn(ctx, last_bucket, bucket, count, total, so_far);
}
}
}
#ifdef __cplusplus
}
#endif
#endif