/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/blob.h" #include "spdk/crc32.h" #include "spdk/env.h" #include "spdk/queue.h" #include "spdk/io_channel.h" #include "spdk/bit_array.h" #include "spdk/likely.h" #include "spdk_internal/log.h" #include "blobstore.h" #include "request.h" #define BLOB_CRC32C_INITIAL 0xffffffffUL static inline size_t divide_round_up(size_t num, size_t divisor) { return (num + divisor - 1) / divisor; } static void _spdk_bs_claim_cluster(struct spdk_blob_store *bs, uint32_t cluster_num) { assert(cluster_num < spdk_bit_array_capacity(bs->used_clusters)); assert(spdk_bit_array_get(bs->used_clusters, cluster_num) == false); assert(bs->num_free_clusters > 0); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Claiming cluster %u\n", cluster_num); spdk_bit_array_set(bs->used_clusters, cluster_num); bs->num_free_clusters--; } static void _spdk_bs_release_cluster(struct spdk_blob_store *bs, uint32_t cluster_num) { assert(cluster_num < spdk_bit_array_capacity(bs->used_clusters)); assert(spdk_bit_array_get(bs->used_clusters, cluster_num) == true); assert(bs->num_free_clusters < bs->total_clusters); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Releasing cluster %u\n", cluster_num); spdk_bit_array_clear(bs->used_clusters, cluster_num); bs->num_free_clusters++; } static struct spdk_blob * _spdk_blob_alloc(struct spdk_blob_store *bs, spdk_blob_id id) { struct spdk_blob *blob; blob = calloc(1, sizeof(*blob)); if (!blob) { return NULL; } blob->id = id; blob->bs = bs; blob->state = SPDK_BLOB_STATE_DIRTY; blob->active.num_pages = 1; blob->active.pages = calloc(1, sizeof(*blob->active.pages)); if (!blob->active.pages) { free(blob); return NULL; } blob->active.pages[0] = _spdk_bs_blobid_to_page(id); TAILQ_INIT(&blob->xattrs); return blob; } static void _spdk_blob_free(struct spdk_blob *blob) { struct spdk_xattr *xattr, *xattr_tmp; assert(blob != NULL); free(blob->active.clusters); free(blob->clean.clusters); free(blob->active.pages); free(blob->clean.pages); TAILQ_FOREACH_SAFE(xattr, &blob->xattrs, link, xattr_tmp) { TAILQ_REMOVE(&blob->xattrs, xattr, link); free(xattr->name); free(xattr->value); free(xattr); } free(blob); } static int _spdk_blob_mark_clean(struct spdk_blob *blob) { uint64_t *clusters = NULL; uint32_t *pages = NULL; assert(blob != NULL); assert(blob->state == SPDK_BLOB_STATE_LOADING || blob->state == SPDK_BLOB_STATE_SYNCING); if (blob->active.num_clusters) { assert(blob->active.clusters); clusters = calloc(blob->active.num_clusters, sizeof(*blob->active.clusters)); if (!clusters) { return -1; } memcpy(clusters, blob->active.clusters, blob->active.num_clusters * sizeof(*clusters)); } if (blob->active.num_pages) { assert(blob->active.pages); pages = calloc(blob->active.num_pages, sizeof(*blob->active.pages)); if (!pages) { free(clusters); return -1; } memcpy(pages, blob->active.pages, blob->active.num_pages * sizeof(*pages)); } free(blob->clean.clusters); free(blob->clean.pages); blob->clean.num_clusters = blob->active.num_clusters; blob->clean.clusters = blob->active.clusters; blob->clean.num_pages = blob->active.num_pages; blob->clean.pages = blob->active.pages; blob->active.clusters = clusters; blob->active.pages = pages; blob->state = SPDK_BLOB_STATE_CLEAN; return 0; } static void _spdk_blob_parse_page(const struct spdk_blob_md_page *page, struct spdk_blob *blob) { struct spdk_blob_md_descriptor *desc; size_t cur_desc = 0; void *tmp; desc = (struct spdk_blob_md_descriptor *)page->descriptors; while (cur_desc < sizeof(page->descriptors)) { if (desc->type == SPDK_MD_DESCRIPTOR_TYPE_PADDING) { if (desc->length == 0) { /* If padding and length are 0, this terminates the page */ break; } } else if (desc->type == SPDK_MD_DESCRIPTOR_TYPE_EXTENT) { struct spdk_blob_md_descriptor_extent *desc_extent; unsigned int i, j; unsigned int cluster_count = blob->active.num_clusters; desc_extent = (struct spdk_blob_md_descriptor_extent *)desc; assert(desc_extent->length > 0); assert(desc_extent->length % sizeof(desc_extent->extents[0]) == 0); for (i = 0; i < desc_extent->length / sizeof(desc_extent->extents[0]); i++) { for (j = 0; j < desc_extent->extents[i].length; j++) { assert(spdk_bit_array_get(blob->bs->used_clusters, desc_extent->extents[i].cluster_idx + j)); cluster_count++; } } assert(cluster_count > 0); tmp = realloc(blob->active.clusters, cluster_count * sizeof(uint64_t)); assert(tmp != NULL); blob->active.clusters = tmp; blob->active.cluster_array_size = cluster_count; for (i = 0; i < desc_extent->length / sizeof(desc_extent->extents[0]); i++) { for (j = 0; j < desc_extent->extents[i].length; j++) { blob->active.clusters[blob->active.num_clusters++] = _spdk_bs_cluster_to_lba(blob->bs, desc_extent->extents[i].cluster_idx + j); } } } else if (desc->type == SPDK_MD_DESCRIPTOR_TYPE_XATTR) { struct spdk_blob_md_descriptor_xattr *desc_xattr; struct spdk_xattr *xattr; desc_xattr = (struct spdk_blob_md_descriptor_xattr *)desc; assert(desc_xattr->length == sizeof(desc_xattr->name_length) + sizeof(desc_xattr->value_length) + desc_xattr->name_length + desc_xattr->value_length); xattr = calloc(1, sizeof(*xattr)); assert(xattr != NULL); xattr->name = malloc(desc_xattr->name_length + 1); assert(xattr->name); strncpy(xattr->name, desc_xattr->name, desc_xattr->name_length); xattr->name[desc_xattr->name_length] = '\0'; xattr->value = malloc(desc_xattr->value_length); assert(xattr->value != NULL); xattr->value_len = desc_xattr->value_length; memcpy(xattr->value, (void *)((uintptr_t)desc_xattr->name + desc_xattr->name_length), desc_xattr->value_length); TAILQ_INSERT_TAIL(&blob->xattrs, xattr, link); } else { /* Error */ break; } /* Advance to the next descriptor */ cur_desc += sizeof(*desc) + desc->length; if (cur_desc + sizeof(*desc) > sizeof(page->descriptors)) { break; } desc = (struct spdk_blob_md_descriptor *)((uintptr_t)page->descriptors + cur_desc); } } static int _spdk_blob_parse(const struct spdk_blob_md_page *pages, uint32_t page_count, struct spdk_blob *blob) { const struct spdk_blob_md_page *page; uint32_t i; assert(page_count > 0); assert(pages[0].sequence_num == 0); assert(blob != NULL); assert(blob->state == SPDK_BLOB_STATE_LOADING); assert(blob->active.clusters == NULL); assert(blob->id == pages[0].id); assert(blob->state == SPDK_BLOB_STATE_LOADING); for (i = 0; i < page_count; i++) { page = &pages[i]; assert(page->id == blob->id); assert(page->sequence_num == i); _spdk_blob_parse_page(page, blob); } return 0; } static int _spdk_blob_serialize_add_page(const struct spdk_blob *blob, struct spdk_blob_md_page **pages, uint32_t *page_count, struct spdk_blob_md_page **last_page) { struct spdk_blob_md_page *page; assert(pages != NULL); assert(page_count != NULL); if (*page_count == 0) { assert(*pages == NULL); *page_count = 1; *pages = spdk_dma_malloc(SPDK_BS_PAGE_SIZE, SPDK_BS_PAGE_SIZE, NULL); } else { assert(*pages != NULL); (*page_count)++; *pages = spdk_dma_realloc(*pages, SPDK_BS_PAGE_SIZE * (*page_count), SPDK_BS_PAGE_SIZE, NULL); } if (*pages == NULL) { *page_count = 0; *last_page = NULL; return -ENOMEM; } page = &(*pages)[*page_count - 1]; memset(page, 0, sizeof(*page)); page->id = blob->id; page->sequence_num = *page_count - 1; page->next = SPDK_INVALID_MD_PAGE; *last_page = page; return 0; } /* Transform the in-memory representation 'xattr' into an on-disk xattr descriptor. * Update required_sz on both success and failure. * */ static int _spdk_blob_serialize_xattr(const struct spdk_xattr *xattr, uint8_t *buf, size_t buf_sz, size_t *required_sz) { struct spdk_blob_md_descriptor_xattr *desc; *required_sz = sizeof(struct spdk_blob_md_descriptor_xattr) + strlen(xattr->name) + xattr->value_len; if (buf_sz < *required_sz) { return -1; } desc = (struct spdk_blob_md_descriptor_xattr *)buf; desc->type = SPDK_MD_DESCRIPTOR_TYPE_XATTR; desc->length = sizeof(desc->name_length) + sizeof(desc->value_length) + strlen(xattr->name) + xattr->value_len; desc->name_length = strlen(xattr->name); desc->value_length = xattr->value_len; memcpy(desc->name, xattr->name, desc->name_length); memcpy((void *)((uintptr_t)desc->name + desc->name_length), xattr->value, desc->value_length); return 0; } static void _spdk_blob_serialize_extent(const struct spdk_blob *blob, uint64_t start_cluster, uint64_t *next_cluster, uint8_t *buf, size_t buf_sz) { struct spdk_blob_md_descriptor_extent *desc; size_t cur_sz; uint64_t i, extent_idx; uint32_t lba, lba_per_cluster, lba_count; /* The buffer must have room for at least one extent */ cur_sz = sizeof(struct spdk_blob_md_descriptor) + sizeof(desc->extents[0]); if (buf_sz < cur_sz) { *next_cluster = start_cluster; return; } desc = (struct spdk_blob_md_descriptor_extent *)buf; desc->type = SPDK_MD_DESCRIPTOR_TYPE_EXTENT; lba_per_cluster = _spdk_bs_cluster_to_lba(blob->bs, 1); lba = blob->active.clusters[start_cluster]; lba_count = lba_per_cluster; extent_idx = 0; for (i = start_cluster + 1; i < blob->active.num_clusters; i++) { if ((lba + lba_count) == blob->active.clusters[i]) { lba_count += lba_per_cluster; continue; } desc->extents[extent_idx].cluster_idx = lba / lba_per_cluster; desc->extents[extent_idx].length = lba_count / lba_per_cluster; extent_idx++; cur_sz += sizeof(desc->extents[extent_idx]); if (buf_sz < cur_sz) { /* If we ran out of buffer space, return */ desc->length = sizeof(desc->extents[0]) * extent_idx; *next_cluster = i; return; } lba = blob->active.clusters[i]; lba_count = lba_per_cluster; } desc->extents[extent_idx].cluster_idx = lba / lba_per_cluster; desc->extents[extent_idx].length = lba_count / lba_per_cluster; extent_idx++; desc->length = sizeof(desc->extents[0]) * extent_idx; *next_cluster = blob->active.num_clusters; return; } static int _spdk_blob_serialize(const struct spdk_blob *blob, struct spdk_blob_md_page **pages, uint32_t *page_count) { struct spdk_blob_md_page *cur_page; const struct spdk_xattr *xattr; int rc; uint8_t *buf; size_t remaining_sz; uint64_t last_cluster; assert(pages != NULL); assert(page_count != NULL); assert(blob != NULL); assert(blob->state == SPDK_BLOB_STATE_SYNCING); *pages = NULL; *page_count = 0; /* A blob always has at least 1 page, even if it has no descriptors */ rc = _spdk_blob_serialize_add_page(blob, pages, page_count, &cur_page); if (rc < 0) { return rc; } buf = (uint8_t *)cur_page->descriptors; remaining_sz = sizeof(cur_page->descriptors); /* Serialize xattrs */ TAILQ_FOREACH(xattr, &blob->xattrs, link) { size_t required_sz = 0; rc = _spdk_blob_serialize_xattr(xattr, buf, remaining_sz, &required_sz); if (rc < 0) { /* Need to add a new page to the chain */ rc = _spdk_blob_serialize_add_page(blob, pages, page_count, &cur_page); if (rc < 0) { spdk_dma_free(*pages); *pages = NULL; *page_count = 0; return rc; } buf = (uint8_t *)cur_page->descriptors; remaining_sz = sizeof(cur_page->descriptors); /* Try again */ required_sz = 0; rc = _spdk_blob_serialize_xattr(xattr, buf, remaining_sz, &required_sz); if (rc < 0) { spdk_dma_free(*pages); *pages = NULL; *page_count = 0; return -1; } } remaining_sz -= required_sz; buf += required_sz; } /* Serialize extents */ last_cluster = 0; while (last_cluster < blob->active.num_clusters) { _spdk_blob_serialize_extent(blob, last_cluster, &last_cluster, buf, remaining_sz); if (last_cluster == blob->active.num_clusters) { break; } rc = _spdk_blob_serialize_add_page(blob, pages, page_count, &cur_page); if (rc < 0) { return rc; } buf = (uint8_t *)cur_page->descriptors; remaining_sz = sizeof(cur_page->descriptors); } return 0; } struct spdk_blob_load_ctx { struct spdk_blob *blob; struct spdk_blob_md_page *pages; uint32_t num_pages; spdk_bs_sequence_cpl cb_fn; void *cb_arg; }; static uint32_t _spdk_blob_md_page_calc_crc(void *page) { uint32_t crc; crc = BLOB_CRC32C_INITIAL; crc = spdk_crc32c_update(page, SPDK_BS_PAGE_SIZE - 4, crc); crc ^= BLOB_CRC32C_INITIAL; return crc; } static void _spdk_blob_load_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_load_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_md_page *page; int rc; uint32_t crc; page = &ctx->pages[ctx->num_pages - 1]; crc = _spdk_blob_md_page_calc_crc(page); if (crc != page->crc) { SPDK_ERRLOG("Metadata page %d crc mismatch\n", ctx->num_pages); _spdk_blob_free(blob); ctx->cb_fn(seq, NULL, -EINVAL); spdk_dma_free(ctx->pages); free(ctx); return; } if (page->next != SPDK_INVALID_MD_PAGE) { uint32_t next_page = page->next; uint64_t next_lba = _spdk_bs_page_to_lba(blob->bs, blob->bs->md_start + next_page); assert(next_lba < (blob->bs->md_start + blob->bs->md_len)); /* Read the next page */ ctx->num_pages++; ctx->pages = spdk_dma_realloc(ctx->pages, (sizeof(*page) * ctx->num_pages), sizeof(*page), NULL); if (ctx->pages == NULL) { ctx->cb_fn(seq, ctx->cb_arg, -ENOMEM); free(ctx); return; } spdk_bs_sequence_read(seq, &ctx->pages[ctx->num_pages - 1], next_lba, _spdk_bs_byte_to_lba(blob->bs, sizeof(*page)), _spdk_blob_load_cpl, ctx); return; } /* Parse the pages */ rc = _spdk_blob_parse(ctx->pages, ctx->num_pages, blob); _spdk_blob_mark_clean(blob); ctx->cb_fn(seq, ctx->cb_arg, rc); /* Free the memory */ spdk_dma_free(ctx->pages); free(ctx); } /* Load a blob from disk given a blobid */ static void _spdk_blob_load(spdk_bs_sequence_t *seq, struct spdk_blob *blob, spdk_bs_sequence_cpl cb_fn, void *cb_arg) { struct spdk_blob_load_ctx *ctx; struct spdk_blob_store *bs; uint32_t page_num; uint64_t lba; assert(blob != NULL); assert(blob->state == SPDK_BLOB_STATE_CLEAN || blob->state == SPDK_BLOB_STATE_DIRTY); bs = blob->bs; ctx = calloc(1, sizeof(*ctx)); if (!ctx) { cb_fn(seq, cb_arg, -ENOMEM); return; } ctx->blob = blob; ctx->pages = spdk_dma_realloc(ctx->pages, SPDK_BS_PAGE_SIZE, SPDK_BS_PAGE_SIZE, NULL); if (!ctx->pages) { free(ctx); cb_fn(seq, cb_arg, -ENOMEM); return; } ctx->num_pages = 1; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; page_num = _spdk_bs_blobid_to_page(blob->id); lba = _spdk_bs_page_to_lba(blob->bs, bs->md_start + page_num); blob->state = SPDK_BLOB_STATE_LOADING; spdk_bs_sequence_read(seq, &ctx->pages[0], lba, _spdk_bs_byte_to_lba(bs, SPDK_BS_PAGE_SIZE), _spdk_blob_load_cpl, ctx); } struct spdk_blob_persist_ctx { struct spdk_blob *blob; struct spdk_blob_md_page *pages; uint64_t idx; spdk_bs_sequence_cpl cb_fn; void *cb_arg; }; static void _spdk_blob_persist_complete(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; if (bserrno == 0) { _spdk_blob_mark_clean(blob); } /* Call user callback */ ctx->cb_fn(seq, ctx->cb_arg, bserrno); /* Free the memory */ spdk_dma_free(ctx->pages); free(ctx); } static void _spdk_blob_persist_unmap_clusters_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_store *bs = blob->bs; void *tmp; size_t i; /* Release all clusters that were truncated */ for (i = blob->active.num_clusters; i < blob->active.cluster_array_size; i++) { uint32_t cluster_num = _spdk_bs_lba_to_cluster(bs, blob->active.clusters[i]); _spdk_bs_release_cluster(bs, cluster_num); } if (blob->active.num_clusters == 0) { free(blob->active.clusters); blob->active.clusters = NULL; blob->active.cluster_array_size = 0; } else { tmp = realloc(blob->active.clusters, sizeof(uint64_t) * blob->active.num_clusters); assert(tmp != NULL); blob->active.clusters = tmp; blob->active.cluster_array_size = blob->active.num_clusters; } _spdk_blob_persist_complete(seq, ctx, bserrno); } static void _spdk_blob_persist_unmap_clusters(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_store *bs = blob->bs; spdk_bs_batch_t *batch; size_t i; uint64_t lba; uint32_t lba_count; /* Clusters don't move around in blobs. The list shrinks or grows * at the end, but no changes ever occur in the middle of the list. */ batch = spdk_bs_sequence_to_batch(seq, _spdk_blob_persist_unmap_clusters_cpl, ctx); /* Unmap all clusters that were truncated */ lba = 0; lba_count = 0; for (i = blob->active.num_clusters; i < blob->active.cluster_array_size; i++) { uint64_t next_lba = blob->active.clusters[i]; uint32_t next_lba_count = _spdk_bs_cluster_to_lba(bs, 1); if ((lba + lba_count) == next_lba) { /* This cluster is contiguous with the previous one. */ lba_count += next_lba_count; continue; } /* This cluster is not contiguous with the previous one. */ /* If a run of LBAs previously existing, send them * as an unmap. */ if (lba_count > 0) { spdk_bs_batch_unmap(batch, lba, lba_count); } /* Start building the next batch */ lba = next_lba; lba_count = next_lba_count; } /* If we ended with a contiguous set of LBAs, send the unmap now */ if (lba_count > 0) { spdk_bs_batch_unmap(batch, lba, lba_count); } spdk_bs_batch_close(batch); } static void _spdk_blob_persist_unmap_pages_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_store *bs = blob->bs; size_t i; /* This loop starts at 1 because the first page is special and handled * below. The pages (except the first) are never written in place, * so any pages in the clean list must be unmapped. */ for (i = 1; i < blob->clean.num_pages; i++) { spdk_bit_array_clear(bs->used_md_pages, blob->clean.pages[i]); } if (blob->active.num_pages == 0) { uint32_t page_num; page_num = _spdk_bs_blobid_to_page(blob->id); spdk_bit_array_clear(bs->used_md_pages, page_num); } /* Move on to unmapping clusters */ _spdk_blob_persist_unmap_clusters(seq, ctx, 0); } static void _spdk_blob_persist_unmap_pages(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_store *bs = blob->bs; uint64_t lba; uint32_t lba_count; spdk_bs_batch_t *batch; size_t i; batch = spdk_bs_sequence_to_batch(seq, _spdk_blob_persist_unmap_pages_cpl, ctx); lba_count = _spdk_bs_byte_to_lba(bs, SPDK_BS_PAGE_SIZE); /* This loop starts at 1 because the first page is special and handled * below. The pages (except the first) are never written in place, * so any pages in the clean list must be unmapped. */ for (i = 1; i < blob->clean.num_pages; i++) { lba = _spdk_bs_page_to_lba(bs, bs->md_start + blob->clean.pages[i]); spdk_bs_batch_unmap(batch, lba, lba_count); } /* The first page will only be unmapped if this is a delete. */ if (blob->active.num_pages == 0) { uint32_t page_num; /* The first page in the metadata goes where the blobid indicates */ page_num = _spdk_bs_blobid_to_page(blob->id); lba = _spdk_bs_page_to_lba(bs, bs->md_start + page_num); spdk_bs_batch_unmap(batch, lba, lba_count); } spdk_bs_batch_close(batch); } static void _spdk_blob_persist_write_page_root(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_store *bs = blob->bs; uint64_t lba; uint32_t lba_count; struct spdk_blob_md_page *page; if (blob->active.num_pages == 0) { /* Move on to the next step */ _spdk_blob_persist_unmap_pages(seq, ctx, 0); return; } lba_count = _spdk_bs_byte_to_lba(bs, sizeof(*page)); page = &ctx->pages[0]; /* The first page in the metadata goes where the blobid indicates */ lba = _spdk_bs_page_to_lba(bs, bs->md_start + _spdk_bs_blobid_to_page(blob->id)); spdk_bs_sequence_write(seq, page, lba, lba_count, _spdk_blob_persist_unmap_pages, ctx); } static void _spdk_blob_persist_write_page_chain(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob_persist_ctx *ctx = cb_arg; struct spdk_blob *blob = ctx->blob; struct spdk_blob_store *bs = blob->bs; uint64_t lba; uint32_t lba_count; struct spdk_blob_md_page *page; spdk_bs_batch_t *batch; size_t i; /* Clusters don't move around in blobs. The list shrinks or grows * at the end, but no changes ever occur in the middle of the list. */ lba_count = _spdk_bs_byte_to_lba(bs, sizeof(*page)); batch = spdk_bs_sequence_to_batch(seq, _spdk_blob_persist_write_page_root, ctx); /* This starts at 1. The root page is not written until * all of the others are finished */ for (i = 1; i < blob->active.num_pages; i++) { page = &ctx->pages[i]; assert(page->sequence_num == i); lba = _spdk_bs_page_to_lba(bs, bs->md_start + blob->active.pages[i]); spdk_bs_batch_write(batch, page, lba, lba_count); } spdk_bs_batch_close(batch); } static int _spdk_resize_blob(struct spdk_blob *blob, uint64_t sz) { uint64_t i; uint64_t *tmp; uint64_t lfc; /* lowest free cluster */ struct spdk_blob_store *bs; bs = blob->bs; assert(blob->state != SPDK_BLOB_STATE_LOADING && blob->state != SPDK_BLOB_STATE_SYNCING); if (blob->active.num_clusters == sz) { return 0; } if (blob->active.num_clusters < blob->active.cluster_array_size) { /* If this blob was resized to be larger, then smaller, then * larger without syncing, then the cluster array already * contains spare assigned clusters we can use. */ blob->active.num_clusters = spdk_min(blob->active.cluster_array_size, sz); } blob->state = SPDK_BLOB_STATE_DIRTY; /* Do two passes - one to verify that we can obtain enough clusters * and another to actually claim them. */ lfc = 0; for (i = blob->active.num_clusters; i < sz; i++) { lfc = spdk_bit_array_find_first_clear(bs->used_clusters, lfc); if (lfc >= bs->total_clusters) { /* No more free clusters. Cannot satisfy the request */ assert(false); return -1; } lfc++; } if (sz > blob->active.num_clusters) { /* Expand the cluster array if necessary. * We only shrink the array when persisting. */ tmp = realloc(blob->active.clusters, sizeof(uint64_t) * sz); if (sz > 0 && tmp == NULL) { assert(false); return -1; } blob->active.clusters = tmp; blob->active.cluster_array_size = sz; } lfc = 0; for (i = blob->active.num_clusters; i < sz; i++) { lfc = spdk_bit_array_find_first_clear(bs->used_clusters, lfc); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Claiming cluster %lu for blob %lu\n", lfc, blob->id); _spdk_bs_claim_cluster(bs, lfc); blob->active.clusters[i] = _spdk_bs_cluster_to_lba(bs, lfc); lfc++; } blob->active.num_clusters = sz; return 0; } /* Write a blob to disk */ static void _spdk_blob_persist(spdk_bs_sequence_t *seq, struct spdk_blob *blob, spdk_bs_sequence_cpl cb_fn, void *cb_arg) { struct spdk_blob_persist_ctx *ctx; int rc; uint64_t i; uint32_t page_num; struct spdk_blob_store *bs; assert(blob != NULL); assert(blob->state == SPDK_BLOB_STATE_CLEAN || blob->state == SPDK_BLOB_STATE_DIRTY); if (blob->state == SPDK_BLOB_STATE_CLEAN) { cb_fn(seq, cb_arg, 0); return; } bs = blob->bs; ctx = calloc(1, sizeof(*ctx)); if (!ctx) { cb_fn(seq, cb_arg, -ENOMEM); return; } ctx->blob = blob; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; blob->state = SPDK_BLOB_STATE_SYNCING; if (blob->active.num_pages == 0) { /* This is the signal that the blob should be deleted. * Immediately jump to the clean up routine. */ assert(blob->clean.num_pages > 0); ctx->idx = blob->clean.num_pages - 1; _spdk_blob_persist_unmap_pages(seq, ctx, 0); return; } /* Generate the new metadata */ rc = _spdk_blob_serialize(blob, &ctx->pages, &blob->active.num_pages); if (rc < 0) { free(ctx); cb_fn(seq, cb_arg, rc); return; } assert(blob->active.num_pages >= 1); /* Resize the cache of page indices */ blob->active.pages = realloc(blob->active.pages, blob->active.num_pages * sizeof(*blob->active.pages)); if (!blob->active.pages) { free(ctx); cb_fn(seq, cb_arg, -ENOMEM); return; } /* Assign this metadata to pages. This requires two passes - * one to verify that there are enough pages and a second * to actually claim them. */ page_num = 0; /* Note that this loop starts at one. The first page location is fixed by the blobid. */ for (i = 1; i < blob->active.num_pages; i++) { page_num = spdk_bit_array_find_first_clear(bs->used_md_pages, page_num); if (page_num >= spdk_bit_array_capacity(bs->used_md_pages)) { spdk_dma_free(ctx->pages); free(ctx); blob->state = SPDK_BLOB_STATE_DIRTY; cb_fn(seq, cb_arg, -ENOMEM); return; } page_num++; } page_num = 0; blob->active.pages[0] = _spdk_bs_blobid_to_page(blob->id); for (i = 1; i < blob->active.num_pages; i++) { page_num = spdk_bit_array_find_first_clear(bs->used_md_pages, page_num); ctx->pages[i - 1].next = page_num; /* Now that previous metadata page is complete, calculate the crc for it. */ ctx->pages[i - 1].crc = _spdk_blob_md_page_calc_crc(&ctx->pages[i - 1]); blob->active.pages[i] = page_num; spdk_bit_array_set(bs->used_md_pages, page_num); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Claiming page %u for blob %lu\n", page_num, blob->id); page_num++; } ctx->pages[i - 1].crc = _spdk_blob_md_page_calc_crc(&ctx->pages[i - 1]); /* Start writing the metadata from last page to first */ ctx->idx = blob->active.num_pages - 1; _spdk_blob_persist_write_page_chain(seq, ctx, 0); } static void _spdk_blob_request_submit_rw(struct spdk_blob *blob, struct spdk_io_channel *_channel, void *payload, uint64_t offset, uint64_t length, spdk_blob_op_complete cb_fn, void *cb_arg, bool read) { spdk_bs_batch_t *batch; struct spdk_bs_cpl cpl; uint64_t lba; uint32_t lba_count; uint8_t *buf; uint64_t page; assert(blob != NULL); if (offset + length > blob->active.num_clusters * blob->bs->pages_per_cluster) { cb_fn(cb_arg, -EINVAL); return; } cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC; cpl.u.blob_basic.cb_fn = cb_fn; cpl.u.blob_basic.cb_arg = cb_arg; batch = spdk_bs_batch_open(_channel, &cpl); if (!batch) { cb_fn(cb_arg, -ENOMEM); return; } length = _spdk_bs_page_to_lba(blob->bs, length); page = offset; buf = payload; while (length > 0) { lba = _spdk_bs_blob_page_to_lba(blob, page); lba_count = spdk_min(length, _spdk_bs_page_to_lba(blob->bs, _spdk_bs_num_pages_to_cluster_boundary(blob, page))); if (read) { spdk_bs_batch_read(batch, buf, lba, lba_count); } else { spdk_bs_batch_write(batch, buf, lba, lba_count); } length -= lba_count; buf += _spdk_bs_lba_to_byte(blob->bs, lba_count); page += _spdk_bs_lba_to_page(blob->bs, lba_count); } spdk_bs_batch_close(batch); } struct rw_iov_ctx { struct spdk_blob *blob; bool read; int iovcnt; struct iovec *orig_iov; uint64_t page_offset; uint64_t pages_remaining; uint64_t pages_done; struct iovec iov[0]; }; static void _spdk_rw_iov_done(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { assert(cb_arg == NULL); spdk_bs_sequence_finish(seq, bserrno); } static void _spdk_rw_iov_split_next(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct rw_iov_ctx *ctx = cb_arg; struct iovec *iov, *orig_iov; int iovcnt; size_t orig_iovoff; uint64_t lba; uint64_t page_count, pages_to_boundary; uint32_t lba_count; uint64_t byte_count; if (bserrno != 0 || ctx->pages_remaining == 0) { free(ctx); spdk_bs_sequence_finish(seq, bserrno); return; } pages_to_boundary = _spdk_bs_num_pages_to_cluster_boundary(ctx->blob, ctx->page_offset); page_count = spdk_min(ctx->pages_remaining, pages_to_boundary); lba = _spdk_bs_blob_page_to_lba(ctx->blob, ctx->page_offset); lba_count = _spdk_bs_page_to_lba(ctx->blob->bs, page_count); /* * Get index and offset into the original iov array for our current position in the I/O sequence. * byte_count will keep track of how many bytes remaining until orig_iov and orig_iovoff will * point to the current position in the I/O sequence. */ byte_count = ctx->pages_done * sizeof(struct spdk_blob_md_page); orig_iov = &ctx->orig_iov[0]; orig_iovoff = 0; while (byte_count > 0) { if (byte_count >= orig_iov->iov_len) { byte_count -= orig_iov->iov_len; orig_iov++; } else { orig_iovoff = byte_count; byte_count = 0; } } /* * Build an iov array for the next I/O in the sequence. byte_count will keep track of how many * bytes of this next I/O remain to be accounted for in the new iov array. */ byte_count = page_count * sizeof(struct spdk_blob_md_page); iov = &ctx->iov[0]; iovcnt = 0; while (byte_count > 0) { iov->iov_len = spdk_min(byte_count, orig_iov->iov_len - orig_iovoff); iov->iov_base = orig_iov->iov_base + orig_iovoff; byte_count -= iov->iov_len; orig_iovoff = 0; orig_iov++; iov++; iovcnt++; } ctx->page_offset += page_count; ctx->pages_done += page_count; ctx->pages_remaining -= page_count; iov = &ctx->iov[0]; if (ctx->read) { spdk_bs_sequence_readv(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_split_next, ctx); } else { spdk_bs_sequence_writev(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_split_next, ctx); } } static void _spdk_blob_request_submit_rw_iov(struct spdk_blob *blob, struct spdk_io_channel *_channel, struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, spdk_blob_op_complete cb_fn, void *cb_arg, bool read) { spdk_bs_sequence_t *seq; struct spdk_bs_cpl cpl; assert(blob != NULL); if (length == 0) { cb_fn(cb_arg, 0); return; } if (offset + length > blob->active.num_clusters * blob->bs->pages_per_cluster) { cb_fn(cb_arg, -EINVAL); return; } cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC; cpl.u.blob_basic.cb_fn = cb_fn; cpl.u.blob_basic.cb_arg = cb_arg; /* * For now, we implement readv/writev using a sequence (instead of a batch) to account for having * to split a request that spans a cluster boundary. For I/O that do not span a cluster boundary, * there will be no noticeable difference compared to using a batch. For I/O that do span a cluster * boundary, the target LBAs (after blob offset to LBA translation) may not be contiguous, so we need * to allocate a separate iov array and split the I/O such that none of the resulting * smaller I/O cross a cluster boundary. These smaller I/O will be issued in sequence (not in parallel) * but since this case happens very infrequently, any performance impact will be negligible. * * This could be optimized in the future to allocate a big enough iov array to account for all of the iovs * for all of the smaller I/Os, pre-build all of the iov arrays for the smaller I/Os, then issue them * in a batch. That would also require creating an intermediate spdk_bs_cpl that would get called * when the batch was completed, to allow for freeing the memory for the iov arrays. */ seq = spdk_bs_sequence_start(_channel, &cpl); if (!seq) { cb_fn(cb_arg, -ENOMEM); return; } if (spdk_likely(length <= _spdk_bs_num_pages_to_cluster_boundary(blob, offset))) { uint64_t lba = _spdk_bs_blob_page_to_lba(blob, offset); uint32_t lba_count = _spdk_bs_page_to_lba(blob->bs, length); if (read) { spdk_bs_sequence_readv(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_done, NULL); } else { spdk_bs_sequence_writev(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_done, NULL); } } else { struct rw_iov_ctx *ctx; ctx = calloc(1, sizeof(struct rw_iov_ctx) + iovcnt * sizeof(struct iovec)); if (ctx == NULL) { spdk_bs_sequence_finish(seq, -ENOMEM); return; } ctx->blob = blob; ctx->read = read; ctx->orig_iov = iov; ctx->iovcnt = iovcnt; ctx->page_offset = offset; ctx->pages_remaining = length; ctx->pages_done = 0; _spdk_rw_iov_split_next(seq, ctx, 0); } } static struct spdk_blob * _spdk_blob_lookup(struct spdk_blob_store *bs, spdk_blob_id blobid) { struct spdk_blob *blob; TAILQ_FOREACH(blob, &bs->blobs, link) { if (blob->id == blobid) { return blob; } } return NULL; } static int _spdk_bs_channel_create(struct spdk_blob_store *bs, struct spdk_bs_channel *channel, uint32_t max_ops) { struct spdk_bs_dev *dev; uint32_t i; dev = bs->dev; channel->req_mem = calloc(max_ops, sizeof(struct spdk_bs_request_set)); if (!channel->req_mem) { return -1; } TAILQ_INIT(&channel->reqs); for (i = 0; i < max_ops; i++) { TAILQ_INSERT_TAIL(&channel->reqs, &channel->req_mem[i], link); } channel->bs = bs; channel->dev = dev; channel->dev_channel = dev->create_channel(dev); return 0; } static int _spdk_bs_md_channel_create(void *io_device, void *ctx_buf) { struct spdk_blob_store *bs; struct spdk_bs_channel *channel = ctx_buf; bs = SPDK_CONTAINEROF(io_device, struct spdk_blob_store, md_target); return _spdk_bs_channel_create(bs, channel, bs->md_target.max_md_ops); } static int _spdk_bs_io_channel_create(void *io_device, void *ctx_buf) { struct spdk_blob_store *bs; struct spdk_bs_channel *channel = ctx_buf; bs = SPDK_CONTAINEROF(io_device, struct spdk_blob_store, io_target); return _spdk_bs_channel_create(bs, channel, bs->io_target.max_channel_ops); } static void _spdk_bs_channel_destroy(void *io_device, void *ctx_buf) { struct spdk_bs_channel *channel = ctx_buf; free(channel->req_mem); channel->dev->destroy_channel(channel->dev, channel->dev_channel); } static void _spdk_bs_dev_destroy(void *io_device) { struct spdk_blob_store *bs; struct spdk_blob *blob, *blob_tmp; bs = SPDK_CONTAINEROF(io_device, struct spdk_blob_store, md_target); bs->dev->destroy(bs->dev); TAILQ_FOREACH_SAFE(blob, &bs->blobs, link, blob_tmp) { TAILQ_REMOVE(&bs->blobs, blob, link); _spdk_blob_free(blob); } spdk_bit_array_free(&bs->used_md_pages); spdk_bit_array_free(&bs->used_clusters); free(bs); } static void _spdk_bs_free(struct spdk_blob_store *bs) { spdk_bs_unregister_md_thread(bs); spdk_io_device_unregister(&bs->io_target, NULL); spdk_io_device_unregister(&bs->md_target, _spdk_bs_dev_destroy); } void spdk_bs_opts_init(struct spdk_bs_opts *opts) { opts->cluster_sz = SPDK_BLOB_OPTS_CLUSTER_SZ; opts->num_md_pages = SPDK_BLOB_OPTS_NUM_MD_PAGES; opts->max_md_ops = SPDK_BLOB_OPTS_MAX_MD_OPS; opts->max_channel_ops = SPDK_BLOB_OPTS_MAX_CHANNEL_OPS; } static struct spdk_blob_store * _spdk_bs_alloc(struct spdk_bs_dev *dev, struct spdk_bs_opts *opts) { struct spdk_blob_store *bs; bs = calloc(1, sizeof(struct spdk_blob_store)); if (!bs) { return NULL; } TAILQ_INIT(&bs->blobs); bs->dev = dev; /* * Do not use _spdk_bs_lba_to_cluster() here since blockcnt may not be an * even multiple of the cluster size. */ bs->cluster_sz = opts->cluster_sz; bs->total_clusters = dev->blockcnt / (bs->cluster_sz / dev->blocklen); bs->pages_per_cluster = bs->cluster_sz / SPDK_BS_PAGE_SIZE; bs->num_free_clusters = bs->total_clusters; bs->used_clusters = spdk_bit_array_create(bs->total_clusters); if (bs->used_clusters == NULL) { _spdk_bs_free(bs); return NULL; } bs->md_target.max_md_ops = opts->max_md_ops; bs->io_target.max_channel_ops = opts->max_channel_ops; bs->super_blob = SPDK_BLOBID_INVALID; /* The metadata is assumed to be at least 1 page */ bs->used_md_pages = spdk_bit_array_create(1); spdk_io_device_register(&bs->md_target, _spdk_bs_md_channel_create, _spdk_bs_channel_destroy, sizeof(struct spdk_bs_channel)); spdk_bs_register_md_thread(bs); spdk_io_device_register(&bs->io_target, _spdk_bs_io_channel_create, _spdk_bs_channel_destroy, sizeof(struct spdk_bs_channel)); return bs; } /* START spdk_bs_load */ struct spdk_bs_load_ctx { struct spdk_blob_store *bs; struct spdk_bs_super_block *super; struct spdk_bs_md_mask *mask; }; static void _spdk_bs_load_used_clusters_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_load_ctx *ctx = cb_arg; uint32_t i, j; int rc; /* The type must be correct */ assert(ctx->mask->type == SPDK_MD_MASK_TYPE_USED_CLUSTERS); /* The length of the mask (in bits) must not be greater than the length of the buffer (converted to bits) */ assert(ctx->mask->length <= (ctx->super->used_cluster_mask_len * sizeof( struct spdk_blob_md_page) * 8)); /* The length of the mask must be exactly equal to the total number of clusters */ assert(ctx->mask->length == ctx->bs->total_clusters); rc = spdk_bit_array_resize(&ctx->bs->used_clusters, ctx->bs->total_clusters); if (rc < 0) { spdk_dma_free(ctx->super); spdk_dma_free(ctx->mask); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -ENOMEM); return; } ctx->bs->num_free_clusters = ctx->bs->total_clusters; for (i = 0; i < ctx->mask->length / 8; i++) { uint8_t segment = ctx->mask->mask[i]; for (j = 0; segment && (j < 8); j++) { if (segment & 1U) { spdk_bit_array_set(ctx->bs->used_clusters, (i * 8) + j); assert(ctx->bs->num_free_clusters > 0); ctx->bs->num_free_clusters--; } segment >>= 1U; } } spdk_dma_free(ctx->super); spdk_dma_free(ctx->mask); free(ctx); spdk_bs_sequence_finish(seq, bserrno); } static void _spdk_bs_load_used_pages_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_load_ctx *ctx = cb_arg; uint64_t lba, lba_count, mask_size; uint32_t i, j; int rc; /* The type must be correct */ assert(ctx->mask->type == SPDK_MD_MASK_TYPE_USED_PAGES); /* The length of the mask (in bits) must not be greater than the length of the buffer (converted to bits) */ assert(ctx->mask->length <= (ctx->super->used_page_mask_len * SPDK_BS_PAGE_SIZE * 8)); /* The length of the mask must be exactly equal to the size (in pages) of the metadata region */ assert(ctx->mask->length == ctx->super->md_len); rc = spdk_bit_array_resize(&ctx->bs->used_md_pages, ctx->mask->length); if (rc < 0) { spdk_dma_free(ctx->super); spdk_dma_free(ctx->mask); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -ENOMEM); return; } for (i = 0; i < ctx->mask->length / 8; i++) { uint8_t segment = ctx->mask->mask[i]; for (j = 0; segment && (j < 8); j++) { if (segment & 1U) { spdk_bit_array_set(ctx->bs->used_md_pages, (i * 8) + j); } segment >>= 1U; } } spdk_dma_free(ctx->mask); /* Read the used clusters mask */ mask_size = ctx->super->used_cluster_mask_len * SPDK_BS_PAGE_SIZE; ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL); if (!ctx->mask) { spdk_dma_free(ctx->super); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -ENOMEM); return; } lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_start); lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_len); spdk_bs_sequence_read(seq, ctx->mask, lba, lba_count, _spdk_bs_load_used_clusters_cpl, ctx); } static void _spdk_bs_load_write_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_load_ctx *ctx = cb_arg; uint64_t lba, lba_count, mask_size; /* Parse the super block */ ctx->bs->cluster_sz = ctx->super->cluster_size; ctx->bs->total_clusters = ctx->bs->dev->blockcnt / (ctx->bs->cluster_sz / ctx->bs->dev->blocklen); ctx->bs->pages_per_cluster = ctx->bs->cluster_sz / SPDK_BS_PAGE_SIZE; ctx->bs->md_start = ctx->super->md_start; ctx->bs->md_len = ctx->super->md_len; ctx->bs->super_blob = ctx->super->super_blob; /* Read the used pages mask */ mask_size = ctx->super->used_page_mask_len * SPDK_BS_PAGE_SIZE; ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL); if (!ctx->mask) { spdk_dma_free(ctx->super); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -ENOMEM); return; } lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_start); lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_len); spdk_bs_sequence_read(seq, ctx->mask, lba, lba_count, _spdk_bs_load_used_pages_cpl, ctx); } static void _spdk_bs_load_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_load_ctx *ctx = cb_arg; if (ctx->super->version != SPDK_BS_VERSION) { spdk_dma_free(ctx->super); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -EILSEQ); return; } if (memcmp(ctx->super->signature, SPDK_BS_SUPER_BLOCK_SIG, sizeof(ctx->super->signature)) != 0) { spdk_dma_free(ctx->super); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -EILSEQ); return; } if (ctx->super->clean != 1) { /* TODO: ONLY CLEAN SHUTDOWN IS CURRENTLY SUPPORTED. * All of the necessary data to recover is available * on disk - the code just has not been written yet. */ assert(false); spdk_dma_free(ctx->super); _spdk_bs_free(ctx->bs); free(ctx); spdk_bs_sequence_finish(seq, -EILSEQ); return; } ctx->super->clean = 0; spdk_bs_sequence_write(seq, ctx->super, _spdk_bs_page_to_lba(ctx->bs, 0), _spdk_bs_byte_to_lba(ctx->bs, sizeof(*ctx->super)), _spdk_bs_load_write_super_cpl, ctx); } void spdk_bs_load(struct spdk_bs_dev *dev, spdk_bs_op_with_handle_complete cb_fn, void *cb_arg) { struct spdk_blob_store *bs; struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; struct spdk_bs_load_ctx *ctx; struct spdk_bs_opts opts = {}; SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Loading blobstore from dev %p\n", dev); spdk_bs_opts_init(&opts); bs = _spdk_bs_alloc(dev, &opts); if (!bs) { cb_fn(cb_arg, NULL, -ENOMEM); return; } ctx = calloc(1, sizeof(*ctx)); if (!ctx) { _spdk_bs_free(bs); cb_fn(cb_arg, NULL, -ENOMEM); return; } ctx->bs = bs; /* Allocate memory for the super block */ ctx->super = spdk_dma_zmalloc(sizeof(*ctx->super), 0x1000, NULL); if (!ctx->super) { free(ctx); _spdk_bs_free(bs); return; } cpl.type = SPDK_BS_CPL_TYPE_BS_HANDLE; cpl.u.bs_handle.cb_fn = cb_fn; cpl.u.bs_handle.cb_arg = cb_arg; cpl.u.bs_handle.bs = bs; seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl); if (!seq) { spdk_dma_free(ctx->super); free(ctx); _spdk_bs_free(bs); cb_fn(cb_arg, NULL, -ENOMEM); return; } /* Read the super block */ spdk_bs_sequence_read(seq, ctx->super, _spdk_bs_page_to_lba(bs, 0), _spdk_bs_byte_to_lba(bs, sizeof(*ctx->super)), _spdk_bs_load_super_cpl, ctx); } /* END spdk_bs_load */ /* START spdk_bs_init */ struct spdk_bs_init_ctx { struct spdk_blob_store *bs; struct spdk_bs_super_block *super; }; static void _spdk_bs_init_persist_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_init_ctx *ctx = cb_arg; spdk_dma_free(ctx->super); free(ctx); spdk_bs_sequence_finish(seq, bserrno); } static void _spdk_bs_init_trim_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_init_ctx *ctx = cb_arg; /* Write super block */ spdk_bs_sequence_write(seq, ctx->super, _spdk_bs_page_to_lba(ctx->bs, 0), _spdk_bs_byte_to_lba(ctx->bs, sizeof(*ctx->super)), _spdk_bs_init_persist_super_cpl, ctx); } void spdk_bs_init(struct spdk_bs_dev *dev, struct spdk_bs_opts *o, spdk_bs_op_with_handle_complete cb_fn, void *cb_arg) { struct spdk_bs_init_ctx *ctx; struct spdk_blob_store *bs; struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; uint64_t num_md_pages; uint32_t i; struct spdk_bs_opts opts = {}; int rc; SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Initializing blobstore on dev %p\n", dev); if ((SPDK_BS_PAGE_SIZE % dev->blocklen) != 0) { SPDK_ERRLOG("unsupported dev block length of %d\n", dev->blocklen); cb_fn(cb_arg, NULL, -EINVAL); return; } if (o) { opts = *o; } else { spdk_bs_opts_init(&opts); } bs = _spdk_bs_alloc(dev, &opts); if (!bs) { cb_fn(cb_arg, NULL, -ENOMEM); return; } if (opts.num_md_pages == UINT32_MAX) { /* By default, allocate 1 page per cluster. * Technically, this over-allocates metadata * because more metadata will reduce the number * of usable clusters. This can be addressed with * more complex math in the future. */ bs->md_len = bs->total_clusters; } else { bs->md_len = opts.num_md_pages; } rc = spdk_bit_array_resize(&bs->used_md_pages, bs->md_len); if (rc < 0) { _spdk_bs_free(bs); cb_fn(cb_arg, NULL, -ENOMEM); return; } ctx = calloc(1, sizeof(*ctx)); if (!ctx) { _spdk_bs_free(bs); cb_fn(cb_arg, NULL, -ENOMEM); return; } ctx->bs = bs; /* Allocate memory for the super block */ ctx->super = spdk_dma_zmalloc(sizeof(*ctx->super), 0x1000, NULL); if (!ctx->super) { free(ctx); _spdk_bs_free(bs); return; } memcpy(ctx->super->signature, SPDK_BS_SUPER_BLOCK_SIG, sizeof(ctx->super->signature)); ctx->super->version = SPDK_BS_VERSION; ctx->super->length = sizeof(*ctx->super); ctx->super->super_blob = bs->super_blob; ctx->super->clean = 0; ctx->super->cluster_size = bs->cluster_sz; /* Calculate how many pages the metadata consumes at the front * of the disk. */ /* The super block uses 1 page */ num_md_pages = 1; /* The used_md_pages mask requires 1 bit per metadata page, rounded * up to the nearest page, plus a header. */ ctx->super->used_page_mask_start = num_md_pages; ctx->super->used_page_mask_len = divide_round_up(sizeof(struct spdk_bs_md_mask) + divide_round_up(bs->md_len, 8), SPDK_BS_PAGE_SIZE); num_md_pages += ctx->super->used_page_mask_len; /* The used_clusters mask requires 1 bit per cluster, rounded * up to the nearest page, plus a header. */ ctx->super->used_cluster_mask_start = num_md_pages; ctx->super->used_cluster_mask_len = divide_round_up(sizeof(struct spdk_bs_md_mask) + divide_round_up(bs->total_clusters, 8), SPDK_BS_PAGE_SIZE); num_md_pages += ctx->super->used_cluster_mask_len; /* The metadata region size was chosen above */ ctx->super->md_start = bs->md_start = num_md_pages; ctx->super->md_len = bs->md_len; num_md_pages += bs->md_len; /* Claim all of the clusters used by the metadata */ for (i = 0; i < divide_round_up(num_md_pages, bs->pages_per_cluster); i++) { _spdk_bs_claim_cluster(bs, i); } cpl.type = SPDK_BS_CPL_TYPE_BS_HANDLE; cpl.u.bs_handle.cb_fn = cb_fn; cpl.u.bs_handle.cb_arg = cb_arg; cpl.u.bs_handle.bs = bs; seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl); if (!seq) { spdk_dma_free(ctx->super); free(ctx); _spdk_bs_free(bs); cb_fn(cb_arg, NULL, -ENOMEM); return; } /* TRIM the entire device */ spdk_bs_sequence_unmap(seq, 0, bs->dev->blockcnt, _spdk_bs_init_trim_cpl, ctx); } /* END spdk_bs_init */ /* START spdk_bs_unload */ struct spdk_bs_unload_ctx { struct spdk_blob_store *bs; struct spdk_bs_super_block *super; struct spdk_bs_md_mask *mask; }; static void _spdk_bs_unload_write_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_unload_ctx *ctx = cb_arg; spdk_dma_free(ctx->super); spdk_bs_sequence_finish(seq, bserrno); _spdk_bs_free(ctx->bs); free(ctx); } static void _spdk_bs_unload_write_used_clusters_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_unload_ctx *ctx = cb_arg; spdk_dma_free(ctx->mask); /* Update the values in the super block */ ctx->super->super_blob = ctx->bs->super_blob; ctx->super->clean = 1; spdk_bs_sequence_write(seq, ctx->super, _spdk_bs_page_to_lba(ctx->bs, 0), _spdk_bs_byte_to_lba(ctx->bs, sizeof(*ctx->super)), _spdk_bs_unload_write_super_cpl, ctx); } static void _spdk_bs_unload_write_used_pages_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_unload_ctx *ctx = cb_arg; uint32_t i; uint64_t lba, lba_count, mask_size; spdk_dma_free(ctx->mask); /* Write out the used clusters mask */ mask_size = ctx->super->used_cluster_mask_len * SPDK_BS_PAGE_SIZE; ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL); if (!ctx->mask) { spdk_dma_free(ctx->super); free(ctx); spdk_bs_sequence_finish(seq, -ENOMEM); return; } ctx->mask->type = SPDK_MD_MASK_TYPE_USED_CLUSTERS; ctx->mask->length = ctx->bs->total_clusters; assert(ctx->mask->length == spdk_bit_array_capacity(ctx->bs->used_clusters)); i = 0; while (true) { i = spdk_bit_array_find_first_set(ctx->bs->used_clusters, i); if (i > ctx->mask->length) { break; } ctx->mask->mask[i / 8] |= 1U << (i % 8); i++; } lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_start); lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_len); spdk_bs_sequence_write(seq, ctx->mask, lba, lba_count, _spdk_bs_unload_write_used_clusters_cpl, ctx); } static void _spdk_bs_unload_read_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_bs_unload_ctx *ctx = cb_arg; uint32_t i; uint64_t lba, lba_count, mask_size; /* Write out the used page mask */ mask_size = ctx->super->used_page_mask_len * SPDK_BS_PAGE_SIZE; ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL); if (!ctx->mask) { spdk_dma_free(ctx->super); free(ctx); spdk_bs_sequence_finish(seq, -ENOMEM); return; } ctx->mask->type = SPDK_MD_MASK_TYPE_USED_PAGES; ctx->mask->length = ctx->super->md_len; assert(ctx->mask->length == spdk_bit_array_capacity(ctx->bs->used_md_pages)); i = 0; while (true) { i = spdk_bit_array_find_first_set(ctx->bs->used_md_pages, i); if (i > ctx->mask->length) { break; } ctx->mask->mask[i / 8] |= 1U << (i % 8); i++; } lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_start); lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_len); spdk_bs_sequence_write(seq, ctx->mask, lba, lba_count, _spdk_bs_unload_write_used_pages_cpl, ctx); } void spdk_bs_unload(struct spdk_blob_store *bs, spdk_bs_op_complete cb_fn, void *cb_arg) { struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; struct spdk_bs_unload_ctx *ctx; SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Syncing blobstore\n"); ctx = calloc(1, sizeof(*ctx)); if (!ctx) { cb_fn(cb_arg, -ENOMEM); return; } ctx->bs = bs; ctx->super = spdk_dma_zmalloc(sizeof(*ctx->super), 0x1000, NULL); if (!ctx->super) { free(ctx); cb_fn(cb_arg, -ENOMEM); return; } cpl.type = SPDK_BS_CPL_TYPE_BS_BASIC; cpl.u.bs_basic.cb_fn = cb_fn; cpl.u.bs_basic.cb_arg = cb_arg; seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl); if (!seq) { spdk_dma_free(ctx->super); free(ctx); cb_fn(cb_arg, -ENOMEM); return; } assert(TAILQ_EMPTY(&bs->blobs)); /* Read super block */ spdk_bs_sequence_read(seq, ctx->super, _spdk_bs_page_to_lba(bs, 0), _spdk_bs_byte_to_lba(bs, sizeof(*ctx->super)), _spdk_bs_unload_read_super_cpl, ctx); } /* END spdk_bs_unload */ void spdk_bs_set_super(struct spdk_blob_store *bs, spdk_blob_id blobid, spdk_bs_op_complete cb_fn, void *cb_arg) { bs->super_blob = blobid; cb_fn(cb_arg, 0); } void spdk_bs_get_super(struct spdk_blob_store *bs, spdk_blob_op_with_id_complete cb_fn, void *cb_arg) { if (bs->super_blob == SPDK_BLOBID_INVALID) { cb_fn(cb_arg, SPDK_BLOBID_INVALID, -ENOENT); } else { cb_fn(cb_arg, bs->super_blob, 0); } } uint64_t spdk_bs_get_cluster_size(struct spdk_blob_store *bs) { return bs->cluster_sz; } uint64_t spdk_bs_get_page_size(struct spdk_blob_store *bs) { return SPDK_BS_PAGE_SIZE; } uint64_t spdk_bs_free_cluster_count(struct spdk_blob_store *bs) { return bs->num_free_clusters; } int spdk_bs_register_md_thread(struct spdk_blob_store *bs) { bs->md_target.md_channel = spdk_get_io_channel(&bs->md_target); return 0; } int spdk_bs_unregister_md_thread(struct spdk_blob_store *bs) { spdk_put_io_channel(bs->md_target.md_channel); return 0; } spdk_blob_id spdk_blob_get_id(struct spdk_blob *blob) { assert(blob != NULL); return blob->id; } uint64_t spdk_blob_get_num_pages(struct spdk_blob *blob) { assert(blob != NULL); return _spdk_bs_cluster_to_page(blob->bs, blob->active.num_clusters); } uint64_t spdk_blob_get_num_clusters(struct spdk_blob *blob) { assert(blob != NULL); return blob->active.num_clusters; } /* START spdk_bs_md_create_blob */ static void _spdk_bs_md_create_blob_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob *blob = cb_arg; _spdk_blob_free(blob); spdk_bs_sequence_finish(seq, bserrno); } void spdk_bs_md_create_blob(struct spdk_blob_store *bs, spdk_blob_op_with_id_complete cb_fn, void *cb_arg) { struct spdk_blob *blob; uint32_t page_idx; struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; spdk_blob_id id; page_idx = spdk_bit_array_find_first_clear(bs->used_md_pages, 0); if (page_idx >= spdk_bit_array_capacity(bs->used_md_pages)) { cb_fn(cb_arg, 0, -ENOMEM); return; } spdk_bit_array_set(bs->used_md_pages, page_idx); /* The blob id is a 64 bit number. The lower 32 bits are the page_idx. The upper * 32 bits are not currently used. Stick a 1 there just to catch bugs where the * code assumes blob id == page_idx. */ id = (1ULL << 32) | page_idx; SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Creating blob with id %lu at page %u\n", id, page_idx); blob = _spdk_blob_alloc(bs, id); if (!blob) { cb_fn(cb_arg, 0, -ENOMEM); return; } cpl.type = SPDK_BS_CPL_TYPE_BLOBID; cpl.u.blobid.cb_fn = cb_fn; cpl.u.blobid.cb_arg = cb_arg; cpl.u.blobid.blobid = blob->id; seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl); if (!seq) { _spdk_blob_free(blob); cb_fn(cb_arg, 0, -ENOMEM); return; } _spdk_blob_persist(seq, blob, _spdk_bs_md_create_blob_cpl, blob); } /* END spdk_bs_md_create_blob */ /* START spdk_bs_md_resize_blob */ int spdk_bs_md_resize_blob(struct spdk_blob *blob, uint64_t sz) { int rc; assert(blob != NULL); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Resizing blob %lu to %lu clusters\n", blob->id, sz); if (sz == blob->active.num_clusters) { return 0; } rc = _spdk_resize_blob(blob, sz); if (rc < 0) { return rc; } return 0; } /* END spdk_bs_md_resize_blob */ /* START spdk_bs_md_delete_blob */ static void _spdk_bs_md_delete_blob_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob *blob = cb_arg; _spdk_blob_free(blob); spdk_bs_sequence_finish(seq, bserrno); } static void _spdk_bs_md_delete_open_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob *blob = cb_arg; /* If the blob have crc error, we just return NULL. */ if (blob == NULL) { spdk_bs_sequence_finish(seq, bserrno); return; } blob->state = SPDK_BLOB_STATE_DIRTY; blob->active.num_pages = 0; _spdk_resize_blob(blob, 0); _spdk_blob_persist(seq, blob, _spdk_bs_md_delete_blob_cpl, blob); } void spdk_bs_md_delete_blob(struct spdk_blob_store *bs, spdk_blob_id blobid, spdk_blob_op_complete cb_fn, void *cb_arg) { struct spdk_blob *blob; struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Deleting blob %lu\n", blobid); blob = _spdk_blob_lookup(bs, blobid); if (blob) { assert(blob->open_ref > 0); cb_fn(cb_arg, -EINVAL); return; } blob = _spdk_blob_alloc(bs, blobid); if (!blob) { cb_fn(cb_arg, -ENOMEM); return; } cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC; cpl.u.blob_basic.cb_fn = cb_fn; cpl.u.blob_basic.cb_arg = cb_arg; seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl); if (!seq) { _spdk_blob_free(blob); cb_fn(cb_arg, -ENOMEM); return; } _spdk_blob_load(seq, blob, _spdk_bs_md_delete_open_cpl, blob); } /* END spdk_bs_md_delete_blob */ /* START spdk_bs_md_open_blob */ static void _spdk_bs_md_open_blob_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob *blob = cb_arg; /* If the blob have crc error, we just return NULL. */ if (blob == NULL) { seq->cpl.u.blob_handle.blob = NULL; spdk_bs_sequence_finish(seq, bserrno); return; } blob->open_ref++; TAILQ_INSERT_HEAD(&blob->bs->blobs, blob, link); spdk_bs_sequence_finish(seq, bserrno); } void spdk_bs_md_open_blob(struct spdk_blob_store *bs, spdk_blob_id blobid, spdk_blob_op_with_handle_complete cb_fn, void *cb_arg) { struct spdk_blob *blob; struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; uint32_t page_num; SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Opening blob %lu\n", blobid); blob = _spdk_blob_lookup(bs, blobid); if (blob) { blob->open_ref++; cb_fn(cb_arg, blob, 0); return; } page_num = _spdk_bs_blobid_to_page(blobid); if (spdk_bit_array_get(bs->used_md_pages, page_num) == false) { /* Invalid blobid */ cb_fn(cb_arg, NULL, -ENOENT); return; } blob = _spdk_blob_alloc(bs, blobid); if (!blob) { cb_fn(cb_arg, NULL, -ENOMEM); return; } cpl.type = SPDK_BS_CPL_TYPE_BLOB_HANDLE; cpl.u.blob_handle.cb_fn = cb_fn; cpl.u.blob_handle.cb_arg = cb_arg; cpl.u.blob_handle.blob = blob; seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl); if (!seq) { _spdk_blob_free(blob); cb_fn(cb_arg, NULL, -ENOMEM); return; } _spdk_blob_load(seq, blob, _spdk_bs_md_open_blob_cpl, blob); } /* START spdk_bs_md_sync_blob */ static void _spdk_blob_sync_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { spdk_bs_sequence_finish(seq, bserrno); } void spdk_bs_md_sync_blob(struct spdk_blob *blob, spdk_blob_op_complete cb_fn, void *cb_arg) { struct spdk_bs_cpl cpl; spdk_bs_sequence_t *seq; assert(blob != NULL); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Syncing blob %lu\n", blob->id); assert(blob->state != SPDK_BLOB_STATE_LOADING && blob->state != SPDK_BLOB_STATE_SYNCING); if (blob->state == SPDK_BLOB_STATE_CLEAN) { cb_fn(cb_arg, 0); return; } cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC; cpl.u.blob_basic.cb_fn = cb_fn; cpl.u.blob_basic.cb_arg = cb_arg; seq = spdk_bs_sequence_start(blob->bs->md_target.md_channel, &cpl); if (!seq) { cb_fn(cb_arg, -ENOMEM); return; } _spdk_blob_persist(seq, blob, _spdk_blob_sync_cpl, blob); } /* END spdk_bs_md_sync_blob */ /* START spdk_bs_md_close_blob */ static void _spdk_blob_close_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno) { struct spdk_blob **blob = cb_arg; if ((*blob)->open_ref == 0) { TAILQ_REMOVE(&(*blob)->bs->blobs, (*blob), link); _spdk_blob_free((*blob)); } *blob = NULL; spdk_bs_sequence_finish(seq, bserrno); } void spdk_bs_md_close_blob(struct spdk_blob **b, spdk_blob_op_complete cb_fn, void *cb_arg) { struct spdk_bs_cpl cpl; struct spdk_blob *blob; spdk_bs_sequence_t *seq; assert(b != NULL); blob = *b; assert(blob != NULL); SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Closing blob %lu\n", blob->id); assert(blob->state != SPDK_BLOB_STATE_LOADING && blob->state != SPDK_BLOB_STATE_SYNCING); if (blob->open_ref == 0) { cb_fn(cb_arg, -EBADF); return; } blob->open_ref--; cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC; cpl.u.blob_basic.cb_fn = cb_fn; cpl.u.blob_basic.cb_arg = cb_arg; seq = spdk_bs_sequence_start(blob->bs->md_target.md_channel, &cpl); if (!seq) { cb_fn(cb_arg, -ENOMEM); return; } if (blob->state == SPDK_BLOB_STATE_CLEAN) { _spdk_blob_close_cpl(seq, b, 0); return; } /* Sync metadata */ _spdk_blob_persist(seq, blob, _spdk_blob_close_cpl, b); } /* END spdk_bs_md_close_blob */ struct spdk_io_channel *spdk_bs_alloc_io_channel(struct spdk_blob_store *bs) { return spdk_get_io_channel(&bs->io_target); } void spdk_bs_free_io_channel(struct spdk_io_channel *channel) { spdk_put_io_channel(channel); } void spdk_bs_io_flush_channel(struct spdk_io_channel *channel, spdk_blob_op_complete cb_fn, void *cb_arg) { /* Flush is synchronous right now */ cb_fn(cb_arg, 0); } void spdk_bs_io_write_blob(struct spdk_blob *blob, struct spdk_io_channel *channel, void *payload, uint64_t offset, uint64_t length, spdk_blob_op_complete cb_fn, void *cb_arg) { _spdk_blob_request_submit_rw(blob, channel, payload, offset, length, cb_fn, cb_arg, false); } void spdk_bs_io_read_blob(struct spdk_blob *blob, struct spdk_io_channel *channel, void *payload, uint64_t offset, uint64_t length, spdk_blob_op_complete cb_fn, void *cb_arg) { _spdk_blob_request_submit_rw(blob, channel, payload, offset, length, cb_fn, cb_arg, true); } void spdk_bs_io_writev_blob(struct spdk_blob *blob, struct spdk_io_channel *channel, struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, spdk_blob_op_complete cb_fn, void *cb_arg) { _spdk_blob_request_submit_rw_iov(blob, channel, iov, iovcnt, offset, length, cb_fn, cb_arg, false); } void spdk_bs_io_readv_blob(struct spdk_blob *blob, struct spdk_io_channel *channel, struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, spdk_blob_op_complete cb_fn, void *cb_arg) { _spdk_blob_request_submit_rw_iov(blob, channel, iov, iovcnt, offset, length, cb_fn, cb_arg, true); } struct spdk_bs_iter_ctx { int64_t page_num; struct spdk_blob_store *bs; spdk_blob_op_with_handle_complete cb_fn; void *cb_arg; }; static void _spdk_bs_iter_cpl(void *cb_arg, struct spdk_blob *blob, int bserrno) { struct spdk_bs_iter_ctx *ctx = cb_arg; struct spdk_blob_store *bs = ctx->bs; spdk_blob_id id; if (bserrno == 0) { ctx->cb_fn(ctx->cb_arg, blob, bserrno); free(ctx); return; } ctx->page_num++; ctx->page_num = spdk_bit_array_find_first_set(bs->used_md_pages, ctx->page_num); if (ctx->page_num >= spdk_bit_array_capacity(bs->used_md_pages)) { ctx->cb_fn(ctx->cb_arg, NULL, -ENOENT); free(ctx); return; } id = (1ULL << 32) | ctx->page_num; blob = _spdk_blob_lookup(bs, id); if (blob) { blob->open_ref++; ctx->cb_fn(ctx->cb_arg, blob, 0); free(ctx); return; } spdk_bs_md_open_blob(bs, id, _spdk_bs_iter_cpl, ctx); } void spdk_bs_md_iter_first(struct spdk_blob_store *bs, spdk_blob_op_with_handle_complete cb_fn, void *cb_arg) { struct spdk_bs_iter_ctx *ctx; ctx = calloc(1, sizeof(*ctx)); if (!ctx) { cb_fn(cb_arg, NULL, -ENOMEM); return; } ctx->page_num = -1; ctx->bs = bs; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; _spdk_bs_iter_cpl(ctx, NULL, -1); } static void _spdk_bs_iter_close_cpl(void *cb_arg, int bserrno) { struct spdk_bs_iter_ctx *ctx = cb_arg; _spdk_bs_iter_cpl(ctx, NULL, -1); } void spdk_bs_md_iter_next(struct spdk_blob_store *bs, struct spdk_blob **b, spdk_blob_op_with_handle_complete cb_fn, void *cb_arg) { struct spdk_bs_iter_ctx *ctx; struct spdk_blob *blob; assert(b != NULL); blob = *b; assert(blob != NULL); ctx = calloc(1, sizeof(*ctx)); if (!ctx) { cb_fn(cb_arg, NULL, -ENOMEM); return; } ctx->page_num = _spdk_bs_blobid_to_page(blob->id); ctx->bs = bs; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; /* Close the existing blob */ spdk_bs_md_close_blob(b, _spdk_bs_iter_close_cpl, ctx); } int spdk_blob_md_set_xattr(struct spdk_blob *blob, const char *name, const void *value, uint16_t value_len) { struct spdk_xattr *xattr; assert(blob != NULL); assert(blob->state != SPDK_BLOB_STATE_LOADING && blob->state != SPDK_BLOB_STATE_SYNCING); TAILQ_FOREACH(xattr, &blob->xattrs, link) { if (!strcmp(name, xattr->name)) { free(xattr->value); xattr->value_len = value_len; xattr->value = malloc(value_len); memcpy(xattr->value, value, value_len); blob->state = SPDK_BLOB_STATE_DIRTY; return 0; } } xattr = calloc(1, sizeof(*xattr)); if (!xattr) { return -1; } xattr->name = strdup(name); xattr->value_len = value_len; xattr->value = malloc(value_len); memcpy(xattr->value, value, value_len); TAILQ_INSERT_TAIL(&blob->xattrs, xattr, link); blob->state = SPDK_BLOB_STATE_DIRTY; return 0; } int spdk_blob_md_remove_xattr(struct spdk_blob *blob, const char *name) { struct spdk_xattr *xattr; assert(blob != NULL); assert(blob->state != SPDK_BLOB_STATE_LOADING && blob->state != SPDK_BLOB_STATE_SYNCING); TAILQ_FOREACH(xattr, &blob->xattrs, link) { if (!strcmp(name, xattr->name)) { TAILQ_REMOVE(&blob->xattrs, xattr, link); free(xattr->value); free(xattr->name); free(xattr); blob->state = SPDK_BLOB_STATE_DIRTY; return 0; } } return -ENOENT; } int spdk_bs_md_get_xattr_value(struct spdk_blob *blob, const char *name, const void **value, size_t *value_len) { struct spdk_xattr *xattr; TAILQ_FOREACH(xattr, &blob->xattrs, link) { if (!strcmp(name, xattr->name)) { *value = xattr->value; *value_len = xattr->value_len; return 0; } } return -ENOENT; } struct spdk_xattr_names { uint32_t count; const char *names[0]; }; int spdk_bs_md_get_xattr_names(struct spdk_blob *blob, struct spdk_xattr_names **names) { struct spdk_xattr *xattr; int count = 0; TAILQ_FOREACH(xattr, &blob->xattrs, link) { count++; } *names = calloc(1, sizeof(struct spdk_xattr_names) + count * sizeof(char *)); if (*names == NULL) { return -ENOMEM; } TAILQ_FOREACH(xattr, &blob->xattrs, link) { (*names)->names[(*names)->count++] = xattr->name; } return 0; } uint32_t spdk_xattr_names_get_count(struct spdk_xattr_names *names) { assert(names != NULL); return names->count; } const char * spdk_xattr_names_get_name(struct spdk_xattr_names *names, uint32_t index) { if (index >= names->count) { return NULL; } return names->names[index]; } void spdk_xattr_names_free(struct spdk_xattr_names *names) { free(names); } SPDK_LOG_REGISTER_TRACE_FLAG("blob", SPDK_TRACE_BLOB);