/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * NVMe over RDMA transport */ #include "spdk/stdinc.h" #include #include #include #include "spdk/assert.h" #include "spdk/log.h" #include "spdk/trace.h" #include "spdk/event.h" #include "spdk/queue.h" #include "spdk/nvme.h" #include "spdk/nvmf_spec.h" #include "spdk/string.h" #include "spdk/endian.h" #include "spdk/likely.h" #include "nvme_internal.h" #define NVME_RDMA_TIME_OUT_IN_MS 2000 #define NVME_RDMA_RW_BUFFER_SIZE 131072 /* * NVME RDMA qpair Resource Defaults */ #define NVME_RDMA_DEFAULT_TX_SGE 2 #define NVME_RDMA_DEFAULT_RX_SGE 1 /* Max number of NVMe-oF SGL descriptors supported by the host */ #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 /* number of STAILQ entries for holding pending RDMA CM events. */ #define NVME_RDMA_NUM_CM_EVENTS 256 /* CM event processing timeout */ #define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 100000 struct spdk_nvmf_cmd { struct spdk_nvme_cmd cmd; struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; }; struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; /* Mapping from virtual address to ibv_mr pointer for a protection domain */ struct spdk_nvme_rdma_mr_map { struct ibv_pd *pd; struct spdk_mem_map *map; uint64_t ref; LIST_ENTRY(spdk_nvme_rdma_mr_map) link; }; /* STAILQ wrapper for cm events. */ struct nvme_rdma_cm_event_entry { struct rdma_cm_event *evt; STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; }; /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ struct nvme_rdma_ctrlr { struct spdk_nvme_ctrlr ctrlr; struct ibv_pd *pd; uint16_t max_sge; struct rdma_event_channel *cm_channel; STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; struct nvme_rdma_cm_event_entry *cm_events; }; /* NVMe RDMA qpair extensions for spdk_nvme_qpair */ struct nvme_rdma_qpair { struct spdk_nvme_qpair qpair; struct rdma_cm_id *cm_id; struct ibv_cq *cq; struct spdk_nvme_rdma_req *rdma_reqs; uint32_t max_send_sge; uint32_t max_recv_sge; uint16_t num_entries; /* Parallel arrays of response buffers + response SGLs of size num_entries */ struct ibv_sge *rsp_sgls; struct spdk_nvme_cpl *rsps; struct ibv_recv_wr *rsp_recv_wrs; /* Memory region describing all rsps for this qpair */ struct ibv_mr *rsp_mr; /* * Array of num_entries NVMe commands registered as RDMA message buffers. * Indexed by rdma_req->id. */ struct spdk_nvmf_cmd *cmds; /* Memory region describing all cmds for this qpair */ struct ibv_mr *cmd_mr; struct spdk_nvme_rdma_mr_map *mr_map; TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; /* Placed at the end of the struct since it is not used frequently */ struct rdma_cm_event *evt; }; struct spdk_nvme_rdma_req { int id; struct ibv_send_wr send_wr; struct nvme_request *req; struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; TAILQ_ENTRY(spdk_nvme_rdma_req) link; bool request_ready_to_put; }; static const char *rdma_cm_event_str[] = { "RDMA_CM_EVENT_ADDR_RESOLVED", "RDMA_CM_EVENT_ADDR_ERROR", "RDMA_CM_EVENT_ROUTE_RESOLVED", "RDMA_CM_EVENT_ROUTE_ERROR", "RDMA_CM_EVENT_CONNECT_REQUEST", "RDMA_CM_EVENT_CONNECT_RESPONSE", "RDMA_CM_EVENT_CONNECT_ERROR", "RDMA_CM_EVENT_UNREACHABLE", "RDMA_CM_EVENT_REJECTED", "RDMA_CM_EVENT_ESTABLISHED", "RDMA_CM_EVENT_DISCONNECTED", "RDMA_CM_EVENT_DEVICE_REMOVAL", "RDMA_CM_EVENT_MULTICAST_JOIN", "RDMA_CM_EVENT_MULTICAST_ERROR", "RDMA_CM_EVENT_ADDR_CHANGE", "RDMA_CM_EVENT_TIMEWAIT_EXIT" }; static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps); static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER; static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair); static inline struct nvme_rdma_qpair * nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) { assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); } static inline struct nvme_rdma_ctrlr * nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); } static struct spdk_nvme_rdma_req * nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) { struct spdk_nvme_rdma_req *rdma_req; rdma_req = TAILQ_FIRST(&rqpair->free_reqs); if (rdma_req) { TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); } return rdma_req; } static void nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { rdma_req->request_ready_to_put = false; TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); } static void nvme_rdma_req_complete(struct nvme_request *req, struct spdk_nvme_cpl *rsp) { nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp); nvme_free_request(req); } static const char * nvme_rdma_cm_event_str_get(uint32_t event) { if (event < SPDK_COUNTOF(rdma_cm_event_str)) { return rdma_cm_event_str[event]; } else { return "Undefined"; } } static int nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) { struct rdma_cm_event *event = rqpair->evt; struct spdk_nvmf_rdma_accept_private_data *accept_data; int rc = 0; if (event) { switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_RESOLVED: case RDMA_CM_EVENT_ROUTE_ERROR: break; case RDMA_CM_EVENT_CONNECT_REQUEST: break; case RDMA_CM_EVENT_CONNECT_RESPONSE: break; case RDMA_CM_EVENT_CONNECT_ERROR: break; case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_REJECTED: break; case RDMA_CM_EVENT_ESTABLISHED: accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; if (accept_data == NULL) { rc = -1; } else { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n", rqpair->num_entries, accept_data->crqsize); rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize); } break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_DEVICE_REMOVAL: break; case RDMA_CM_EVENT_MULTICAST_JOIN: case RDMA_CM_EVENT_MULTICAST_ERROR: break; case RDMA_CM_EVENT_ADDR_CHANGE: break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: break; default: SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); break; } rqpair->evt = NULL; rdma_ack_cm_event(event); } return rc; } /* * This function must be called under the nvme controller's lock * because it touches global controller variables. The lock is taken * by the generic transport code before invoking a few of the functions * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, * and conditionally nvme_rdma_qpair_process_completions when it is calling * completions on the admin qpair. When adding a new call to this function, please * verify that it is in a situation where it falls under the lock. */ static int nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) { struct nvme_rdma_cm_event_entry *entry, *tmp; struct nvme_rdma_qpair *event_qpair; struct rdma_cm_event *event; struct rdma_event_channel *channel = rctrlr->cm_channel; STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { event_qpair = nvme_rdma_qpair(entry->evt->id->context); if (event_qpair->evt == NULL) { event_qpair->evt = entry->evt; STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); } } while (rdma_get_cm_event(channel, &event) == 0) { event_qpair = nvme_rdma_qpair(event->id->context); if (event_qpair->evt == NULL) { event_qpair->evt = event; } else { assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); entry = STAILQ_FIRST(&rctrlr->free_cm_events); if (entry == NULL) { rdma_ack_cm_event(event); return -ENOMEM; } STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); entry->evt = event; STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); } } if (errno == EAGAIN || errno == EWOULDBLOCK) { return 0; } else { return errno; } } static int nvme_rdma_process_event(struct nvme_rdma_qpair *rqpair, struct rdma_event_channel *channel, enum rdma_cm_event_type evt) { struct nvme_rdma_ctrlr *rctrlr; uint64_t timeout_ticks; int rc = 0, rc2; if (rqpair->evt != NULL) { rc = nvme_rdma_qpair_process_cm_event(rqpair); if (rc) { return rc; } } timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks(); rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); assert(rctrlr != NULL); while (!rqpair->evt && spdk_get_ticks() < timeout_ticks && rc == 0) { rc = nvme_rdma_poll_events(rctrlr); } if (rc) { return rc; } if (rqpair->evt == NULL) { return -EADDRNOTAVAIL; } if (rqpair->evt->event != evt) { SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", nvme_rdma_cm_event_str_get(evt), nvme_rdma_cm_event_str_get(rqpair->evt->event), rqpair->evt->event, rqpair->evt->status); rc = -EBADMSG; } rc2 = nvme_rdma_qpair_process_cm_event(rqpair); /* bad message takes precedence over the other error codes from processing the event. */ return rc == 0 ? rc2 : rc; } static int nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) { int rc; struct ibv_qp_init_attr attr; struct ibv_device_attr dev_attr; struct nvme_rdma_ctrlr *rctrlr; rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); if (rc != 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); return -1; } rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0); if (!rqpair->cq) { SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); return -1; } rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); if (g_nvme_hooks.get_ibv_pd) { rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); } else { rctrlr->pd = NULL; } memset(&attr, 0, sizeof(struct ibv_qp_init_attr)); attr.qp_type = IBV_QPT_RC; attr.send_cq = rqpair->cq; attr.recv_cq = rqpair->cq; attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); rc = rdma_create_qp(rqpair->cm_id, rctrlr->pd, &attr); if (rc) { SPDK_ERRLOG("rdma_create_qp failed\n"); return -1; } /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge); rctrlr->pd = rqpair->cm_id->qp->pd; rqpair->cm_id->context = &rqpair->qpair; return 0; } #define nvme_rdma_trace_ibv_sge(sg_list) \ if (sg_list) { \ SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \ (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ } static int nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx) { struct ibv_recv_wr *wr, *bad_wr = NULL; int rc; wr = &rqpair->rsp_recv_wrs[rsp_idx]; nvme_rdma_trace_ibv_sge(wr->sg_list); rc = ibv_post_recv(rqpair->cm_id->qp, wr, &bad_wr); if (rc) { SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc); } return rc; } static void nvme_rdma_unregister_rsps(struct nvme_rdma_qpair *rqpair) { if (rqpair->rsp_mr && rdma_dereg_mr(rqpair->rsp_mr)) { SPDK_ERRLOG("Unable to de-register rsp_mr\n"); } rqpair->rsp_mr = NULL; } static void nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair) { free(rqpair->rsps); rqpair->rsps = NULL; free(rqpair->rsp_sgls); rqpair->rsp_sgls = NULL; free(rqpair->rsp_recv_wrs); rqpair->rsp_recv_wrs = NULL; } static int nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair) { rqpair->rsps = NULL; rqpair->rsp_recv_wrs = NULL; rqpair->rsp_sgls = calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls)); if (!rqpair->rsp_sgls) { SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); goto fail; } rqpair->rsp_recv_wrs = calloc(rqpair->num_entries, sizeof(*rqpair->rsp_recv_wrs)); if (!rqpair->rsp_recv_wrs) { SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); goto fail; } rqpair->rsps = calloc(rqpair->num_entries, sizeof(*rqpair->rsps)); if (!rqpair->rsps) { SPDK_ERRLOG("can not allocate rdma rsps\n"); goto fail; } return 0; fail: nvme_rdma_free_rsps(rqpair); return -ENOMEM; } static int nvme_rdma_register_rsps(struct nvme_rdma_qpair *rqpair) { int i; rqpair->rsp_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->rsps, rqpair->num_entries * sizeof(*rqpair->rsps)); if (rqpair->rsp_mr == NULL) { SPDK_ERRLOG("Unable to register rsp_mr\n"); goto fail; } for (i = 0; i < rqpair->num_entries; i++) { struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i]; rsp_sgl->addr = (uint64_t)&rqpair->rsps[i]; rsp_sgl->length = sizeof(rqpair->rsps[i]); rsp_sgl->lkey = rqpair->rsp_mr->lkey; rqpair->rsp_recv_wrs[i].wr_id = i; rqpair->rsp_recv_wrs[i].next = NULL; rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl; rqpair->rsp_recv_wrs[i].num_sge = 1; if (nvme_rdma_post_recv(rqpair, i)) { SPDK_ERRLOG("Unable to post connection rx desc\n"); goto fail; } } return 0; fail: nvme_rdma_unregister_rsps(rqpair); return -ENOMEM; } static void nvme_rdma_unregister_reqs(struct nvme_rdma_qpair *rqpair) { if (rqpair->cmd_mr && rdma_dereg_mr(rqpair->cmd_mr)) { SPDK_ERRLOG("Unable to de-register cmd_mr\n"); } rqpair->cmd_mr = NULL; } static void nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) { if (!rqpair->rdma_reqs) { return; } free(rqpair->cmds); rqpair->cmds = NULL; free(rqpair->rdma_reqs); rqpair->rdma_reqs = NULL; } static int nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair) { rqpair->rdma_reqs = calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req)); if (rqpair->rdma_reqs == NULL) { SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); goto fail; } rqpair->cmds = calloc(rqpair->num_entries, sizeof(*rqpair->cmds)); if (!rqpair->cmds) { SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); goto fail; } return 0; fail: nvme_rdma_free_reqs(rqpair); return -ENOMEM; } static int nvme_rdma_register_reqs(struct nvme_rdma_qpair *rqpair) { int i; rqpair->cmd_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->cmds, rqpair->num_entries * sizeof(*rqpair->cmds)); if (!rqpair->cmd_mr) { SPDK_ERRLOG("Unable to register cmd_mr\n"); goto fail; } TAILQ_INIT(&rqpair->free_reqs); TAILQ_INIT(&rqpair->outstanding_reqs); for (i = 0; i < rqpair->num_entries; i++) { struct spdk_nvme_rdma_req *rdma_req; struct spdk_nvmf_cmd *cmd; rdma_req = &rqpair->rdma_reqs[i]; cmd = &rqpair->cmds[i]; rdma_req->id = i; /* The first RDMA sgl element will always point * at this data structure. Depending on whether * an NVMe-oF SGL is required, the length of * this element may change. */ rdma_req->send_sgl[0].addr = (uint64_t)cmd; rdma_req->send_sgl[0].lkey = rqpair->cmd_mr->lkey; rdma_req->send_wr.wr_id = (uint64_t)rdma_req; rdma_req->send_wr.next = NULL; rdma_req->send_wr.opcode = IBV_WR_SEND; rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; rdma_req->send_wr.sg_list = rdma_req->send_sgl; rdma_req->send_wr.imm_data = 0; TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); } return 0; fail: nvme_rdma_unregister_reqs(rqpair); return -ENOMEM; } static int nvme_rdma_recv(struct nvme_rdma_qpair *rqpair, uint64_t rsp_idx) { struct spdk_nvme_qpair *qpair = &rqpair->qpair; struct spdk_nvme_rdma_req *rdma_req; struct spdk_nvme_cpl *rsp; struct nvme_request *req; assert(rsp_idx < rqpair->num_entries); rsp = &rqpair->rsps[rsp_idx]; rdma_req = &rqpair->rdma_reqs[rsp->cid]; req = rdma_req->req; nvme_rdma_req_complete(req, rsp); if (rdma_req->request_ready_to_put) { nvme_rdma_req_put(rqpair, rdma_req); } else { rdma_req->request_ready_to_put = true; } if (nvme_rdma_post_recv(rqpair, rsp_idx)) { SPDK_ERRLOG("Unable to re-post rx descriptor\n"); return -1; } if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); nvme_qpair_submit_request(qpair, req); } return 0; } static int nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_event_channel *cm_channel) { int ret; ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, NVME_RDMA_TIME_OUT_IN_MS); if (ret) { SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); return ret; } ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED); if (ret) { SPDK_ERRLOG("RDMA address resolution error\n"); return -1; } ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); if (ret) { SPDK_ERRLOG("rdma_resolve_route\n"); return ret; } ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED); if (ret) { SPDK_ERRLOG("RDMA route resolution error\n"); return -1; } return 0; } static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) { struct rdma_conn_param param = {}; struct spdk_nvmf_rdma_request_private_data request_data = {}; struct ibv_device_attr attr; int ret; struct spdk_nvme_ctrlr *ctrlr; struct nvme_rdma_ctrlr *rctrlr; ret = ibv_query_device(rqpair->cm_id->verbs, &attr); if (ret != 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); return ret; } param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom); ctrlr = rqpair->qpair.ctrlr; if (!ctrlr) { return -1; } rctrlr = nvme_rdma_ctrlr(ctrlr); assert(rctrlr != NULL); request_data.qid = rqpair->qpair.id; request_data.hrqsize = rqpair->num_entries; request_data.hsqsize = rqpair->num_entries - 1; request_data.cntlid = ctrlr->cntlid; param.private_data = &request_data; param.private_data_len = sizeof(request_data); param.retry_count = 7; param.rnr_retry_count = 7; ret = rdma_connect(rqpair->cm_id, ¶m); if (ret) { SPDK_ERRLOG("nvme rdma connect error\n"); return ret; } ret = nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_ESTABLISHED); if (ret) { SPDK_ERRLOG("RDMA connect error\n"); return -1; } return 0; } static int nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) { struct addrinfo *res; struct addrinfo hints; int ret; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; ret = getaddrinfo(addr, service, &hints, &res); if (ret) { SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); return ret; } if (res->ai_addrlen > sizeof(*sa)) { SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); ret = EINVAL; } else { memcpy(sa, res->ai_addr, res->ai_addrlen); } freeaddrinfo(res); return ret; } static int nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map, enum spdk_mem_map_notify_action action, void *vaddr, size_t size) { struct ibv_pd *pd = cb_ctx; struct ibv_mr *mr; int rc; switch (action) { case SPDK_MEM_MAP_NOTIFY_REGISTER: if (!g_nvme_hooks.get_rkey) { mr = ibv_reg_mr(pd, vaddr, size, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE); if (mr == NULL) { SPDK_ERRLOG("ibv_reg_mr() failed\n"); return -EFAULT; } else { rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); } } else { rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, g_nvme_hooks.get_rkey(pd, vaddr, size)); } break; case SPDK_MEM_MAP_NOTIFY_UNREGISTER: if (!g_nvme_hooks.get_rkey) { mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); if (mr) { ibv_dereg_mr(mr); } } rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); break; default: SPDK_UNREACHABLE(); } return rc; } static int nvme_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) { /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ return addr_1 == addr_2; } static int nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair) { struct ibv_pd *pd = rqpair->cm_id->qp->pd; struct spdk_nvme_rdma_mr_map *mr_map; const struct spdk_mem_map_ops nvme_rdma_map_ops = { .notify_cb = nvme_rdma_mr_map_notify, .are_contiguous = nvme_rdma_check_contiguous_entries }; pthread_mutex_lock(&g_rdma_mr_maps_mutex); /* Look up existing mem map registration for this pd */ LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) { if (mr_map->pd == pd) { mr_map->ref++; rqpair->mr_map = mr_map; pthread_mutex_unlock(&g_rdma_mr_maps_mutex); return 0; } } mr_map = calloc(1, sizeof(*mr_map)); if (mr_map == NULL) { SPDK_ERRLOG("calloc() failed\n"); pthread_mutex_unlock(&g_rdma_mr_maps_mutex); return -1; } mr_map->ref = 1; mr_map->pd = pd; mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd); if (mr_map->map == NULL) { SPDK_ERRLOG("spdk_mem_map_alloc() failed\n"); free(mr_map); pthread_mutex_unlock(&g_rdma_mr_maps_mutex); return -1; } rqpair->mr_map = mr_map; LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link); pthread_mutex_unlock(&g_rdma_mr_maps_mutex); return 0; } static void nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair) { struct spdk_nvme_rdma_mr_map *mr_map; mr_map = rqpair->mr_map; rqpair->mr_map = NULL; if (mr_map == NULL) { return; } pthread_mutex_lock(&g_rdma_mr_maps_mutex); assert(mr_map->ref > 0); mr_map->ref--; if (mr_map->ref == 0) { LIST_REMOVE(mr_map, link); spdk_mem_map_free(&mr_map->map); free(mr_map); } pthread_mutex_unlock(&g_rdma_mr_maps_mutex); } static int nvme_rdma_qpair_connect(struct nvme_rdma_qpair *rqpair) { struct sockaddr_storage dst_addr; struct sockaddr_storage src_addr; bool src_addr_specified; int rc; struct spdk_nvme_ctrlr *ctrlr; struct nvme_rdma_ctrlr *rctrlr; int family; ctrlr = rqpair->qpair.ctrlr; rctrlr = nvme_rdma_ctrlr(ctrlr); assert(rctrlr != NULL); switch (ctrlr->trid.adrfam) { case SPDK_NVMF_ADRFAM_IPV4: family = AF_INET; break; case SPDK_NVMF_ADRFAM_IPV6: family = AF_INET6; break; default: SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); return -1; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); memset(&dst_addr, 0, sizeof(dst_addr)); SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid); rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); if (rc != 0) { SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n"); return -1; } if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { memset(&src_addr, 0, sizeof(src_addr)); rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); if (rc != 0) { SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n"); return -1; } src_addr_specified = true; } else { src_addr_specified = false; } rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); if (rc < 0) { SPDK_ERRLOG("rdma_create_id() failed\n"); return -1; } rc = nvme_rdma_resolve_addr(rqpair, src_addr_specified ? (struct sockaddr *)&src_addr : NULL, (struct sockaddr *)&dst_addr, rctrlr->cm_channel); if (rc < 0) { SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); return -1; } rc = nvme_rdma_qpair_init(rqpair); if (rc < 0) { SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); return -1; } rc = nvme_rdma_connect(rqpair); if (rc != 0) { SPDK_ERRLOG("Unable to connect the rqpair\n"); return -1; } rc = nvme_rdma_register_reqs(rqpair); SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); if (rc) { SPDK_ERRLOG("Unable to register rqpair RDMA requests\n"); return -1; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests registered\n"); rc = nvme_rdma_register_rsps(rqpair); SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); if (rc < 0) { SPDK_ERRLOG("Unable to register rqpair RDMA responses\n"); return -1; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses registered\n"); rc = nvme_rdma_register_mem(rqpair); if (rc < 0) { SPDK_ERRLOG("Unable to register memory for RDMA\n"); return -1; } rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries); if (rc < 0) { SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); return -1; } return 0; } /* * Build SGL describing empty payload. */ static int nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); /* The RDMA SGL needs one element describing the NVMe command. */ rdma_req->send_wr.num_sge = 1; req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; req->cmd.dptr.sgl1.keyed.length = 0; req->cmd.dptr.sgl1.keyed.key = 0; req->cmd.dptr.sgl1.address = 0; return 0; } /* * Build inline SGL describing contiguous payload buffer. */ static int nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; struct ibv_mr *mr; void *payload; uint64_t requested_size; payload = req->payload.contig_or_cb_arg + req->payload_offset; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); requested_size = req->payload_size; if (!g_nvme_hooks.get_rkey) { mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload, &requested_size); if (mr == NULL || requested_size < req->payload_size) { if (mr) { SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n"); } return -EINVAL; } rdma_req->send_sgl[1].lkey = mr->lkey; } else { rdma_req->send_sgl[1].lkey = spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload, &requested_size); } /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); rdma_req->send_sgl[1].addr = (uint64_t)payload; rdma_req->send_sgl[1].length = (uint32_t)req->payload_size; /* The RDMA SGL contains two elements. The first describes * the NVMe command and the second describes the data * payload. */ rdma_req->send_wr.num_sge = 2; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size; /* Inline only supported for icdoff == 0 currently. This function will * not get called for controllers with other values. */ req->cmd.dptr.sgl1.address = (uint64_t)0; return 0; } /* * Build SGL describing contiguous payload buffer. */ static int nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; void *payload = req->payload.contig_or_cb_arg + req->payload_offset; struct ibv_mr *mr; uint64_t requested_size; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); requested_size = req->payload_size; if (!g_nvme_hooks.get_rkey) { mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload, &requested_size); if (mr == NULL) { return -1; } req->cmd.dptr.sgl1.keyed.key = mr->rkey; } else { req->cmd.dptr.sgl1.keyed.key = spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload, &requested_size); } if (requested_size < req->payload_size) { SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n"); return -1; } /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); /* The RDMA SGL needs one element describing the NVMe command. */ rdma_req->send_wr.num_sge = 1; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; req->cmd.dptr.sgl1.keyed.length = req->payload_size; req->cmd.dptr.sgl1.address = (uint64_t)payload; return 0; } /* * Build SGL describing scattered payload buffer. */ static int nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; struct ibv_mr *mr = NULL; void *virt_addr; uint64_t remaining_size, mr_length; uint32_t sge_length; int rc, max_num_sgl, num_sgl_desc; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.reset_sgl_fn != NULL); assert(req->payload.next_sge_fn != NULL); req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); max_num_sgl = req->qpair->ctrlr->max_sges; remaining_size = req->payload_size; num_sgl_desc = 0; do { rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length); if (rc) { return -1; } sge_length = spdk_min(remaining_size, sge_length); mr_length = sge_length; if (!g_nvme_hooks.get_rkey) { mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr, &mr_length); if (mr == NULL) { return -1; } cmd->sgl[num_sgl_desc].keyed.key = mr->rkey; } else { cmd->sgl[num_sgl_desc].keyed.key = spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr, &mr_length); } if (mr_length < sge_length) { SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n"); return -1; } cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; cmd->sgl[num_sgl_desc].keyed.length = sge_length; cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr; remaining_size -= sge_length; num_sgl_desc++; } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ if (remaining_size > 0) { return -1; } req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; /* The RDMA SGL needs one element describing some portion * of the spdk_nvmf_cmd structure. */ rdma_req->send_wr.num_sge = 1; /* * If only one SGL descriptor is required, it can be embedded directly in the command * as a data block descriptor. */ if (num_sgl_desc == 1) { /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; req->cmd.dptr.sgl1.address = cmd->sgl[0].address; } else { /* * Otherwise, The SGL descriptor embedded in the command must point to the list of * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.unkeyed.length = num_sgl_desc * sizeof(struct spdk_nvme_sgl_descriptor); req->cmd.dptr.sgl1.address = (uint64_t)0; } return 0; } /* * Build inline SGL describing sgl payload buffer. */ static int nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; struct ibv_mr *mr; uint32_t length; uint64_t requested_size; void *virt_addr; int rc, i; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.reset_sgl_fn != NULL); assert(req->payload.next_sge_fn != NULL); req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length); if (rc) { return -1; } if (length < req->payload_size) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Inline SGL request split so sending separately.\n"); return nvme_rdma_build_sgl_request(rqpair, rdma_req); } if (length > req->payload_size) { length = req->payload_size; } requested_size = length; mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr, &requested_size); if (mr == NULL || requested_size < length) { for (i = 1; i < rdma_req->send_wr.num_sge; i++) { rdma_req->send_sgl[i].addr = 0; rdma_req->send_sgl[i].length = 0; rdma_req->send_sgl[i].lkey = 0; } if (mr) { SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n"); } return -1; } rdma_req->send_sgl[1].addr = (uint64_t)virt_addr; rdma_req->send_sgl[1].length = length; rdma_req->send_sgl[1].lkey = mr->lkey; rdma_req->send_wr.num_sge = 2; /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size; /* Inline only supported for icdoff == 0 currently. This function will * not get called for controllers with other values. */ req->cmd.dptr.sgl1.address = (uint64_t)0; return 0; } static inline unsigned int nvme_rdma_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr) { return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd)); } static int nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req, struct spdk_nvme_rdma_req *rdma_req) { struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; int rc; rdma_req->req = req; req->cmd.cid = rdma_req->id; if (req->payload_size == 0) { rc = nvme_rdma_build_null_request(rdma_req); } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) { /* * Check if icdoff is non zero, to avoid interop conflicts with * targets with non-zero icdoff. Both SPDK and the Linux kernel * targets use icdoff = 0. For targets with non-zero icdoff, we * will currently just not use inline data for now. */ if (req->cmd.opc == SPDK_NVME_OPC_WRITE && req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) && (ctrlr->cdata.nvmf_specific.icdoff == 0)) { rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); } else { rc = nvme_rdma_build_contig_request(rqpair, rdma_req); } } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) { if (req->cmd.opc == SPDK_NVME_OPC_WRITE && req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) && ctrlr->cdata.nvmf_specific.icdoff == 0) { rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); } else { rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); } } else { rc = -1; } if (rc) { return rc; } memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); return 0; } static struct spdk_nvme_qpair * nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, uint32_t qsize, enum spdk_nvme_qprio qprio, uint32_t num_requests) { struct nvme_rdma_qpair *rqpair; struct spdk_nvme_qpair *qpair; int rc; rqpair = calloc(1, sizeof(struct nvme_rdma_qpair)); if (!rqpair) { SPDK_ERRLOG("failed to get create rqpair\n"); return NULL; } rqpair->num_entries = qsize; qpair = &rqpair->qpair; rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests); if (rc != 0) { return NULL; } rc = nvme_rdma_alloc_reqs(rqpair); SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); if (rc) { SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n"); return NULL; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n"); rc = nvme_rdma_alloc_rsps(rqpair); SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); if (rc < 0) { SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n"); return NULL; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n"); rc = nvme_rdma_qpair_connect(rqpair); if (rc < 0) { nvme_rdma_qpair_destroy(qpair); return NULL; } return qpair; } static void nvme_rdma_qpair_disconnect(struct spdk_nvme_qpair *qpair) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); nvme_rdma_unregister_mem(rqpair); nvme_rdma_unregister_reqs(rqpair); nvme_rdma_unregister_rsps(rqpair); if (rqpair->evt) { rdma_ack_cm_event(rqpair->evt); rqpair->evt = NULL; } if (rqpair->cm_id) { if (rqpair->cm_id->qp) { rdma_destroy_qp(rqpair->cm_id); } rdma_destroy_id(rqpair->cm_id); rqpair->cm_id = NULL; } if (rqpair->cq) { ibv_destroy_cq(rqpair->cq); rqpair->cq = NULL; } } static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair) { struct nvme_rdma_qpair *rqpair; if (!qpair) { return -1; } nvme_rdma_qpair_disconnect(qpair); nvme_rdma_qpair_abort_reqs(qpair, 1); nvme_qpair_deinit(qpair); rqpair = nvme_rdma_qpair(qpair); nvme_rdma_free_reqs(rqpair); nvme_rdma_free_rsps(rqpair); free(rqpair); return 0; } struct spdk_nvme_qpair * nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts) { return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, opts->io_queue_requests); } int nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { /* do nothing here */ return 0; } /* This function must only be called while holding g_spdk_nvme_driver->lock */ int nvme_rdma_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect) { struct spdk_nvme_ctrlr_opts discovery_opts; struct spdk_nvme_ctrlr *discovery_ctrlr; union spdk_nvme_cc_register cc; int rc; struct nvme_completion_poll_status status; if (strcmp(probe_ctx->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) { /* It is not a discovery_ctrlr info and try to directly connect it */ rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL); return rc; } spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts)); /* For discovery_ctrlr set the timeout to 0 */ discovery_opts.keep_alive_timeout_ms = 0; discovery_ctrlr = nvme_rdma_ctrlr_construct(&probe_ctx->trid, &discovery_opts, NULL); if (discovery_ctrlr == NULL) { return -1; } /* TODO: this should be using the normal NVMe controller initialization process */ cc.raw = 0; cc.bits.en = 1; cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), cc.raw); if (rc < 0) { SPDK_ERRLOG("Failed to set cc\n"); nvme_ctrlr_destruct(discovery_ctrlr); return -1; } /* get the cdata info */ rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, &discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata), nvme_completion_poll_cb, &status); if (rc != 0) { SPDK_ERRLOG("Failed to identify cdata\n"); return rc; } if (spdk_nvme_wait_for_completion(discovery_ctrlr->adminq, &status)) { SPDK_ERRLOG("nvme_identify_controller failed!\n"); return -ENXIO; } /* Direct attach through spdk_nvme_connect() API */ if (direct_connect == true) { /* Set the ready state to skip the normal init process */ discovery_ctrlr->state = NVME_CTRLR_STATE_READY; nvme_ctrlr_connected(probe_ctx, discovery_ctrlr); nvme_ctrlr_add_process(discovery_ctrlr, 0); return 0; } rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, probe_ctx); nvme_ctrlr_destruct(discovery_ctrlr); return rc; } struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { struct nvme_rdma_ctrlr *rctrlr; union spdk_nvme_cap_register cap; union spdk_nvme_vs_register vs; struct ibv_context **contexts; struct ibv_device_attr dev_attr; int i, flag, rc; rctrlr = calloc(1, sizeof(struct nvme_rdma_ctrlr)); if (rctrlr == NULL) { SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } rctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA; rctrlr->ctrlr.opts = *opts; memcpy(&rctrlr->ctrlr.trid, trid, sizeof(rctrlr->ctrlr.trid)); contexts = rdma_get_devices(NULL); if (contexts == NULL) { SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); free(rctrlr); return NULL; } i = 0; rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; while (contexts[i] != NULL) { rc = ibv_query_device(contexts[i], &dev_attr); if (rc < 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); rdma_free_devices(contexts); free(rctrlr); return NULL; } rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); i++; } rdma_free_devices(contexts); rc = nvme_ctrlr_construct(&rctrlr->ctrlr); if (rc != 0) { free(rctrlr); return NULL; } STAILQ_INIT(&rctrlr->pending_cm_events); STAILQ_INIT(&rctrlr->free_cm_events); rctrlr->cm_events = calloc(NVME_RDMA_NUM_CM_EVENTS, sizeof(*rctrlr->cm_events)); if (rctrlr->cm_events == NULL) { SPDK_ERRLOG("unable to allocat buffers to hold CM events.\n"); nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); } rctrlr->cm_channel = rdma_create_event_channel(); if (rctrlr->cm_channel == NULL) { SPDK_ERRLOG("rdma_create_event_channel() failed\n"); nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { SPDK_ERRLOG("Cannot set event channel to non blocking\n"); nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES); if (!rctrlr->ctrlr.adminq) { SPDK_ERRLOG("failed to create admin qpair\n"); nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) { SPDK_ERRLOG("get_cap() failed\n"); nvme_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) { SPDK_ERRLOG("get_vs() failed\n"); nvme_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); nvme_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs); SPDK_DEBUGLOG(SPDK_LOG_NVME, "successfully initialized the nvmf ctrlr\n"); return &rctrlr->ctrlr; } int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); struct nvme_rdma_cm_event_entry *entry; if (ctrlr->adminq) { nvme_rdma_qpair_destroy(ctrlr->adminq); } STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { rdma_ack_cm_event(entry->evt); } STAILQ_INIT(&rctrlr->free_cm_events); STAILQ_INIT(&rctrlr->pending_cm_events); free(rctrlr->cm_events); if (rctrlr->cm_channel) { rdma_destroy_event_channel(rctrlr->cm_channel); rctrlr->cm_channel = NULL; } nvme_ctrlr_destruct_finish(ctrlr); free(rctrlr); return 0; } int nvme_rdma_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value); } int nvme_rdma_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value); } int nvme_rdma_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value); } int nvme_rdma_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value); } int nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { struct nvme_rdma_qpair *rqpair; struct spdk_nvme_rdma_req *rdma_req; struct ibv_send_wr *wr, *bad_wr = NULL; int rc; rqpair = nvme_rdma_qpair(qpair); assert(rqpair != NULL); assert(req != NULL); rdma_req = nvme_rdma_req_get(rqpair); if (!rdma_req) { /* Inform the upper layer to try again later. */ return -EAGAIN; } if (nvme_rdma_req_init(rqpair, req, rdma_req)) { SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); nvme_rdma_req_put(rqpair, rdma_req); return -1; } wr = &rdma_req->send_wr; nvme_rdma_trace_ibv_sge(wr->sg_list); rc = ibv_post_send(rqpair->cm_id->qp, wr, &bad_wr); if (rc) { SPDK_ERRLOG("Failure posting rdma send for NVMf completion: %d (%s)\n", rc, spdk_strerror(rc)); } return rc; } int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return nvme_rdma_qpair_destroy(qpair); } int nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return nvme_rdma_qpair_connect(nvme_rdma_qpair(qpair)); } void nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { nvme_rdma_qpair_disconnect(qpair); } int nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) { /* Currently, doing nothing here */ return 0; } void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { struct spdk_nvme_rdma_req *rdma_req, *tmp; struct nvme_request *req; struct spdk_nvme_cpl cpl; struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.dnr = dnr; TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { assert(rdma_req->req != NULL); req = rdma_req->req; nvme_rdma_req_complete(req, &cpl); nvme_rdma_req_put(rqpair, rdma_req); } } static void nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) { uint64_t t02; struct spdk_nvme_rdma_req *rdma_req, *tmp; struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct spdk_nvme_ctrlr_process *active_proc; /* Don't check timeouts during controller initialization. */ if (ctrlr->state != NVME_CTRLR_STATE_READY) { return; } if (nvme_qpair_is_admin_queue(qpair)) { active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr); } else { active_proc = qpair->active_proc; } /* Only check timeouts if the current process has a timeout callback. */ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { return; } t02 = spdk_get_ticks(); TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { assert(rdma_req->req != NULL); if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { /* * The requests are in order, so as soon as one has not timed out, * stop iterating. */ break; } } } #define MAX_COMPLETIONS_PER_POLL 128 int nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; int i, rc, batch_size; uint32_t reaped; struct ibv_cq *cq; struct spdk_nvme_rdma_req *rdma_req; struct nvme_rdma_ctrlr *rctrlr; if (max_completions == 0) { max_completions = rqpair->num_entries; } else { max_completions = spdk_min(max_completions, rqpair->num_entries); } if (nvme_qpair_is_admin_queue(&rqpair->qpair)) { rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); nvme_rdma_poll_events(rctrlr); } nvme_rdma_qpair_process_cm_event(rqpair); cq = rqpair->cq; reaped = 0; do { batch_size = spdk_min((max_completions - reaped), MAX_COMPLETIONS_PER_POLL); rc = ibv_poll_cq(cq, batch_size, wc); if (rc < 0) { SPDK_ERRLOG("Error polling CQ! (%d): %s\n", errno, spdk_strerror(errno)); return -1; } else if (rc == 0) { /* Ran out of completions */ break; } for (i = 0; i < rc; i++) { if (wc[i].status) { SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n", qpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); return -1; } switch (wc[i].opcode) { case IBV_WC_RECV: SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n"); reaped++; if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) { SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len); return -1; } if (nvme_rdma_recv(rqpair, wc[i].wr_id)) { SPDK_ERRLOG("nvme_rdma_recv processing failure\n"); return -1; } break; case IBV_WC_SEND: rdma_req = (struct spdk_nvme_rdma_req *)wc[i].wr_id; if (rdma_req->request_ready_to_put) { nvme_rdma_req_put(rqpair, rdma_req); } else { rdma_req->request_ready_to_put = true; } break; default: SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", wc[i].opcode); return -1; } } } while (reaped < max_completions); if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) { nvme_rdma_qpair_check_timeout(qpair); } return reaped; } uint32_t nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { /* max_mr_size by ibv_query_device indicates the largest value that we can * set for a registered memory region. It is independent from the actual * I/O size and is very likely to be larger than 2 MiB which is the * granularity we currently register memory regions. Hence return * UINT32_MAX here and let the generic layer use the controller data to * moderate this value. */ return UINT32_MAX; } uint16_t nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); return rctrlr->max_sge; } volatile struct spdk_nvme_registers * nvme_rdma_ctrlr_get_registers(struct spdk_nvme_ctrlr *ctrlr) { return NULL; } void * nvme_rdma_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size) { return NULL; } int nvme_rdma_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size) { return 0; } void nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_rdma_req *rdma_req, *tmp; struct nvme_request *req; struct spdk_nvme_cpl cpl; struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { continue; } assert(rdma_req->req != NULL); req = rdma_req->req; nvme_rdma_req_complete(req, &cpl); nvme_rdma_req_put(rqpair, rdma_req); } } void spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) { g_nvme_hooks = *hooks; }