scheduler_dynamic: start core selection from first core

The round-robin logic is no longer necessary to spread
the threads around the cores. Starting from core other
than first is even counter-productive to bunching up
threads.

Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Change-Id: I5fcee2bacc2d0b4af26336caf381ed954814d731
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8085
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
This commit is contained in:
Tomasz Zawadzki 2021-05-28 03:37:58 -04:00 committed by Ben Walker
parent a5999f637a
commit fe2f80961c

View File

@ -40,7 +40,6 @@
#include "spdk/thread.h"
#include "spdk_internal/event.h"
static uint32_t g_next_lcore = SPDK_ENV_LCORE_ID_ANY;
static uint32_t g_main_lcore;
static bool g_core_mngmnt_available;
@ -56,21 +55,6 @@ static struct core_stats *g_cores;
#define SCHEDULER_LOAD_LIMIT 50
#define SCHEDULER_CORE_LIMIT 95
static uint32_t
_get_next_target_core(void)
{
uint32_t target_lcore;
if (g_next_lcore == SPDK_ENV_LCORE_ID_ANY) {
g_next_lcore = spdk_env_get_first_core();
}
target_lcore = g_next_lcore;
g_next_lcore = spdk_env_get_next_core(g_next_lcore);
return target_lcore;
}
static uint8_t
_get_thread_load(struct spdk_lw_thread *lw_thread)
{
@ -188,7 +172,6 @@ static uint32_t
_find_optimal_core(struct spdk_lw_thread *lw_thread)
{
uint32_t i;
uint32_t target_lcore;
uint32_t current_lcore = lw_thread->lcore;
uint32_t least_busy_lcore = lw_thread->lcore;
struct spdk_thread *thread = spdk_thread_get_from_ctx(lw_thread);
@ -196,30 +179,28 @@ _find_optimal_core(struct spdk_lw_thread *lw_thread)
bool core_over_limit = _is_core_over_limit(current_lcore);
/* Find a core that can fit the thread. */
for (i = 0; i < spdk_env_get_core_count(); i++) {
target_lcore = _get_next_target_core();
SPDK_ENV_FOREACH_CORE(i) {
/* Ignore cores outside cpumask. */
if (!spdk_cpuset_get_cpu(cpumask, target_lcore)) {
if (!spdk_cpuset_get_cpu(cpumask, i)) {
continue;
}
/* Search for least busy core. */
if (g_cores[target_lcore].busy < g_cores[least_busy_lcore].busy) {
least_busy_lcore = target_lcore;
if (g_cores[i].busy < g_cores[least_busy_lcore].busy) {
least_busy_lcore = i;
}
/* Skip cores that cannot fit the thread and current one. */
if (!_can_core_fit_thread(lw_thread, target_lcore) || target_lcore == current_lcore) {
if (!_can_core_fit_thread(lw_thread, i) || i == current_lcore) {
continue;
}
if (target_lcore < current_lcore) {
if (i < current_lcore) {
/* Lower core id was found, move to consolidate threads on lowest core ids. */
return target_lcore;
return i;
} else if (core_over_limit) {
/* When core is over the limit, even higher core ids are better than current one. */
return target_lcore;
return i;
}
}