/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/nvme.h" #include "spdk/thread.h" #include "spdk/string.h" #include "spdk/likely.h" #include "spdk_internal/log.h" #include "spdk/ftl.h" #include "spdk/likely.h" #include "spdk/string.h" #include "spdk/bdev_zone.h" #include "spdk/bdev_module.h" #include "spdk/config.h" #include "ftl_core.h" #include "ftl_io.h" #include "ftl_reloc.h" #include "ftl_band.h" #include "ftl_debug.h" #ifdef SPDK_CONFIG_PMDK #include "libpmem.h" #endif /* SPDK_CONFIG_PMDK */ #define FTL_CORE_RING_SIZE 4096 #define FTL_INIT_TIMEOUT 30 #define FTL_NSID 1 #define FTL_ZONE_INFO_COUNT 64 /* Dummy bdev module used to to claim bdevs. */ static struct spdk_bdev_module g_ftl_bdev_module = { .name = "ftl_lib", }; struct ftl_dev_init_ctx { /* Owner */ struct spdk_ftl_dev *dev; /* Initial arguments */ struct spdk_ftl_dev_init_opts opts; /* IO channel for zone info retrieving */ struct spdk_io_channel *ioch; /* Buffer for reading zone info */ struct spdk_bdev_zone_info info[FTL_ZONE_INFO_COUNT]; /* Currently read zone */ size_t zone_id; /* User's callback */ spdk_ftl_init_fn cb_fn; /* Callback's argument */ void *cb_arg; /* Thread to call the callback on */ struct spdk_thread *thread; /* Poller to check if the device has been destroyed/initialized */ struct spdk_poller *poller; /* Status to return for halt completion callback */ int halt_complete_status; }; static STAILQ_HEAD(, spdk_ftl_dev) g_ftl_queue = STAILQ_HEAD_INITIALIZER(g_ftl_queue); static pthread_mutex_t g_ftl_queue_lock = PTHREAD_MUTEX_INITIALIZER; static const struct spdk_ftl_conf g_default_conf = { .limits = { /* 5 free bands / 0 % host writes */ [SPDK_FTL_LIMIT_CRIT] = { .thld = 5, .limit = 0 }, /* 10 free bands / 5 % host writes */ [SPDK_FTL_LIMIT_HIGH] = { .thld = 10, .limit = 5 }, /* 20 free bands / 40 % host writes */ [SPDK_FTL_LIMIT_LOW] = { .thld = 20, .limit = 40 }, /* 40 free bands / 100 % host writes - defrag starts running */ [SPDK_FTL_LIMIT_START] = { .thld = 40, .limit = 100 }, }, /* 10 percent valid blocks */ .invalid_thld = 10, /* 20% spare blocks */ .lba_rsvd = 20, /* 6M write buffer per each IO channel */ .write_buffer_size = 6 * 1024 * 1024, /* 90% band fill threshold */ .band_thld = 90, /* Max 32 IO depth per band relocate */ .max_reloc_qdepth = 32, /* Max 3 active band relocates */ .max_active_relocs = 3, /* IO pool size per user thread (this should be adjusted to thread IO qdepth) */ .user_io_pool_size = 2048, /* * If clear ftl will return error when restoring after a dirty shutdown * If set, last band will be padded, ftl will restore based only on closed bands - this * will result in lost data after recovery. */ .allow_open_bands = false, .max_io_channels = 128, .nv_cache = { /* Maximum number of concurrent requests */ .max_request_cnt = 2048, /* Maximum number of blocks per request */ .max_request_size = 16, } }; static int ftl_band_init_md(struct ftl_band *band) { struct ftl_lba_map *lba_map = &band->lba_map; lba_map->vld = spdk_bit_array_create(ftl_get_num_blocks_in_band(band->dev)); if (!lba_map->vld) { return -ENOMEM; } pthread_spin_init(&lba_map->lock, PTHREAD_PROCESS_PRIVATE); ftl_band_md_clear(band); return 0; } static int ftl_check_conf(const struct spdk_ftl_dev *dev, const struct spdk_ftl_conf *conf) { size_t i; if (conf->invalid_thld >= 100) { return -1; } if (conf->lba_rsvd >= 100) { return -1; } if (conf->lba_rsvd == 0) { return -1; } if (conf->write_buffer_size == 0) { return -1; } if (conf->write_buffer_size % FTL_BLOCK_SIZE != 0) { return -1; } for (i = 0; i < SPDK_FTL_LIMIT_MAX; ++i) { if (conf->limits[i].limit > 100) { return -1; } } return 0; } static int ftl_dev_init_bands(struct spdk_ftl_dev *dev) { struct ftl_band *band, *pband; unsigned int i; int rc = 0; LIST_INIT(&dev->free_bands); LIST_INIT(&dev->shut_bands); dev->num_free = 0; dev->bands = calloc(ftl_get_num_bands(dev), sizeof(*dev->bands)); if (!dev->bands) { return -1; } for (i = 0; i < ftl_get_num_bands(dev); ++i) { band = &dev->bands[i]; band->id = i; band->dev = dev; band->state = FTL_BAND_STATE_CLOSED; if (LIST_EMPTY(&dev->shut_bands)) { LIST_INSERT_HEAD(&dev->shut_bands, band, list_entry); } else { LIST_INSERT_AFTER(pband, band, list_entry); } pband = band; CIRCLEQ_INIT(&band->zones); band->zone_buf = calloc(ftl_get_num_punits(dev), sizeof(*band->zone_buf)); if (!band->zone_buf) { SPDK_ERRLOG("Failed to allocate block state table for band: [%u]\n", i); rc = -1; break; } rc = ftl_band_init_md(band); if (rc) { SPDK_ERRLOG("Failed to initialize metadata structures for band [%u]\n", i); break; } band->reloc_bitmap = spdk_bit_array_create(ftl_get_num_bands(dev)); if (!band->reloc_bitmap) { SPDK_ERRLOG("Failed to allocate band relocation bitmap\n"); break; } } return rc; } static void ftl_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx) { struct spdk_ftl_dev *dev = event_ctx; switch (type) { case SPDK_BDEV_EVENT_REMOVE: assert(0); break; case SPDK_BDEV_EVENT_MEDIA_MANAGEMENT: assert(bdev == spdk_bdev_desc_get_bdev(dev->base_bdev_desc)); ftl_get_media_events(dev); default: break; } } static int ftl_dev_init_nv_cache(struct spdk_ftl_dev *dev, const char *bdev_name) { struct spdk_bdev *bdev; struct spdk_ftl_conf *conf = &dev->conf; struct ftl_nv_cache *nv_cache = &dev->nv_cache; char pool_name[128]; int rc; if (!bdev_name) { return 0; } bdev = spdk_bdev_get_by_name(bdev_name); if (!bdev) { SPDK_ERRLOG("Unable to find bdev: %s\n", bdev_name); return -1; } if (spdk_bdev_open_ext(bdev_name, true, ftl_bdev_event_cb, dev, &nv_cache->bdev_desc)) { SPDK_ERRLOG("Unable to open bdev: %s\n", bdev_name); return -1; } if (spdk_bdev_module_claim_bdev(bdev, nv_cache->bdev_desc, &g_ftl_bdev_module)) { spdk_bdev_close(nv_cache->bdev_desc); nv_cache->bdev_desc = NULL; SPDK_ERRLOG("Unable to claim bdev %s\n", bdev_name); return -1; } SPDK_INFOLOG(SPDK_LOG_FTL_INIT, "Using %s as write buffer cache\n", spdk_bdev_get_name(bdev)); if (spdk_bdev_get_block_size(bdev) != FTL_BLOCK_SIZE) { SPDK_ERRLOG("Unsupported block size (%d)\n", spdk_bdev_get_block_size(bdev)); return -1; } if (!spdk_bdev_is_md_separate(bdev)) { SPDK_ERRLOG("Bdev %s doesn't support separate metadata buffer IO\n", spdk_bdev_get_name(bdev)); return -1; } if (spdk_bdev_get_md_size(bdev) < sizeof(uint64_t)) { SPDK_ERRLOG("Bdev's %s metadata is too small (%"PRIu32")\n", spdk_bdev_get_name(bdev), spdk_bdev_get_md_size(bdev)); return -1; } if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) { SPDK_ERRLOG("Unsupported DIF type used by bdev %s\n", spdk_bdev_get_name(bdev)); return -1; } /* The cache needs to be capable of storing at least two full bands. This requirement comes * from the fact that cache works as a protection against power loss, so before the data * inside the cache can be overwritten, the band it's stored on has to be closed. Plus one * extra block is needed to store the header. */ if (spdk_bdev_get_num_blocks(bdev) < ftl_get_num_blocks_in_band(dev) * 2 + 1) { SPDK_ERRLOG("Insufficient number of blocks for write buffer cache (available: %" PRIu64", required: %"PRIu64")\n", spdk_bdev_get_num_blocks(bdev), ftl_get_num_blocks_in_band(dev) * 2 + 1); return -1; } rc = snprintf(pool_name, sizeof(pool_name), "ftl-nvpool-%p", dev); if (rc < 0 || rc >= 128) { return -1; } nv_cache->md_pool = spdk_mempool_create(pool_name, conf->nv_cache.max_request_cnt, spdk_bdev_get_md_size(bdev) * conf->nv_cache.max_request_size, SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (!nv_cache->md_pool) { SPDK_ERRLOG("Failed to initialize non-volatile cache metadata pool\n"); return -1; } nv_cache->dma_buf = spdk_dma_zmalloc(FTL_BLOCK_SIZE, spdk_bdev_get_buf_align(bdev), NULL); if (!nv_cache->dma_buf) { SPDK_ERRLOG("Memory allocation failure\n"); return -1; } if (pthread_spin_init(&nv_cache->lock, PTHREAD_PROCESS_PRIVATE)) { SPDK_ERRLOG("Failed to initialize cache lock\n"); return -1; } nv_cache->current_addr = FTL_NV_CACHE_DATA_OFFSET; nv_cache->num_data_blocks = spdk_bdev_get_num_blocks(bdev) - 1; nv_cache->num_available = nv_cache->num_data_blocks; nv_cache->ready = false; return 0; } void spdk_ftl_conf_init_defaults(struct spdk_ftl_conf *conf) { *conf = g_default_conf; } static void ftl_lba_map_request_ctor(struct spdk_mempool *mp, void *opaque, void *obj, unsigned obj_idx) { struct ftl_lba_map_request *request = obj; struct spdk_ftl_dev *dev = opaque; request->segments = spdk_bit_array_create(spdk_divide_round_up( ftl_get_num_blocks_in_band(dev), FTL_NUM_LBA_IN_BLOCK)); } static int ftl_init_media_events_pool(struct spdk_ftl_dev *dev) { char pool_name[128]; int rc; rc = snprintf(pool_name, sizeof(pool_name), "ftl-media-%p", dev); if (rc < 0 || rc >= (int)sizeof(pool_name)) { SPDK_ERRLOG("Failed to create media pool name\n"); return -1; } dev->media_events_pool = spdk_mempool_create(pool_name, 1024, sizeof(struct ftl_media_event), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (!dev->media_events_pool) { SPDK_ERRLOG("Failed to create media events pool\n"); return -1; } return 0; } static int ftl_init_lba_map_pools(struct spdk_ftl_dev *dev) { #define POOL_NAME_LEN 128 char pool_name[POOL_NAME_LEN]; int rc; rc = snprintf(pool_name, sizeof(pool_name), "%s-%s", dev->name, "ftl-lba-pool"); if (rc < 0 || rc >= POOL_NAME_LEN) { return -ENAMETOOLONG; } /* We need to reserve at least 2 buffers for band close / open sequence * alone, plus additional (8) buffers for handling write errors. * TODO: This memory pool is utilized only by core thread - it introduce * unnecessary overhead and should be replaced by different data structure. */ dev->lba_pool = spdk_mempool_create(pool_name, 2 + 8, ftl_lba_map_pool_elem_size(dev), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (!dev->lba_pool) { return -ENOMEM; } rc = snprintf(pool_name, sizeof(pool_name), "%s-%s", dev->name, "ftl-lbareq-pool"); if (rc < 0 || rc >= POOL_NAME_LEN) { return -ENAMETOOLONG; } dev->lba_request_pool = spdk_mempool_create_ctor(pool_name, dev->conf.max_reloc_qdepth * dev->conf.max_active_relocs, sizeof(struct ftl_lba_map_request), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY, ftl_lba_map_request_ctor, dev); if (!dev->lba_request_pool) { return -ENOMEM; } return 0; } static void ftl_init_wptr_list(struct spdk_ftl_dev *dev) { LIST_INIT(&dev->wptr_list); LIST_INIT(&dev->flush_list); LIST_INIT(&dev->band_flush_list); } static size_t ftl_dev_band_max_seq(struct spdk_ftl_dev *dev) { struct ftl_band *band; size_t seq = 0; LIST_FOREACH(band, &dev->shut_bands, list_entry) { if (band->seq > seq) { seq = band->seq; } } return seq; } static void _ftl_init_bands_state(void *ctx) { struct ftl_band *band, *temp_band; struct spdk_ftl_dev *dev = ctx; dev->seq = ftl_dev_band_max_seq(dev); LIST_FOREACH_SAFE(band, &dev->shut_bands, list_entry, temp_band) { if (!band->lba_map.num_vld) { ftl_band_set_state(band, FTL_BAND_STATE_FREE); } } ftl_reloc_resume(dev->reloc); /* Clear the limit applications as they're incremented incorrectly by */ /* the initialization code */ memset(dev->stats.limits, 0, sizeof(dev->stats.limits)); } static int ftl_init_num_free_bands(struct spdk_ftl_dev *dev) { struct ftl_band *band; int cnt = 0; LIST_FOREACH(band, &dev->shut_bands, list_entry) { if (band->num_zones && !band->lba_map.num_vld) { cnt++; } } return cnt; } static int ftl_init_bands_state(struct spdk_ftl_dev *dev) { /* TODO: Should we abort initialization or expose read only device */ /* if there is no free bands? */ /* If we abort initialization should we depend on condition that */ /* we have no free bands or should we have some minimal number of */ /* free bands? */ if (!ftl_init_num_free_bands(dev)) { return -1; } spdk_thread_send_msg(ftl_get_core_thread(dev), _ftl_init_bands_state, dev); return 0; } static void _ftl_dev_init_core_thread(void *ctx) { struct spdk_ftl_dev *dev = ctx; dev->core_poller = SPDK_POLLER_REGISTER(ftl_task_core, dev, 0); if (!dev->core_poller) { SPDK_ERRLOG("Unable to register core poller\n"); assert(0); } dev->ioch = spdk_get_io_channel(dev); } static int ftl_dev_init_core_thread(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts) { if (!opts->core_thread) { return -1; } dev->core_thread = opts->core_thread; spdk_thread_send_msg(opts->core_thread, _ftl_dev_init_core_thread, dev); return 0; } static int ftl_dev_l2p_alloc_pmem(struct spdk_ftl_dev *dev, size_t l2p_size, const char *l2p_path) { #ifdef SPDK_CONFIG_PMDK int is_pmem; if ((dev->l2p = pmem_map_file(l2p_path, 0, 0, 0, &dev->l2p_pmem_len, &is_pmem)) == NULL) { SPDK_ERRLOG("Failed to mmap l2p_path\n"); return -1; } if (!is_pmem) { SPDK_NOTICELOG("l2p_path mapped on non-pmem device\n"); } if (dev->l2p_pmem_len < l2p_size) { SPDK_ERRLOG("l2p_path file is too small\n"); return -1; } pmem_memset_persist(dev->l2p, FTL_ADDR_INVALID, l2p_size); return 0; #else /* SPDK_CONFIG_PMDK */ SPDK_ERRLOG("Libpmem not available, cannot use pmem l2p_path\n"); return -1; #endif /* SPDK_CONFIG_PMDK */ } static int ftl_dev_l2p_alloc_dram(struct spdk_ftl_dev *dev, size_t l2p_size) { dev->l2p = malloc(l2p_size); if (!dev->l2p) { SPDK_ERRLOG("Failed to allocate l2p table\n"); return -1; } memset(dev->l2p, FTL_ADDR_INVALID, l2p_size); return 0; } static int ftl_dev_l2p_alloc(struct spdk_ftl_dev *dev) { size_t addr_size = dev->addr_len >= 32 ? 8 : 4; size_t l2p_size = dev->num_lbas * addr_size; const char *l2p_path = dev->conf.l2p_path; if (dev->num_lbas == 0) { SPDK_ERRLOG("Invalid l2p table size\n"); return -1; } if (dev->l2p) { SPDK_ERRLOG("L2p table already allocated\n"); return -1; } dev->l2p_pmem_len = 0; if (l2p_path) { return ftl_dev_l2p_alloc_pmem(dev, l2p_size, l2p_path); } else { return ftl_dev_l2p_alloc_dram(dev, l2p_size); } } static void ftl_dev_free_init_ctx(struct ftl_dev_init_ctx *init_ctx) { if (!init_ctx) { return; } if (init_ctx->ioch) { spdk_put_io_channel(init_ctx->ioch); } free(init_ctx); } static void ftl_call_init_complete_cb(void *ctx) { struct ftl_dev_init_ctx *init_ctx = ctx; struct spdk_ftl_dev *dev = init_ctx->dev; if (init_ctx->cb_fn != NULL) { init_ctx->cb_fn(dev, init_ctx->cb_arg, 0); } ftl_dev_free_init_ctx(init_ctx); } static void ftl_init_complete(struct ftl_dev_init_ctx *init_ctx) { struct spdk_ftl_dev *dev = init_ctx->dev; pthread_mutex_lock(&g_ftl_queue_lock); STAILQ_INSERT_HEAD(&g_ftl_queue, dev, stailq); pthread_mutex_unlock(&g_ftl_queue_lock); dev->initialized = 1; spdk_thread_send_msg(init_ctx->thread, ftl_call_init_complete_cb, init_ctx); } static void ftl_init_fail_cb(struct spdk_ftl_dev *dev, void *ctx, int status) { struct ftl_dev_init_ctx *init_ctx = ctx; if (init_ctx->cb_fn != NULL) { init_ctx->cb_fn(NULL, init_ctx->cb_arg, -ENODEV); } ftl_dev_free_init_ctx(init_ctx); } static int ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_init_fn cb_fn, void *cb_arg, struct spdk_thread *thread); static void ftl_init_fail(struct ftl_dev_init_ctx *init_ctx) { if (ftl_dev_free(init_ctx->dev, ftl_init_fail_cb, init_ctx, init_ctx->thread)) { SPDK_ERRLOG("Unable to free the device\n"); assert(0); } } static void ftl_write_nv_cache_md_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct ftl_dev_init_ctx *init_ctx = cb_arg; struct spdk_ftl_dev *dev = init_ctx->dev; spdk_bdev_free_io(bdev_io); if (spdk_unlikely(!success)) { SPDK_ERRLOG("Writing non-volatile cache's metadata header failed\n"); ftl_init_fail(init_ctx); return; } dev->nv_cache.ready = true; ftl_init_complete(init_ctx); } static void ftl_clear_nv_cache_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct ftl_dev_init_ctx *init_ctx = cb_arg; struct spdk_ftl_dev *dev = init_ctx->dev; struct ftl_nv_cache *nv_cache = &dev->nv_cache; spdk_bdev_free_io(bdev_io); if (spdk_unlikely(!success)) { SPDK_ERRLOG("Unable to clear the non-volatile cache bdev\n"); ftl_init_fail(init_ctx); return; } nv_cache->phase = 1; if (ftl_nv_cache_write_header(nv_cache, false, ftl_write_nv_cache_md_cb, init_ctx)) { SPDK_ERRLOG("Unable to write non-volatile cache metadata header\n"); ftl_init_fail(init_ctx); } } static void _ftl_nv_cache_scrub(void *ctx) { struct ftl_dev_init_ctx *init_ctx = ctx; struct spdk_ftl_dev *dev = init_ctx->dev; int rc; rc = ftl_nv_cache_scrub(&dev->nv_cache, ftl_clear_nv_cache_cb, init_ctx); if (spdk_unlikely(rc != 0)) { SPDK_ERRLOG("Unable to clear the non-volatile cache bdev: %s\n", spdk_strerror(-rc)); ftl_init_fail(init_ctx); } } static int ftl_setup_initial_state(struct ftl_dev_init_ctx *init_ctx) { struct spdk_ftl_dev *dev = init_ctx->dev; struct spdk_ftl_conf *conf = &dev->conf; size_t i; spdk_uuid_generate(&dev->uuid); dev->num_lbas = 0; for (i = 0; i < ftl_get_num_bands(dev); ++i) { dev->num_lbas += ftl_band_num_usable_blocks(&dev->bands[i]); } dev->num_lbas = (dev->num_lbas * (100 - conf->lba_rsvd)) / 100; if (ftl_dev_l2p_alloc(dev)) { SPDK_ERRLOG("Unable to init l2p table\n"); return -1; } if (ftl_init_bands_state(dev)) { SPDK_ERRLOG("Unable to finish the initialization\n"); return -1; } if (!ftl_dev_has_nv_cache(dev)) { ftl_init_complete(init_ctx); } else { spdk_thread_send_msg(ftl_get_core_thread(dev), _ftl_nv_cache_scrub, init_ctx); } return 0; } static void ftl_restore_nv_cache_cb(struct ftl_restore *restore, int status, void *cb_arg) { struct ftl_dev_init_ctx *init_ctx = cb_arg; if (spdk_unlikely(status != 0)) { SPDK_ERRLOG("Failed to restore the non-volatile cache state\n"); ftl_init_fail(init_ctx); return; } ftl_init_complete(init_ctx); } static void ftl_restore_device_cb(struct ftl_restore *restore, int status, void *cb_arg) { struct ftl_dev_init_ctx *init_ctx = cb_arg; struct spdk_ftl_dev *dev = init_ctx->dev; if (status) { SPDK_ERRLOG("Failed to restore the device from the SSD\n"); ftl_init_fail(init_ctx); return; } if (ftl_init_bands_state(dev)) { SPDK_ERRLOG("Unable to finish the initialization\n"); ftl_init_fail(init_ctx); return; } if (!ftl_dev_has_nv_cache(dev)) { ftl_init_complete(init_ctx); return; } ftl_restore_nv_cache(restore, ftl_restore_nv_cache_cb, init_ctx); } static void ftl_restore_md_cb(struct ftl_restore *restore, int status, void *cb_arg) { struct ftl_dev_init_ctx *init_ctx = cb_arg; if (status) { SPDK_ERRLOG("Failed to restore the metadata from the SSD\n"); goto error; } /* After the metadata is read it should be possible to allocate the L2P */ if (ftl_dev_l2p_alloc(init_ctx->dev)) { SPDK_ERRLOG("Failed to allocate the L2P\n"); goto error; } if (ftl_restore_device(restore, ftl_restore_device_cb, init_ctx)) { SPDK_ERRLOG("Failed to start device restoration from the SSD\n"); goto error; } return; error: ftl_init_fail(init_ctx); } static int ftl_restore_state(struct ftl_dev_init_ctx *init_ctx) { struct spdk_ftl_dev *dev = init_ctx->dev; dev->uuid = init_ctx->opts.uuid; if (ftl_restore_md(dev, ftl_restore_md_cb, init_ctx)) { SPDK_ERRLOG("Failed to start metadata restoration from the SSD\n"); return -1; } return 0; } static void ftl_dev_update_bands(struct spdk_ftl_dev *dev) { struct ftl_band *band, *temp_band; size_t i; for (i = 0; i < ftl_get_num_bands(dev); ++i) { band = &dev->bands[i]; band->tail_md_addr = ftl_band_tail_md_addr(band); } /* Remove band from shut_bands list to prevent further processing */ /* if all blocks on this band are bad */ LIST_FOREACH_SAFE(band, &dev->shut_bands, list_entry, temp_band) { if (!band->num_zones) { dev->num_bands--; LIST_REMOVE(band, list_entry); } } } static void ftl_dev_init_state(struct ftl_dev_init_ctx *init_ctx) { struct spdk_ftl_dev *dev = init_ctx->dev; ftl_dev_update_bands(dev); if (ftl_dev_init_core_thread(dev, &init_ctx->opts)) { SPDK_ERRLOG("Unable to initialize device thread\n"); ftl_init_fail(init_ctx); return; } if (init_ctx->opts.mode & SPDK_FTL_MODE_CREATE) { if (ftl_setup_initial_state(init_ctx)) { SPDK_ERRLOG("Failed to setup initial state of the device\n"); ftl_init_fail(init_ctx); return; } } else { if (ftl_restore_state(init_ctx)) { SPDK_ERRLOG("Unable to restore device's state from the SSD\n"); ftl_init_fail(init_ctx); return; } } } static void ftl_dev_get_zone_info(struct ftl_dev_init_ctx *init_ctx); static void ftl_dev_get_zone_info_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct ftl_dev_init_ctx *init_ctx = cb_arg; struct spdk_ftl_dev *dev = init_ctx->dev; struct ftl_band *band; struct ftl_zone *zone; struct ftl_addr addr; size_t i, zones_left, num_zones; spdk_bdev_free_io(bdev_io); if (spdk_unlikely(!success)) { SPDK_ERRLOG("Unable to read zone info for zone id: %"PRIu64"\n", init_ctx->zone_id); ftl_init_fail(init_ctx); return; } zones_left = ftl_get_num_zones(dev) - (init_ctx->zone_id / ftl_get_num_blocks_in_zone(dev)); num_zones = spdk_min(zones_left, FTL_ZONE_INFO_COUNT); for (i = 0; i < num_zones; ++i) { addr.offset = init_ctx->info[i].zone_id; band = &dev->bands[ftl_addr_get_band(dev, addr)]; zone = &band->zone_buf[ftl_addr_get_punit(dev, addr)]; zone->info = init_ctx->info[i]; /* TODO: add support for zone capacity less than zone size */ if (zone->info.capacity != ftl_get_num_blocks_in_zone(dev)) { zone->info.state = SPDK_BDEV_ZONE_STATE_OFFLINE; SPDK_ERRLOG("Zone capacity is not equal zone size for " "zone id: %"PRIu64"\n", init_ctx->zone_id); } /* Set write pointer to the last block plus one for zone in full state */ if (zone->info.state == SPDK_BDEV_ZONE_STATE_FULL) { zone->info.write_pointer = zone->info.zone_id + zone->info.capacity; } if (zone->info.state != SPDK_BDEV_ZONE_STATE_OFFLINE) { band->num_zones++; CIRCLEQ_INSERT_TAIL(&band->zones, zone, circleq); } } init_ctx->zone_id = init_ctx->zone_id + num_zones * ftl_get_num_blocks_in_zone(dev); ftl_dev_get_zone_info(init_ctx); } static void ftl_dev_get_zone_info(struct ftl_dev_init_ctx *init_ctx) { struct spdk_ftl_dev *dev = init_ctx->dev; size_t zones_left, num_zones; int rc; zones_left = ftl_get_num_zones(dev) - (init_ctx->zone_id / ftl_get_num_blocks_in_zone(dev)); if (zones_left == 0) { ftl_dev_init_state(init_ctx); return; } num_zones = spdk_min(zones_left, FTL_ZONE_INFO_COUNT); rc = spdk_bdev_get_zone_info(dev->base_bdev_desc, init_ctx->ioch, init_ctx->zone_id, num_zones, init_ctx->info, ftl_dev_get_zone_info_cb, init_ctx); if (spdk_unlikely(rc != 0)) { SPDK_ERRLOG("Unable to read zone info for zone id: %"PRIu64"\n", init_ctx->zone_id); ftl_init_fail(init_ctx); } } static int ftl_dev_init_zones(struct ftl_dev_init_ctx *init_ctx) { struct spdk_ftl_dev *dev = init_ctx->dev; init_ctx->zone_id = 0; init_ctx->ioch = spdk_bdev_get_io_channel(dev->base_bdev_desc); if (!init_ctx->ioch) { SPDK_ERRLOG("Failed to get base bdev IO channel\n"); return -1; } ftl_dev_get_zone_info(init_ctx); return 0; } struct _ftl_io_channel { struct ftl_io_channel *ioch; }; struct ftl_io_channel * ftl_io_channel_get_ctx(struct spdk_io_channel *ioch) { struct _ftl_io_channel *_ioch = spdk_io_channel_get_ctx(ioch); return _ioch->ioch; } static void ftl_io_channel_register(void *ctx) { struct ftl_io_channel *ioch = ctx; struct spdk_ftl_dev *dev = ioch->dev; uint32_t ioch_index; for (ioch_index = 0; ioch_index < dev->conf.max_io_channels; ++ioch_index) { if (dev->ioch_array[ioch_index] == NULL) { dev->ioch_array[ioch_index] = ioch; ioch->index = ioch_index; break; } } assert(ioch_index < dev->conf.max_io_channels); TAILQ_INSERT_TAIL(&dev->ioch_queue, ioch, tailq); } static int ftl_io_channel_init_wbuf(struct ftl_io_channel *ioch) { struct spdk_ftl_dev *dev = ioch->dev; struct ftl_wbuf_entry *entry; uint32_t i; int rc; ioch->num_entries = dev->conf.write_buffer_size / FTL_BLOCK_SIZE; ioch->wbuf_entries = calloc(ioch->num_entries, sizeof(*ioch->wbuf_entries)); if (ioch->wbuf_entries == NULL) { SPDK_ERRLOG("Failed to allocate write buffer entry array\n"); return -1; } ioch->qdepth_limit = ioch->num_entries; ioch->wbuf_payload = spdk_zmalloc(dev->conf.write_buffer_size, FTL_BLOCK_SIZE, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (ioch->wbuf_payload == NULL) { SPDK_ERRLOG("Failed to allocate write buffer payload\n"); goto error_entries; } ioch->free_queue = spdk_ring_create(SPDK_RING_TYPE_SP_SC, spdk_align32pow2(ioch->num_entries + 1), SPDK_ENV_SOCKET_ID_ANY); if (ioch->free_queue == NULL) { SPDK_ERRLOG("Failed to allocate free queue\n"); goto error_payload; } ioch->submit_queue = spdk_ring_create(SPDK_RING_TYPE_SP_SC, spdk_align32pow2(ioch->num_entries + 1), SPDK_ENV_SOCKET_ID_ANY); if (ioch->submit_queue == NULL) { SPDK_ERRLOG("Failed to allocate submit queue\n"); goto error_free_queue; } for (i = 0; i < ioch->num_entries; ++i) { entry = &ioch->wbuf_entries[i]; entry->payload = (char *)ioch->wbuf_payload + i * FTL_BLOCK_SIZE; entry->ioch = ioch; entry->index = i; entry->addr.offset = FTL_ADDR_INVALID; rc = pthread_spin_init(&entry->lock, PTHREAD_PROCESS_PRIVATE); if (rc != 0) { SPDK_ERRLOG("Failed to initialize spinlock\n"); goto error_spinlock; } spdk_ring_enqueue(ioch->free_queue, (void **)&entry, 1, NULL); } return 0; error_spinlock: for (; i > 0; --i) { pthread_spin_destroy(&ioch->wbuf_entries[i - 1].lock); } spdk_ring_free(ioch->submit_queue); error_free_queue: spdk_ring_free(ioch->free_queue); error_payload: spdk_free(ioch->wbuf_payload); error_entries: free(ioch->wbuf_entries); return -1; } static int ftl_io_channel_create_cb(void *io_device, void *ctx) { struct spdk_ftl_dev *dev = io_device; struct _ftl_io_channel *_ioch = ctx; struct ftl_io_channel *ioch; uint32_t num_io_channels; char mempool_name[32]; int rc; num_io_channels = __atomic_fetch_add(&dev->num_io_channels, 1, __ATOMIC_SEQ_CST); if (num_io_channels >= dev->conf.max_io_channels) { SPDK_ERRLOG("Reached maximum number of IO channels\n"); __atomic_fetch_sub(&dev->num_io_channels, 1, __ATOMIC_SEQ_CST); return -1; } ioch = calloc(1, sizeof(*ioch)); if (ioch == NULL) { SPDK_ERRLOG("Failed to allocate IO channel\n"); return -1; } rc = snprintf(mempool_name, sizeof(mempool_name), "ftl_io_%p", ioch); if (rc < 0 || rc >= (int)sizeof(mempool_name)) { SPDK_ERRLOG("Failed to create IO channel pool name\n"); free(ioch); return -1; } ioch->cache_ioch = NULL; ioch->index = FTL_IO_CHANNEL_INDEX_INVALID; ioch->dev = dev; ioch->elem_size = sizeof(struct ftl_md_io); ioch->io_pool = spdk_mempool_create(mempool_name, dev->conf.user_io_pool_size, ioch->elem_size, 0, SPDK_ENV_SOCKET_ID_ANY); if (!ioch->io_pool) { SPDK_ERRLOG("Failed to create IO channel's IO pool\n"); free(ioch); return -1; } ioch->base_ioch = spdk_bdev_get_io_channel(dev->base_bdev_desc); if (!ioch->base_ioch) { SPDK_ERRLOG("Failed to create base bdev IO channel\n"); goto fail_ioch; } if (ftl_dev_has_nv_cache(dev)) { ioch->cache_ioch = spdk_bdev_get_io_channel(dev->nv_cache.bdev_desc); if (!ioch->cache_ioch) { SPDK_ERRLOG("Failed to create cache IO channel\n"); goto fail_cache; } } TAILQ_INIT(&ioch->write_cmpl_queue); TAILQ_INIT(&ioch->retry_queue); ioch->poller = SPDK_POLLER_REGISTER(ftl_io_channel_poll, ioch, 0); if (!ioch->poller) { SPDK_ERRLOG("Failed to register IO channel poller\n"); goto fail_poller; } if (ftl_io_channel_init_wbuf(ioch)) { SPDK_ERRLOG("Failed to initialize IO channel's write buffer\n"); goto fail_wbuf; } _ioch->ioch = ioch; spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_io_channel_register, ioch); return 0; fail_wbuf: spdk_poller_unregister(&ioch->poller); fail_poller: if (ioch->cache_ioch) { spdk_put_io_channel(ioch->cache_ioch); } fail_cache: spdk_put_io_channel(ioch->base_ioch); fail_ioch: spdk_mempool_free(ioch->io_pool); free(ioch); return -1; } static void ftl_io_channel_unregister(void *ctx) { struct ftl_io_channel *ioch = ctx; struct spdk_ftl_dev *dev = ioch->dev; uint32_t i, num_io_channels __attribute__((unused)); assert(ioch->index < dev->conf.max_io_channels); assert(dev->ioch_array[ioch->index] == ioch); dev->ioch_array[ioch->index] = NULL; TAILQ_REMOVE(&dev->ioch_queue, ioch, tailq); num_io_channels = __atomic_fetch_sub(&dev->num_io_channels, 1, __ATOMIC_SEQ_CST); assert(num_io_channels > 0); for (i = 0; i < ioch->num_entries; ++i) { pthread_spin_destroy(&ioch->wbuf_entries[i].lock); } spdk_mempool_free(ioch->io_pool); spdk_ring_free(ioch->free_queue); spdk_ring_free(ioch->submit_queue); spdk_free(ioch->wbuf_payload); free(ioch->wbuf_entries); free(ioch); } static void _ftl_io_channel_destroy_cb(void *ctx) { struct ftl_io_channel *ioch = ctx; struct spdk_ftl_dev *dev = ioch->dev; /* Do not destroy the channel if some of its entries are still in use */ if (spdk_ring_count(ioch->free_queue) != ioch->num_entries) { spdk_thread_send_msg(spdk_get_thread(), _ftl_io_channel_destroy_cb, ctx); return; } spdk_poller_unregister(&ioch->poller); spdk_put_io_channel(ioch->base_ioch); if (ioch->cache_ioch) { spdk_put_io_channel(ioch->cache_ioch); } ioch->base_ioch = NULL; ioch->cache_ioch = NULL; spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_io_channel_unregister, ioch); } static void ftl_io_channel_destroy_cb(void *io_device, void *ctx) { struct _ftl_io_channel *_ioch = ctx; struct ftl_io_channel *ioch = _ioch->ioch; /* Mark the IO channel as being flush to force out any unwritten entries */ ioch->flush = true; _ftl_io_channel_destroy_cb(ioch); } static int ftl_dev_init_io_channel(struct spdk_ftl_dev *dev) { struct ftl_batch *batch; uint32_t i; /* Align the IO channels to nearest power of 2 to allow for easy addr bit shift */ dev->conf.max_io_channels = spdk_align32pow2(dev->conf.max_io_channels); dev->ioch_shift = spdk_u32log2(dev->conf.max_io_channels); dev->ioch_array = calloc(dev->conf.max_io_channels, sizeof(*dev->ioch_array)); if (!dev->ioch_array) { SPDK_ERRLOG("Failed to allocate IO channel array\n"); return -1; } if (dev->md_size > 0) { dev->md_buf = spdk_zmalloc(dev->md_size * dev->xfer_size * FTL_BATCH_COUNT, dev->md_size, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (dev->md_buf == NULL) { SPDK_ERRLOG("Failed to allocate metadata buffer\n"); return -1; } } dev->iov_buf = calloc(FTL_BATCH_COUNT, dev->xfer_size * sizeof(struct iovec)); if (!dev->iov_buf) { SPDK_ERRLOG("Failed to allocate iovec buffer\n"); return -1; } TAILQ_INIT(&dev->free_batches); TAILQ_INIT(&dev->pending_batches); TAILQ_INIT(&dev->ioch_queue); for (i = 0; i < FTL_BATCH_COUNT; ++i) { batch = &dev->batch_array[i]; batch->iov = &dev->iov_buf[i * dev->xfer_size]; batch->num_entries = 0; batch->index = i; TAILQ_INIT(&batch->entries); if (dev->md_buf != NULL) { batch->metadata = (char *)dev->md_buf + i * dev->xfer_size * dev->md_size; } TAILQ_INSERT_TAIL(&dev->free_batches, batch, tailq); } dev->num_io_channels = 0; spdk_io_device_register(dev, ftl_io_channel_create_cb, ftl_io_channel_destroy_cb, sizeof(struct _ftl_io_channel), NULL); return 0; } static int ftl_dev_init_base_bdev(struct spdk_ftl_dev *dev, const char *bdev_name) { uint32_t block_size; uint64_t num_blocks; struct spdk_bdev *bdev; bdev = spdk_bdev_get_by_name(bdev_name); if (!bdev) { SPDK_ERRLOG("Unable to find bdev: %s\n", bdev_name); return -1; } if (!spdk_bdev_is_zoned(bdev)) { SPDK_ERRLOG("Bdev dosen't support zone capabilities: %s\n", spdk_bdev_get_name(bdev)); return -1; } if (spdk_bdev_open_ext(bdev_name, true, ftl_bdev_event_cb, dev, &dev->base_bdev_desc)) { SPDK_ERRLOG("Unable to open bdev: %s\n", bdev_name); return -1; } if (spdk_bdev_module_claim_bdev(bdev, dev->base_bdev_desc, &g_ftl_bdev_module)) { spdk_bdev_close(dev->base_bdev_desc); dev->base_bdev_desc = NULL; SPDK_ERRLOG("Unable to claim bdev %s\n", bdev_name); return -1; } dev->xfer_size = spdk_bdev_get_write_unit_size(bdev); dev->md_size = spdk_bdev_get_md_size(bdev); block_size = spdk_bdev_get_block_size(bdev); if (block_size != FTL_BLOCK_SIZE) { SPDK_ERRLOG("Unsupported block size (%"PRIu32")\n", block_size); return -1; } num_blocks = spdk_bdev_get_num_blocks(bdev); if (num_blocks % ftl_get_num_punits(dev)) { SPDK_ERRLOG("Unsupported geometry. Base bdev block count must be multiple " "of optimal number of zones.\n"); return -1; } if (ftl_is_append_supported(dev) && !spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZONE_APPEND)) { SPDK_ERRLOG("Bdev dosen't support append: %s\n", spdk_bdev_get_name(bdev)); return -1; } dev->num_bands = num_blocks / (ftl_get_num_punits(dev) * ftl_get_num_blocks_in_zone(dev)); dev->addr_len = spdk_u64log2(num_blocks) + 1; return 0; } static void ftl_lba_map_request_dtor(struct spdk_mempool *mp, void *opaque, void *obj, unsigned obj_idx) { struct ftl_lba_map_request *request = obj; spdk_bit_array_free(&request->segments); } static void ftl_release_bdev(struct spdk_bdev_desc *bdev_desc) { if (!bdev_desc) { return; } spdk_bdev_module_release_bdev(spdk_bdev_desc_get_bdev(bdev_desc)); spdk_bdev_close(bdev_desc); } static void ftl_dev_free_sync(struct spdk_ftl_dev *dev) { struct spdk_ftl_dev *iter; size_t i; if (!dev) { return; } pthread_mutex_lock(&g_ftl_queue_lock); STAILQ_FOREACH(iter, &g_ftl_queue, stailq) { if (iter == dev) { STAILQ_REMOVE(&g_ftl_queue, dev, spdk_ftl_dev, stailq); break; } } pthread_mutex_unlock(&g_ftl_queue_lock); assert(LIST_EMPTY(&dev->wptr_list)); assert(dev->current_batch == NULL); ftl_dev_dump_bands(dev); ftl_dev_dump_stats(dev); if (dev->bands) { for (i = 0; i < ftl_get_num_bands(dev); ++i) { free(dev->bands[i].zone_buf); spdk_bit_array_free(&dev->bands[i].lba_map.vld); spdk_bit_array_free(&dev->bands[i].reloc_bitmap); } } spdk_dma_free(dev->nv_cache.dma_buf); spdk_mempool_free(dev->lba_pool); spdk_mempool_free(dev->nv_cache.md_pool); spdk_mempool_free(dev->media_events_pool); if (dev->lba_request_pool) { spdk_mempool_obj_iter(dev->lba_request_pool, ftl_lba_map_request_dtor, NULL); } spdk_mempool_free(dev->lba_request_pool); ftl_reloc_free(dev->reloc); ftl_release_bdev(dev->nv_cache.bdev_desc); ftl_release_bdev(dev->base_bdev_desc); spdk_free(dev->md_buf); assert(dev->num_io_channels == 0); free(dev->ioch_array); free(dev->iov_buf); free(dev->name); free(dev->bands); if (dev->l2p_pmem_len != 0) { #ifdef SPDK_CONFIG_PMDK pmem_unmap(dev->l2p, dev->l2p_pmem_len); #endif /* SPDK_CONFIG_PMDK */ } else { free(dev->l2p); } free((char *)dev->conf.l2p_path); free(dev); } int spdk_ftl_dev_init(const struct spdk_ftl_dev_init_opts *_opts, spdk_ftl_init_fn cb_fn, void *cb_arg) { struct spdk_ftl_dev *dev; struct spdk_ftl_dev_init_opts opts = *_opts; struct ftl_dev_init_ctx *init_ctx = NULL; int rc = -ENOMEM; dev = calloc(1, sizeof(*dev)); if (!dev) { return -ENOMEM; } init_ctx = calloc(1, sizeof(*init_ctx)); if (!init_ctx) { goto fail_sync; } init_ctx->dev = dev; init_ctx->opts = *_opts; init_ctx->cb_fn = cb_fn; init_ctx->cb_arg = cb_arg; init_ctx->thread = spdk_get_thread(); if (!opts.conf) { opts.conf = &g_default_conf; } if (!opts.base_bdev) { SPDK_ERRLOG("Lack of underlying device in configuration\n"); rc = -EINVAL; goto fail_sync; } dev->conf = *opts.conf; dev->limit = SPDK_FTL_LIMIT_MAX; dev->name = strdup(opts.name); if (!dev->name) { SPDK_ERRLOG("Unable to set device name\n"); goto fail_sync; } if (ftl_dev_init_base_bdev(dev, opts.base_bdev)) { SPDK_ERRLOG("Unsupported underlying device\n"); goto fail_sync; } if (opts.conf->l2p_path) { dev->conf.l2p_path = strdup(opts.conf->l2p_path); if (!dev->conf.l2p_path) { rc = -ENOMEM; goto fail_sync; } } /* In case of errors, we free all of the memory in ftl_dev_free_sync(), */ /* so we don't have to clean up in each of the init functions. */ if (ftl_check_conf(dev, opts.conf)) { SPDK_ERRLOG("Invalid device configuration\n"); goto fail_sync; } if (ftl_init_lba_map_pools(dev)) { SPDK_ERRLOG("Unable to init LBA map pools\n"); goto fail_sync; } if (ftl_init_media_events_pool(dev)) { SPDK_ERRLOG("Unable to init media events pools\n"); goto fail_sync; } ftl_init_wptr_list(dev); if (ftl_dev_init_bands(dev)) { SPDK_ERRLOG("Unable to initialize band array\n"); goto fail_sync; } if (ftl_dev_init_nv_cache(dev, opts.cache_bdev)) { SPDK_ERRLOG("Unable to initialize persistent cache\n"); goto fail_sync; } dev->reloc = ftl_reloc_init(dev); if (!dev->reloc) { SPDK_ERRLOG("Unable to initialize reloc structures\n"); goto fail_sync; } if (ftl_dev_init_io_channel(dev)) { SPDK_ERRLOG("Unable to initialize IO channels\n"); goto fail_sync; } if (ftl_dev_init_zones(init_ctx)) { SPDK_ERRLOG("Failed to initialize zones\n"); goto fail_async; } return 0; fail_sync: ftl_dev_free_sync(dev); ftl_dev_free_init_ctx(init_ctx); return rc; fail_async: ftl_init_fail(init_ctx); return 0; } static void _ftl_halt_defrag(void *arg) { ftl_reloc_halt(((struct spdk_ftl_dev *)arg)->reloc); } static void ftl_halt_complete_cb(void *ctx) { struct ftl_dev_init_ctx *fini_ctx = ctx; struct spdk_ftl_dev *dev = fini_ctx->dev; /* Make sure core IO channel has already been released */ if (dev->num_io_channels > 0) { spdk_thread_send_msg(spdk_get_thread(), ftl_halt_complete_cb, ctx); return; } spdk_io_device_unregister(fini_ctx->dev, NULL); ftl_dev_free_sync(fini_ctx->dev); if (fini_ctx->cb_fn != NULL) { fini_ctx->cb_fn(NULL, fini_ctx->cb_arg, fini_ctx->halt_complete_status); } ftl_dev_free_init_ctx(fini_ctx); } static void ftl_put_io_channel_cb(void *ctx) { struct ftl_dev_init_ctx *fini_ctx = ctx; struct spdk_ftl_dev *dev = fini_ctx->dev; spdk_put_io_channel(dev->ioch); spdk_thread_send_msg(spdk_get_thread(), ftl_halt_complete_cb, ctx); } static void ftl_nv_cache_header_fini_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct ftl_dev_init_ctx *fini_ctx = cb_arg; int rc = 0; spdk_bdev_free_io(bdev_io); if (spdk_unlikely(!success)) { SPDK_ERRLOG("Failed to write non-volatile cache metadata header\n"); rc = -EIO; } fini_ctx->halt_complete_status = rc; spdk_thread_send_msg(fini_ctx->thread, ftl_put_io_channel_cb, fini_ctx); } static int ftl_halt_poller(void *ctx) { struct ftl_dev_init_ctx *fini_ctx = ctx; struct spdk_ftl_dev *dev = fini_ctx->dev; if (!dev->core_poller) { spdk_poller_unregister(&fini_ctx->poller); if (ftl_dev_has_nv_cache(dev)) { ftl_nv_cache_write_header(&dev->nv_cache, true, ftl_nv_cache_header_fini_cb, fini_ctx); } else { fini_ctx->halt_complete_status = 0; spdk_thread_send_msg(fini_ctx->thread, ftl_put_io_channel_cb, fini_ctx); } } return 0; } static void ftl_add_halt_poller(void *ctx) { struct ftl_dev_init_ctx *fini_ctx = ctx; struct spdk_ftl_dev *dev = fini_ctx->dev; dev->halt = 1; _ftl_halt_defrag(dev); assert(!fini_ctx->poller); fini_ctx->poller = SPDK_POLLER_REGISTER(ftl_halt_poller, fini_ctx, 100); } static int ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_init_fn cb_fn, void *cb_arg, struct spdk_thread *thread) { struct ftl_dev_init_ctx *fini_ctx; if (dev->halt_started) { dev->halt_started = true; return -EBUSY; } fini_ctx = calloc(1, sizeof(*fini_ctx)); if (!fini_ctx) { return -ENOMEM; } fini_ctx->dev = dev; fini_ctx->cb_fn = cb_fn; fini_ctx->cb_arg = cb_arg; fini_ctx->thread = thread; spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_add_halt_poller, fini_ctx); return 0; } int spdk_ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_init_fn cb_fn, void *cb_arg) { return ftl_dev_free(dev, cb_fn, cb_arg, spdk_get_thread()); } SPDK_LOG_REGISTER_COMPONENT("ftl_init", SPDK_LOG_FTL_INIT)