/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * NVMe over RDMA transport */ #include "spdk/stdinc.h" #include "spdk/assert.h" #include "spdk/log.h" #include "spdk/trace.h" #include "spdk/queue.h" #include "spdk/nvme.h" #include "spdk/nvmf_spec.h" #include "spdk/string.h" #include "spdk/endian.h" #include "spdk/likely.h" #include "spdk/config.h" #include "nvme_internal.h" #include "spdk_internal/rdma.h" #define NVME_RDMA_TIME_OUT_IN_MS 2000 #define NVME_RDMA_RW_BUFFER_SIZE 131072 /* * NVME RDMA qpair Resource Defaults */ #define NVME_RDMA_DEFAULT_TX_SGE 2 #define NVME_RDMA_DEFAULT_RX_SGE 1 /* Max number of NVMe-oF SGL descriptors supported by the host */ #define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 /* number of STAILQ entries for holding pending RDMA CM events. */ #define NVME_RDMA_NUM_CM_EVENTS 256 /* CM event processing timeout */ #define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000 /* The default size for a shared rdma completion queue. */ #define DEFAULT_NVME_RDMA_CQ_SIZE 4096 /* * In the special case of a stale connection we don't expose a mechanism * for the user to retry the connection so we need to handle it internally. */ #define NVME_RDMA_STALE_CONN_RETRY_MAX 5 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000 /* * Maximum value of transport_retry_count used by RDMA controller */ #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7 /* * Maximum value of transport_ack_timeout used by RDMA controller */ #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 /* * Number of poller cycles to keep a pointer to destroyed qpairs * in the poll group. */ #define NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES 50 /* * The max length of keyed SGL data block (3 bytes) */ #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1) #define WC_PER_QPAIR(queue_depth) (queue_depth * 2) enum nvme_rdma_wr_type { RDMA_WR_TYPE_RECV, RDMA_WR_TYPE_SEND, }; struct nvme_rdma_wr { /* Using this instead of the enum allows this struct to only occupy one byte. */ uint8_t type; }; struct spdk_nvmf_cmd { struct spdk_nvme_cmd cmd; struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; }; struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; /* STAILQ wrapper for cm events. */ struct nvme_rdma_cm_event_entry { struct rdma_cm_event *evt; STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; }; /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ struct nvme_rdma_ctrlr { struct spdk_nvme_ctrlr ctrlr; struct ibv_pd *pd; uint16_t max_sge; struct rdma_event_channel *cm_channel; STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; struct nvme_rdma_cm_event_entry *cm_events; }; struct nvme_rdma_destroyed_qpair { struct nvme_rdma_qpair *destroyed_qpair_tracker; uint32_t completed_cycles; STAILQ_ENTRY(nvme_rdma_destroyed_qpair) link; }; struct nvme_rdma_poller_stats { uint64_t polls; uint64_t idle_polls; uint64_t queued_requests; uint64_t completions; struct spdk_rdma_qp_stats rdma_stats; }; struct nvme_rdma_poller { struct ibv_context *device; struct ibv_cq *cq; int required_num_wc; int current_num_wc; struct nvme_rdma_poller_stats stats; STAILQ_ENTRY(nvme_rdma_poller) link; }; struct nvme_rdma_poll_group { struct spdk_nvme_transport_poll_group group; STAILQ_HEAD(, nvme_rdma_poller) pollers; uint32_t num_pollers; STAILQ_HEAD(, nvme_rdma_destroyed_qpair) destroyed_qpairs; }; /* Memory regions */ union nvme_rdma_mr { struct ibv_mr *mr; uint64_t key; }; /* NVMe RDMA qpair extensions for spdk_nvme_qpair */ struct nvme_rdma_qpair { struct spdk_nvme_qpair qpair; struct spdk_rdma_qp *rdma_qp; struct rdma_cm_id *cm_id; struct ibv_cq *cq; struct spdk_nvme_rdma_req *rdma_reqs; uint32_t max_send_sge; uint32_t max_recv_sge; uint16_t num_entries; bool delay_cmd_submit; bool poll_group_disconnect_in_progress; uint32_t num_completions; /* Parallel arrays of response buffers + response SGLs of size num_entries */ struct ibv_sge *rsp_sgls; struct spdk_nvme_rdma_rsp *rsps; struct ibv_recv_wr *rsp_recv_wrs; /* Memory region describing all rsps for this qpair */ union nvme_rdma_mr rsp_mr; /* * Array of num_entries NVMe commands registered as RDMA message buffers. * Indexed by rdma_req->id. */ struct spdk_nvmf_cmd *cmds; /* Memory region describing all cmds for this qpair */ union nvme_rdma_mr cmd_mr; struct spdk_rdma_mem_map *mr_map; TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; /* Counts of outstanding send and recv objects */ uint16_t current_num_recvs; uint16_t current_num_sends; /* Placed at the end of the struct since it is not used frequently */ struct rdma_cm_event *evt; struct nvme_rdma_poller *poller; /* Used by poll group to keep the qpair around until it is ready to remove it. */ bool defer_deletion_to_pg; }; enum NVME_RDMA_COMPLETION_FLAGS { NVME_RDMA_SEND_COMPLETED = 1u << 0, NVME_RDMA_RECV_COMPLETED = 1u << 1, }; struct spdk_nvme_rdma_req { uint16_t id; uint16_t completion_flags: 2; uint16_t reserved: 14; /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request * during processing of RDMA_SEND. To complete the request we must know the index * of nvme_cpl received in RDMA_RECV, so store it in this field */ uint16_t rsp_idx; struct nvme_rdma_wr rdma_wr; struct ibv_send_wr send_wr; struct nvme_request *req; struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; TAILQ_ENTRY(spdk_nvme_rdma_req) link; }; struct spdk_nvme_rdma_rsp { struct spdk_nvme_cpl cpl; struct nvme_rdma_qpair *rqpair; uint16_t idx; struct nvme_rdma_wr rdma_wr; }; static const char *rdma_cm_event_str[] = { "RDMA_CM_EVENT_ADDR_RESOLVED", "RDMA_CM_EVENT_ADDR_ERROR", "RDMA_CM_EVENT_ROUTE_RESOLVED", "RDMA_CM_EVENT_ROUTE_ERROR", "RDMA_CM_EVENT_CONNECT_REQUEST", "RDMA_CM_EVENT_CONNECT_RESPONSE", "RDMA_CM_EVENT_CONNECT_ERROR", "RDMA_CM_EVENT_UNREACHABLE", "RDMA_CM_EVENT_REJECTED", "RDMA_CM_EVENT_ESTABLISHED", "RDMA_CM_EVENT_DISCONNECTED", "RDMA_CM_EVENT_DEVICE_REMOVAL", "RDMA_CM_EVENT_MULTICAST_JOIN", "RDMA_CM_EVENT_MULTICAST_ERROR", "RDMA_CM_EVENT_ADDR_CHANGE", "RDMA_CM_EVENT_TIMEWAIT_EXIT" }; struct nvme_rdma_qpair *nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, uint32_t qp_num); static inline void * nvme_rdma_calloc(size_t nmemb, size_t size) { if (!nmemb || !size) { return NULL; } if (!g_nvme_hooks.get_rkey) { return calloc(nmemb, size); } else { return spdk_zmalloc(nmemb * size, 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); } } static inline void nvme_rdma_free(void *buf) { if (!g_nvme_hooks.get_rkey) { free(buf); } else { spdk_free(buf); } } static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair); static inline struct nvme_rdma_qpair * nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) { assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); } static inline struct nvme_rdma_poll_group * nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group) { return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group)); } static inline struct nvme_rdma_ctrlr * nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); } static struct spdk_nvme_rdma_req * nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) { struct spdk_nvme_rdma_req *rdma_req; rdma_req = TAILQ_FIRST(&rqpair->free_reqs); if (rdma_req) { TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); } return rdma_req; } static void nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { rdma_req->completion_flags = 0; rdma_req->req = NULL; TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); } static void nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req, struct spdk_nvme_cpl *rsp) { struct nvme_request *req = rdma_req->req; struct nvme_rdma_qpair *rqpair; assert(req != NULL); rqpair = nvme_rdma_qpair(req->qpair); TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp); nvme_free_request(req); } static const char * nvme_rdma_cm_event_str_get(uint32_t event) { if (event < SPDK_COUNTOF(rdma_cm_event_str)) { return rdma_cm_event_str[event]; } else { return "Undefined"; } } static int nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) { struct rdma_cm_event *event = rqpair->evt; struct spdk_nvmf_rdma_accept_private_data *accept_data; int rc = 0; if (event) { switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_RESOLVED: case RDMA_CM_EVENT_ROUTE_ERROR: break; case RDMA_CM_EVENT_CONNECT_REQUEST: break; case RDMA_CM_EVENT_CONNECT_ERROR: break; case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_REJECTED: break; case RDMA_CM_EVENT_CONNECT_RESPONSE: rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp); /* fall through */ case RDMA_CM_EVENT_ESTABLISHED: accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; if (accept_data == NULL) { rc = -1; } else { SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Actually got queue depth %d.\n", rqpair->num_entries, accept_data->crqsize); rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize); } break; case RDMA_CM_EVENT_DISCONNECTED: rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; break; case RDMA_CM_EVENT_DEVICE_REMOVAL: rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; break; case RDMA_CM_EVENT_MULTICAST_JOIN: case RDMA_CM_EVENT_MULTICAST_ERROR: break; case RDMA_CM_EVENT_ADDR_CHANGE: rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: break; default: SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); break; } rqpair->evt = NULL; rdma_ack_cm_event(event); } return rc; } /* * This function must be called under the nvme controller's lock * because it touches global controller variables. The lock is taken * by the generic transport code before invoking a few of the functions * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, * and conditionally nvme_rdma_qpair_process_completions when it is calling * completions on the admin qpair. When adding a new call to this function, please * verify that it is in a situation where it falls under the lock. */ static int nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) { struct nvme_rdma_cm_event_entry *entry, *tmp; struct nvme_rdma_qpair *event_qpair; struct rdma_cm_event *event; struct rdma_event_channel *channel = rctrlr->cm_channel; STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { event_qpair = nvme_rdma_qpair(entry->evt->id->context); if (event_qpair->evt == NULL) { event_qpair->evt = entry->evt; STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); } } while (rdma_get_cm_event(channel, &event) == 0) { event_qpair = nvme_rdma_qpair(event->id->context); if (event_qpair->evt == NULL) { event_qpair->evt = event; } else { assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); entry = STAILQ_FIRST(&rctrlr->free_cm_events); if (entry == NULL) { rdma_ack_cm_event(event); return -ENOMEM; } STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); entry->evt = event; STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); } } if (errno == EAGAIN || errno == EWOULDBLOCK) { return 0; } else { return errno; } } static int nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type, struct rdma_cm_event *reaped_evt) { int rc = -EBADMSG; if (expected_evt_type == reaped_evt->event) { return 0; } switch (expected_evt_type) { case RDMA_CM_EVENT_ESTABLISHED: /* * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get * the same values here. */ if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) { rc = -ESTALE; } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) { /* * If we are using a qpair which is not created using rdma cm API * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of * RDMA_CM_EVENT_ESTABLISHED. */ return 0; } break; default: break; } SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", nvme_rdma_cm_event_str_get(expected_evt_type), nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event, reaped_evt->status); return rc; } static int nvme_rdma_process_event(struct nvme_rdma_qpair *rqpair, struct rdma_event_channel *channel, enum rdma_cm_event_type evt) { struct nvme_rdma_ctrlr *rctrlr; uint64_t timeout_ticks; int rc = 0, rc2; if (rqpair->evt != NULL) { rc = nvme_rdma_qpair_process_cm_event(rqpair); if (rc) { return rc; } } timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks(); rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); assert(rctrlr != NULL); while (!rqpair->evt && spdk_get_ticks() < timeout_ticks && rc == 0) { rc = nvme_rdma_poll_events(rctrlr); } if (rc) { return rc; } if (rqpair->evt == NULL) { return -EADDRNOTAVAIL; } rc = nvme_rdma_validate_cm_event(evt, rqpair->evt); rc2 = nvme_rdma_qpair_process_cm_event(rqpair); /* bad message takes precedence over the other error codes from processing the event. */ return rc == 0 ? rc2 : rc; } static int nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) { int rc; struct spdk_rdma_qp_init_attr attr = {}; struct ibv_device_attr dev_attr; struct nvme_rdma_ctrlr *rctrlr; rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); if (rc != 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); return -1; } if (rqpair->qpair.poll_group) { assert(!rqpair->cq); rc = nvme_poll_group_connect_qpair(&rqpair->qpair); if (rc) { SPDK_ERRLOG("Unable to activate the rdmaqpair.\n"); return -1; } assert(rqpair->cq); } else { rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0); if (!rqpair->cq) { SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); return -1; } } rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); if (g_nvme_hooks.get_ibv_pd) { rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); } else { rctrlr->pd = NULL; } attr.pd = rctrlr->pd; attr.stats = rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL; attr.send_cq = rqpair->cq; attr.recv_cq = rqpair->cq; attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr); if (!rqpair->rdma_qp) { return -1; } /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge); rqpair->current_num_recvs = 0; rqpair->current_num_sends = 0; rctrlr->pd = rqpair->rdma_qp->qp->pd; rqpair->cm_id->context = &rqpair->qpair; return 0; } static inline int nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair) { struct ibv_send_wr *bad_send_wr = NULL; int rc; rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr); if (spdk_unlikely(rc)) { SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n", rc, spdk_strerror(rc), bad_send_wr); while (bad_send_wr != NULL) { assert(rqpair->current_num_sends > 0); rqpair->current_num_sends--; bad_send_wr = bad_send_wr->next; } return rc; } return 0; } static inline int nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair) { struct ibv_recv_wr *bad_recv_wr; int rc = 0; rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr); if (spdk_unlikely(rc)) { SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n", rc, spdk_strerror(rc), bad_recv_wr); while (bad_recv_wr != NULL) { assert(rqpair->current_num_sends > 0); rqpair->current_num_recvs--; bad_recv_wr = bad_recv_wr->next; } } return rc; } /* Append the given send wr structure to the qpair's outstanding sends list. */ /* This function accepts only a single wr. */ static inline int nvme_rdma_qpair_queue_send_wr(struct nvme_rdma_qpair *rqpair, struct ibv_send_wr *wr) { assert(wr->next == NULL); assert(rqpair->current_num_sends < rqpair->num_entries); rqpair->current_num_sends++; spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr); if (!rqpair->delay_cmd_submit) { return nvme_rdma_qpair_submit_sends(rqpair); } return 0; } /* Append the given recv wr structure to the qpair's outstanding recvs list. */ /* This function accepts only a single wr. */ static inline int nvme_rdma_qpair_queue_recv_wr(struct nvme_rdma_qpair *rqpair, struct ibv_recv_wr *wr) { assert(wr->next == NULL); assert(rqpair->current_num_recvs < rqpair->num_entries); rqpair->current_num_recvs++; spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, wr); if (!rqpair->delay_cmd_submit) { return nvme_rdma_qpair_submit_recvs(rqpair); } return 0; } #define nvme_rdma_trace_ibv_sge(sg_list) \ if (sg_list) { \ SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \ (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ } static int nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx) { struct ibv_recv_wr *wr; wr = &rqpair->rsp_recv_wrs[rsp_idx]; wr->next = NULL; nvme_rdma_trace_ibv_sge(wr->sg_list); return nvme_rdma_qpair_queue_recv_wr(rqpair, wr); } static int nvme_rdma_reg_mr(struct rdma_cm_id *cm_id, union nvme_rdma_mr *mr, void *mem, size_t length) { if (!g_nvme_hooks.get_rkey) { mr->mr = rdma_reg_msgs(cm_id, mem, length); if (mr->mr == NULL) { SPDK_ERRLOG("Unable to register mr: %s (%d)\n", spdk_strerror(errno), errno); return -1; } } else { mr->key = g_nvme_hooks.get_rkey(cm_id->pd, mem, length); } return 0; } static void nvme_rdma_dereg_mr(union nvme_rdma_mr *mr) { if (!g_nvme_hooks.get_rkey) { if (mr->mr && rdma_dereg_mr(mr->mr)) { SPDK_ERRLOG("Unable to de-register mr\n"); } } else { if (mr->key) { g_nvme_hooks.put_rkey(mr->key); } } memset(mr, 0, sizeof(*mr)); } static uint32_t nvme_rdma_mr_get_lkey(union nvme_rdma_mr *mr) { uint32_t lkey; if (!g_nvme_hooks.get_rkey) { lkey = mr->mr->lkey; } else { lkey = *((uint64_t *) mr->key); } return lkey; } static void nvme_rdma_unregister_rsps(struct nvme_rdma_qpair *rqpair) { nvme_rdma_dereg_mr(&rqpair->rsp_mr); } static void nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair) { nvme_rdma_free(rqpair->rsps); rqpair->rsps = NULL; nvme_rdma_free(rqpair->rsp_sgls); rqpair->rsp_sgls = NULL; nvme_rdma_free(rqpair->rsp_recv_wrs); rqpair->rsp_recv_wrs = NULL; } static int nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair) { rqpair->rsps = NULL; rqpair->rsp_recv_wrs = NULL; rqpair->rsp_sgls = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls)); if (!rqpair->rsp_sgls) { SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); goto fail; } rqpair->rsp_recv_wrs = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_recv_wrs)); if (!rqpair->rsp_recv_wrs) { SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); goto fail; } rqpair->rsps = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsps)); if (!rqpair->rsps) { SPDK_ERRLOG("can not allocate rdma rsps\n"); goto fail; } return 0; fail: nvme_rdma_free_rsps(rqpair); return -ENOMEM; } static int nvme_rdma_register_rsps(struct nvme_rdma_qpair *rqpair) { uint16_t i; int rc; uint32_t lkey; rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->rsp_mr, rqpair->rsps, rqpair->num_entries * sizeof(*rqpair->rsps)); if (rc < 0) { goto fail; } lkey = nvme_rdma_mr_get_lkey(&rqpair->rsp_mr); for (i = 0; i < rqpair->num_entries; i++) { struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i]; struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i]; rsp->rqpair = rqpair; rsp->rdma_wr.type = RDMA_WR_TYPE_RECV; rsp->idx = i; rsp_sgl->addr = (uint64_t)&rqpair->rsps[i]; rsp_sgl->length = sizeof(struct spdk_nvme_cpl); rsp_sgl->lkey = lkey; rqpair->rsp_recv_wrs[i].wr_id = (uint64_t)&rsp->rdma_wr; rqpair->rsp_recv_wrs[i].next = NULL; rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl; rqpair->rsp_recv_wrs[i].num_sge = 1; rc = nvme_rdma_post_recv(rqpair, i); if (rc) { goto fail; } } rc = nvme_rdma_qpair_submit_recvs(rqpair); if (rc) { goto fail; } return 0; fail: nvme_rdma_unregister_rsps(rqpair); return rc; } static void nvme_rdma_unregister_reqs(struct nvme_rdma_qpair *rqpair) { nvme_rdma_dereg_mr(&rqpair->cmd_mr); } static void nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) { if (!rqpair->rdma_reqs) { return; } nvme_rdma_free(rqpair->cmds); rqpair->cmds = NULL; nvme_rdma_free(rqpair->rdma_reqs); rqpair->rdma_reqs = NULL; } static int nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair) { uint16_t i; rqpair->rdma_reqs = nvme_rdma_calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req)); if (rqpair->rdma_reqs == NULL) { SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); goto fail; } rqpair->cmds = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->cmds)); if (!rqpair->cmds) { SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); goto fail; } TAILQ_INIT(&rqpair->free_reqs); TAILQ_INIT(&rqpair->outstanding_reqs); for (i = 0; i < rqpair->num_entries; i++) { struct spdk_nvme_rdma_req *rdma_req; struct spdk_nvmf_cmd *cmd; rdma_req = &rqpair->rdma_reqs[i]; rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND; cmd = &rqpair->cmds[i]; rdma_req->id = i; /* The first RDMA sgl element will always point * at this data structure. Depending on whether * an NVMe-oF SGL is required, the length of * this element may change. */ rdma_req->send_sgl[0].addr = (uint64_t)cmd; rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr; rdma_req->send_wr.next = NULL; rdma_req->send_wr.opcode = IBV_WR_SEND; rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; rdma_req->send_wr.sg_list = rdma_req->send_sgl; rdma_req->send_wr.imm_data = 0; TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); } return 0; fail: nvme_rdma_free_reqs(rqpair); return -ENOMEM; } static int nvme_rdma_register_reqs(struct nvme_rdma_qpair *rqpair) { int i; int rc; uint32_t lkey; rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->cmd_mr, rqpair->cmds, rqpair->num_entries * sizeof(*rqpair->cmds)); if (rc < 0) { goto fail; } lkey = nvme_rdma_mr_get_lkey(&rqpair->cmd_mr); for (i = 0; i < rqpair->num_entries; i++) { rqpair->rdma_reqs[i].send_sgl[0].lkey = lkey; } return 0; fail: nvme_rdma_unregister_reqs(rqpair); return -ENOMEM; } static int nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_event_channel *cm_channel) { int ret; ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, NVME_RDMA_TIME_OUT_IN_MS); if (ret) { SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); return ret; } ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED); if (ret) { SPDK_ERRLOG("RDMA address resolution error\n"); return -1; } if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) { #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout; ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_ACK_TIMEOUT, &timeout, sizeof(timeout)); if (ret) { SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret); } #else SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n"); #endif } ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); if (ret) { SPDK_ERRLOG("rdma_resolve_route\n"); return ret; } ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED); if (ret) { SPDK_ERRLOG("RDMA route resolution error\n"); return -1; } return 0; } static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) { struct rdma_conn_param param = {}; struct spdk_nvmf_rdma_request_private_data request_data = {}; struct ibv_device_attr attr; int ret; struct spdk_nvme_ctrlr *ctrlr; struct nvme_rdma_ctrlr *rctrlr; ret = ibv_query_device(rqpair->cm_id->verbs, &attr); if (ret != 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); return ret; } param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom); ctrlr = rqpair->qpair.ctrlr; if (!ctrlr) { return -1; } rctrlr = nvme_rdma_ctrlr(ctrlr); assert(rctrlr != NULL); request_data.qid = rqpair->qpair.id; request_data.hrqsize = rqpair->num_entries; request_data.hsqsize = rqpair->num_entries - 1; request_data.cntlid = ctrlr->cntlid; param.private_data = &request_data; param.private_data_len = sizeof(request_data); param.retry_count = ctrlr->opts.transport_retry_count; param.rnr_retry_count = 7; /* Fields below are ignored by rdma cm if qpair has been * created using rdma cm API. */ param.srq = 0; param.qp_num = rqpair->rdma_qp->qp->qp_num; ret = rdma_connect(rqpair->cm_id, ¶m); if (ret) { SPDK_ERRLOG("nvme rdma connect error\n"); return ret; } ret = nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_ESTABLISHED); if (ret == -ESTALE) { SPDK_NOTICELOG("Received a stale connection notice during connection.\n"); return -EAGAIN; } else if (ret) { SPDK_ERRLOG("RDMA connect error %d\n", ret); return ret; } else { return 0; } } static int nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) { struct addrinfo *res; struct addrinfo hints; int ret; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; ret = getaddrinfo(addr, service, &hints, &res); if (ret) { SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); return ret; } if (res->ai_addrlen > sizeof(*sa)) { SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); ret = EINVAL; } else { memcpy(sa, res->ai_addr, res->ai_addrlen); } freeaddrinfo(res); return ret; } static int _nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct sockaddr_storage dst_addr; struct sockaddr_storage src_addr; bool src_addr_specified; int rc; struct nvme_rdma_ctrlr *rctrlr; struct nvme_rdma_qpair *rqpair; int family; rqpair = nvme_rdma_qpair(qpair); rctrlr = nvme_rdma_ctrlr(ctrlr); assert(rctrlr != NULL); switch (ctrlr->trid.adrfam) { case SPDK_NVMF_ADRFAM_IPV4: family = AF_INET; break; case SPDK_NVMF_ADRFAM_IPV6: family = AF_INET6; break; default: SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); return -1; } SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); memset(&dst_addr, 0, sizeof(dst_addr)); SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid); rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); if (rc != 0) { SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n"); return -1; } if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { memset(&src_addr, 0, sizeof(src_addr)); rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); if (rc != 0) { SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n"); return -1; } src_addr_specified = true; } else { src_addr_specified = false; } rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); if (rc < 0) { SPDK_ERRLOG("rdma_create_id() failed\n"); return -1; } rc = nvme_rdma_resolve_addr(rqpair, src_addr_specified ? (struct sockaddr *)&src_addr : NULL, (struct sockaddr *)&dst_addr, rctrlr->cm_channel); if (rc < 0) { SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); return -1; } rc = nvme_rdma_qpair_init(rqpair); if (rc < 0) { SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); return -1; } rc = nvme_rdma_connect(rqpair); if (rc != 0) { SPDK_ERRLOG("Unable to connect the rqpair\n"); return rc; } rc = nvme_rdma_register_reqs(rqpair); SPDK_DEBUGLOG(nvme, "rc =%d\n", rc); if (rc) { SPDK_ERRLOG("Unable to register rqpair RDMA requests\n"); return -1; } SPDK_DEBUGLOG(nvme, "RDMA requests registered\n"); rc = nvme_rdma_register_rsps(rqpair); SPDK_DEBUGLOG(nvme, "rc =%d\n", rc); if (rc < 0) { SPDK_ERRLOG("Unable to register rqpair RDMA responses\n"); return -1; } SPDK_DEBUGLOG(nvme, "RDMA responses registered\n"); rqpair->mr_map = spdk_rdma_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks); if (!rqpair->mr_map) { SPDK_ERRLOG("Unable to register RDMA memory translation map\n"); return -1; } rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries); if (rc < 0) { rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); return rc; } return 0; } static int nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { int rc; int retry_count = 0; rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair); /* * -EAGAIN represents the special case where the target side still thought it was connected. * Most NICs will fail the first connection attempt, and the NICs will clean up whatever * state they need to. After that, subsequent connection attempts will succeed. */ if (rc == -EAGAIN) { SPDK_NOTICELOG("Detected stale connection on Target side for qpid: %d\n", qpair->id); do { nvme_delay(NVME_RDMA_STALE_CONN_RETRY_DELAY_US); nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair); retry_count++; } while (rc == -EAGAIN && retry_count < NVME_RDMA_STALE_CONN_RETRY_MAX); } if (rc == 0) { nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); } return rc; } /* * Build SGL describing empty payload. */ static int nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); /* The RDMA SGL needs one element describing the NVMe command. */ rdma_req->send_wr.num_sge = 1; req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; req->cmd.dptr.sgl1.keyed.length = 0; req->cmd.dptr.sgl1.keyed.key = 0; req->cmd.dptr.sgl1.address = 0; return 0; } /* * Build inline SGL describing contiguous payload buffer. */ static int nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; struct spdk_rdma_memory_translation mem_translation; void *payload; int rc; payload = req->payload.contig_or_cb_arg + req->payload_offset; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); rc = spdk_rdma_get_translation(rqpair->mr_map, payload, req->payload_size, &mem_translation); if (spdk_unlikely(rc)) { SPDK_ERRLOG("Memory translation failed, rc %d\n", rc); return -1; } rdma_req->send_sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); rdma_req->send_sgl[1].addr = (uint64_t)payload; rdma_req->send_sgl[1].length = (uint32_t)req->payload_size; /* The RDMA SGL contains two elements. The first describes * the NVMe command and the second describes the data * payload. */ rdma_req->send_wr.num_sge = 2; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size; /* Inline only supported for icdoff == 0 currently. This function will * not get called for controllers with other values. */ req->cmd.dptr.sgl1.address = (uint64_t)0; return 0; } /* * Build SGL describing contiguous payload buffer. */ static int nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; void *payload = req->payload.contig_or_cb_arg + req->payload_offset; struct spdk_rdma_memory_translation mem_translation; int rc; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH); return -1; } rc = spdk_rdma_get_translation(rqpair->mr_map, payload, req->payload_size, &mem_translation); if (spdk_unlikely(rc)) { SPDK_ERRLOG("Memory translation failed, rc %d\n", rc); return -1; } req->cmd.dptr.sgl1.keyed.key = spdk_rdma_memory_translation_get_rkey(&mem_translation); /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); /* The RDMA SGL needs one element describing the NVMe command. */ rdma_req->send_wr.num_sge = 1; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; req->cmd.dptr.sgl1.keyed.length = req->payload_size; req->cmd.dptr.sgl1.address = (uint64_t)payload; return 0; } /* * Build SGL describing scattered payload buffer. */ static int nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; struct spdk_rdma_memory_translation mem_translation; void *virt_addr; uint32_t remaining_size; uint32_t sge_length; int rc, max_num_sgl, num_sgl_desc; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.reset_sgl_fn != NULL); assert(req->payload.next_sge_fn != NULL); req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); max_num_sgl = req->qpair->ctrlr->max_sges; remaining_size = req->payload_size; num_sgl_desc = 0; do { rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length); if (rc) { return -1; } sge_length = spdk_min(remaining_size, sge_length); if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH); return -1; } rc = spdk_rdma_get_translation(rqpair->mr_map, virt_addr, sge_length, &mem_translation); if (spdk_unlikely(rc)) { SPDK_ERRLOG("Memory translation failed, rc %d\n", rc); return -1; } cmd->sgl[num_sgl_desc].keyed.key = spdk_rdma_memory_translation_get_rkey(&mem_translation); cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; cmd->sgl[num_sgl_desc].keyed.length = sge_length; cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr; remaining_size -= sge_length; num_sgl_desc++; } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ if (remaining_size > 0) { return -1; } req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; /* The RDMA SGL needs one element describing some portion * of the spdk_nvmf_cmd structure. */ rdma_req->send_wr.num_sge = 1; /* * If only one SGL descriptor is required, it can be embedded directly in the command * as a data block descriptor. */ if (num_sgl_desc == 1) { /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; req->cmd.dptr.sgl1.address = cmd->sgl[0].address; } else { /* * Otherwise, The SGL descriptor embedded in the command must point to the list of * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. */ uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc; if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) { SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n", descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes); return -1; } rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.unkeyed.length = descriptors_size; req->cmd.dptr.sgl1.address = (uint64_t)0; } return 0; } /* * Build inline SGL describing sgl payload buffer. */ static int nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { struct nvme_request *req = rdma_req->req; struct spdk_rdma_memory_translation mem_translation; uint32_t length; void *virt_addr; int rc; assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.reset_sgl_fn != NULL); assert(req->payload.next_sge_fn != NULL); req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length); if (rc) { return -1; } if (length < req->payload_size) { SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n"); return nvme_rdma_build_sgl_request(rqpair, rdma_req); } if (length > req->payload_size) { length = req->payload_size; } rc = spdk_rdma_get_translation(rqpair->mr_map, virt_addr, length, &mem_translation); if (spdk_unlikely(rc)) { SPDK_ERRLOG("Memory translation failed, rc %d\n", rc); return -1; } rdma_req->send_sgl[1].addr = (uint64_t)virt_addr; rdma_req->send_sgl[1].length = length; rdma_req->send_sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation); rdma_req->send_wr.num_sge = 2; /* The first element of this SGL is pointing at an * spdk_nvmf_cmd object. For this particular command, * we only need the first 64 bytes corresponding to * the NVMe command. */ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size; /* Inline only supported for icdoff == 0 currently. This function will * not get called for controllers with other values. */ req->cmd.dptr.sgl1.address = (uint64_t)0; return 0; } static int nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req, struct spdk_nvme_rdma_req *rdma_req) { struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; enum nvme_payload_type payload_type; bool icd_supported; int rc; assert(rdma_req->req == NULL); rdma_req->req = req; req->cmd.cid = rdma_req->id; payload_type = nvme_payload_type(&req->payload); /* * Check if icdoff is non zero, to avoid interop conflicts with * targets with non-zero icdoff. Both SPDK and the Linux kernel * targets use icdoff = 0. For targets with non-zero icdoff, we * will currently just not use inline data for now. */ icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0; if (req->payload_size == 0) { rc = nvme_rdma_build_null_request(rdma_req); } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) { if (icd_supported) { rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); } else { rc = nvme_rdma_build_contig_request(rqpair, rdma_req); } } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) { if (icd_supported) { rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); } else { rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); } } else { rc = -1; } if (rc) { rdma_req->req = NULL; return rc; } memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); return 0; } static struct spdk_nvme_qpair * nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, uint32_t qsize, enum spdk_nvme_qprio qprio, uint32_t num_requests, bool delay_cmd_submit) { struct nvme_rdma_qpair *rqpair; struct spdk_nvme_qpair *qpair; int rc; rqpair = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_qpair)); if (!rqpair) { SPDK_ERRLOG("failed to get create rqpair\n"); return NULL; } rqpair->num_entries = qsize; rqpair->delay_cmd_submit = delay_cmd_submit; qpair = &rqpair->qpair; rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests); if (rc != 0) { nvme_rdma_free(rqpair); return NULL; } rc = nvme_rdma_alloc_reqs(rqpair); SPDK_DEBUGLOG(nvme, "rc =%d\n", rc); if (rc) { SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n"); nvme_rdma_free(rqpair); return NULL; } SPDK_DEBUGLOG(nvme, "RDMA requests allocated\n"); rc = nvme_rdma_alloc_rsps(rqpair); SPDK_DEBUGLOG(nvme, "rc =%d\n", rc); if (rc < 0) { SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n"); nvme_rdma_free_reqs(rqpair); nvme_rdma_free(rqpair); return NULL; } SPDK_DEBUGLOG(nvme, "RDMA responses allocated\n"); return qpair; } static void nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct nvme_rdma_ctrlr *rctrlr = NULL; struct nvme_rdma_cm_event_entry *entry, *tmp; int rc; spdk_rdma_free_mem_map(&rqpair->mr_map); nvme_rdma_unregister_reqs(rqpair); nvme_rdma_unregister_rsps(rqpair); if (rqpair->evt) { rdma_ack_cm_event(rqpair->evt); rqpair->evt = NULL; } /* * This works because we have the controller lock both in * this function and in the function where we add new events. */ if (qpair->ctrlr != NULL) { rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { if (nvme_rdma_qpair(entry->evt->id->context) == rqpair) { STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); rdma_ack_cm_event(entry->evt); STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); } } } if (rqpair->cm_id) { if (rqpair->rdma_qp) { rc = spdk_rdma_qp_disconnect(rqpair->rdma_qp); if ((rctrlr != NULL) && (rc == 0)) { if (nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_DISCONNECTED)) { SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n"); } } spdk_rdma_qp_destroy(rqpair->rdma_qp); rqpair->rdma_qp = NULL; } rdma_destroy_id(rqpair->cm_id); rqpair->cm_id = NULL; } if (rqpair->cq) { ibv_destroy_cq(rqpair->cq); rqpair->cq = NULL; } } static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_rdma_qpair *rqpair; assert(qpair != NULL); rqpair = nvme_rdma_qpair(qpair); nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); if (rqpair->defer_deletion_to_pg) { nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING); return 0; } nvme_rdma_qpair_abort_reqs(qpair, 1); nvme_qpair_deinit(qpair); nvme_rdma_free_reqs(rqpair); nvme_rdma_free_rsps(rqpair); nvme_rdma_free(rqpair); return 0; } static struct spdk_nvme_qpair * nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts) { return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, opts->io_queue_requests, opts->delay_cmd_submit); } static int nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { /* do nothing here */ return 0; } static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); static struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { struct nvme_rdma_ctrlr *rctrlr; struct ibv_context **contexts; struct ibv_device_attr dev_attr; int i, flag, rc; rctrlr = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_ctrlr)); if (rctrlr == NULL) { SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } rctrlr->ctrlr.opts = *opts; rctrlr->ctrlr.trid = *trid; if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) { SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n", NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT); rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT; } if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; } contexts = rdma_get_devices(NULL); if (contexts == NULL) { SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); nvme_rdma_free(rctrlr); return NULL; } i = 0; rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; while (contexts[i] != NULL) { rc = ibv_query_device(contexts[i], &dev_attr); if (rc < 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); rdma_free_devices(contexts); nvme_rdma_free(rctrlr); return NULL; } rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); i++; } rdma_free_devices(contexts); rc = nvme_ctrlr_construct(&rctrlr->ctrlr); if (rc != 0) { nvme_rdma_free(rctrlr); return NULL; } STAILQ_INIT(&rctrlr->pending_cm_events); STAILQ_INIT(&rctrlr->free_cm_events); rctrlr->cm_events = nvme_rdma_calloc(NVME_RDMA_NUM_CM_EVENTS, sizeof(*rctrlr->cm_events)); if (rctrlr->cm_events == NULL) { SPDK_ERRLOG("unable to allocat buffers to hold CM events.\n"); goto destruct_ctrlr; } for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); } rctrlr->cm_channel = rdma_create_event_channel(); if (rctrlr->cm_channel == NULL) { SPDK_ERRLOG("rdma_create_event_channel() failed\n"); goto destruct_ctrlr; } flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { SPDK_ERRLOG("Cannot set event channel to non blocking\n"); goto destruct_ctrlr; } rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, rctrlr->ctrlr.opts.admin_queue_size, 0, rctrlr->ctrlr.opts.admin_queue_size, false); if (!rctrlr->ctrlr.adminq) { SPDK_ERRLOG("failed to create admin qpair\n"); goto destruct_ctrlr; } if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); goto destruct_ctrlr; } SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n"); return &rctrlr->ctrlr; destruct_ctrlr: nvme_ctrlr_destruct(&rctrlr->ctrlr); return NULL; } static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); struct nvme_rdma_cm_event_entry *entry; if (ctrlr->adminq) { nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); } STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { rdma_ack_cm_event(entry->evt); } STAILQ_INIT(&rctrlr->free_cm_events); STAILQ_INIT(&rctrlr->pending_cm_events); nvme_rdma_free(rctrlr->cm_events); if (rctrlr->cm_channel) { rdma_destroy_event_channel(rctrlr->cm_channel); rctrlr->cm_channel = NULL; } nvme_ctrlr_destruct_finish(ctrlr); nvme_rdma_free(rctrlr); return 0; } static int nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { struct nvme_rdma_qpair *rqpair; struct spdk_nvme_rdma_req *rdma_req; struct ibv_send_wr *wr; rqpair = nvme_rdma_qpair(qpair); assert(rqpair != NULL); assert(req != NULL); rdma_req = nvme_rdma_req_get(rqpair); if (spdk_unlikely(!rdma_req)) { if (rqpair->poller) { rqpair->poller->stats.queued_requests++; } /* Inform the upper layer to try again later. */ return -EAGAIN; } if (nvme_rdma_req_init(rqpair, req, rdma_req)) { SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); nvme_rdma_req_put(rqpair, rdma_req); return -1; } wr = &rdma_req->send_wr; wr->next = NULL; nvme_rdma_trace_ibv_sge(wr->sg_list); return nvme_rdma_qpair_queue_send_wr(rqpair, wr); } static int nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) { /* Currently, doing nothing here */ return 0; } static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { struct spdk_nvme_rdma_req *rdma_req, *tmp; struct spdk_nvme_cpl cpl; struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.dnr = dnr; /* * We cannot abort requests at the RDMA layer without * unregistering them. If we do, we can still get error * free completions on the shared completion queue. */ if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING && nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) { nvme_ctrlr_disconnect_qpair(qpair); } TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { nvme_rdma_req_complete(rdma_req, &cpl); nvme_rdma_req_put(rqpair, rdma_req); } } static void nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) { uint64_t t02; struct spdk_nvme_rdma_req *rdma_req, *tmp; struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct spdk_nvme_ctrlr_process *active_proc; /* Don't check timeouts during controller initialization. */ if (ctrlr->state != NVME_CTRLR_STATE_READY) { return; } if (nvme_qpair_is_admin_queue(qpair)) { active_proc = nvme_ctrlr_get_current_process(ctrlr); } else { active_proc = qpair->active_proc; } /* Only check timeouts if the current process has a timeout callback. */ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { return; } t02 = spdk_get_ticks(); TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { assert(rdma_req->req != NULL); if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { /* * The requests are in order, so as soon as one has not timed out, * stop iterating. */ break; } } } static inline int nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) { nvme_rdma_req_complete(rdma_req, &rqpair->rsps[rdma_req->rsp_idx].cpl); nvme_rdma_req_put(rqpair, rdma_req); return nvme_rdma_post_recv(rqpair, rdma_req->rsp_idx); } #define MAX_COMPLETIONS_PER_POLL 128 static void nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason) { if (failure_reason == IBV_WC_RETRY_EXC_ERR) { qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) { qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; } nvme_ctrlr_disconnect_qpair(qpair); } static void nvme_rdma_conditional_fail_qpair(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poll_group *group) { struct nvme_rdma_destroyed_qpair *qpair_tracker; assert(rqpair); if (group) { STAILQ_FOREACH(qpair_tracker, &group->destroyed_qpairs, link) { if (qpair_tracker->destroyed_qpair_tracker == rqpair) { return; } } } nvme_rdma_fail_qpair(&rqpair->qpair, 0); } static int nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size, struct nvme_rdma_poll_group *group, struct nvme_rdma_qpair *rdma_qpair, uint64_t *rdma_completions) { struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; struct nvme_rdma_qpair *rqpair; struct spdk_nvme_rdma_req *rdma_req; struct spdk_nvme_rdma_rsp *rdma_rsp; struct nvme_rdma_wr *rdma_wr; uint32_t reaped = 0; int completion_rc = 0; int rc, i; rc = ibv_poll_cq(cq, batch_size, wc); if (rc < 0) { SPDK_ERRLOG("Error polling CQ! (%d): %s\n", errno, spdk_strerror(errno)); return -ECANCELED; } else if (rc == 0) { return 0; } for (i = 0; i < rc; i++) { rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id; switch (rdma_wr->type) { case RDMA_WR_TYPE_RECV: rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr); rqpair = rdma_rsp->rqpair; assert(rqpair->current_num_recvs > 0); rqpair->current_num_recvs--; if (wc[i].status) { SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n", rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); nvme_rdma_conditional_fail_qpair(rqpair, group); completion_rc = -ENXIO; continue; } SPDK_DEBUGLOG(nvme, "CQ recv completion\n"); if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) { SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len); nvme_rdma_conditional_fail_qpair(rqpair, group); completion_rc = -ENXIO; continue; } rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid]; rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED; rdma_req->rsp_idx = rdma_rsp->idx; if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) != 0) { if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) { SPDK_ERRLOG("Unable to re-post rx descriptor\n"); nvme_rdma_conditional_fail_qpair(rqpair, group); completion_rc = -ENXIO; continue; } reaped++; rqpair->num_completions++; } break; case RDMA_WR_TYPE_SEND: rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr); /* If we are flushing I/O */ if (wc[i].status) { rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL; if (!rqpair) { rqpair = rdma_qpair != NULL ? rdma_qpair : nvme_rdma_poll_group_get_qpair_by_id(group, wc[i].qp_num); } assert(rqpair); assert(rqpair->current_num_sends > 0); rqpair->current_num_sends--; nvme_rdma_conditional_fail_qpair(rqpair, group); SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n", rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); completion_rc = -ENXIO; continue; } rqpair = nvme_rdma_qpair(rdma_req->req->qpair); rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED; rqpair->current_num_sends--; if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) != 0) { if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) { SPDK_ERRLOG("Unable to re-post rx descriptor\n"); nvme_rdma_conditional_fail_qpair(rqpair, group); completion_rc = -ENXIO; continue; } reaped++; rqpair->num_completions++; } break; default: SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type); return -ECANCELED; } } *rdma_completions += rc; if (completion_rc) { return completion_rc; } return reaped; } static void dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) { } static int nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); int rc = 0, batch_size; struct ibv_cq *cq; struct nvme_rdma_ctrlr *rctrlr; uint64_t rdma_completions = 0; /* * This is used during the connection phase. It's possible that we are still reaping error completions * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq * is shared. */ if (qpair->poll_group != NULL) { return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions, dummy_disconnected_qpair_cb); } if (max_completions == 0) { max_completions = rqpair->num_entries; } else { max_completions = spdk_min(max_completions, rqpair->num_entries); } if (nvme_qpair_is_admin_queue(&rqpair->qpair)) { rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); nvme_rdma_poll_events(rctrlr); } nvme_rdma_qpair_process_cm_event(rqpair); if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { nvme_rdma_fail_qpair(qpair, 0); return -ENXIO; } cq = rqpair->cq; rqpair->num_completions = 0; do { batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL); rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions); if (rc == 0) { break; /* Handle the case where we fail to poll the cq. */ } else if (rc == -ECANCELED) { nvme_rdma_fail_qpair(qpair, 0); return -ENXIO; } else if (rc == -ENXIO) { return rc; } } while (rqpair->num_completions < max_completions); if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) || nvme_rdma_qpair_submit_recvs(rqpair))) { nvme_rdma_fail_qpair(qpair, 0); return -ENXIO; } if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) { nvme_rdma_qpair_check_timeout(qpair); } return rqpair->num_completions; } static uint32_t nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { /* max_mr_size by ibv_query_device indicates the largest value that we can * set for a registered memory region. It is independent from the actual * I/O size and is very likely to be larger than 2 MiB which is the * granularity we currently register memory regions. Hence return * UINT32_MAX here and let the generic layer use the controller data to * moderate this value. */ return UINT32_MAX; } static uint16_t nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); return rctrlr->max_sge; } static int nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, int (*iter_fn)(struct nvme_request *req, void *arg), void *arg) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct spdk_nvme_rdma_req *rdma_req, *tmp; int rc; assert(iter_fn != NULL); TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { assert(rdma_req->req != NULL); rc = iter_fn(rdma_req->req, arg); if (rc != 0) { return rc; } } return 0; } static void nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_rdma_req *rdma_req, *tmp; struct spdk_nvme_cpl cpl; struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { assert(rdma_req->req != NULL); if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { continue; } nvme_rdma_req_complete(rdma_req, &cpl); nvme_rdma_req_put(rqpair, rdma_req); } } static int nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx) { struct nvme_rdma_poller *poller; poller = calloc(1, sizeof(*poller)); if (poller == NULL) { SPDK_ERRLOG("Unable to allocate poller.\n"); return -ENOMEM; } poller->device = ctx; poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0); if (poller->cq == NULL) { free(poller); return -EINVAL; } STAILQ_INSERT_HEAD(&group->pollers, poller, link); group->num_pollers++; poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE; poller->required_num_wc = 0; return 0; } static void nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group) { struct nvme_rdma_poller *poller, *tmp_poller; STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) { if (poller->cq) { ibv_destroy_cq(poller->cq); } STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); free(poller); } } static struct spdk_nvme_transport_poll_group * nvme_rdma_poll_group_create(void) { struct nvme_rdma_poll_group *group; struct ibv_context **contexts; int i = 0; group = calloc(1, sizeof(*group)); if (group == NULL) { SPDK_ERRLOG("Unable to allocate poll group.\n"); return NULL; } STAILQ_INIT(&group->pollers); contexts = rdma_get_devices(NULL); if (contexts == NULL) { SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); free(group); return NULL; } while (contexts[i] != NULL) { if (nvme_rdma_poller_create(group, contexts[i])) { nvme_rdma_poll_group_free_pollers(group); free(group); rdma_free_devices(contexts); return NULL; } i++; } rdma_free_devices(contexts); STAILQ_INIT(&group->destroyed_qpairs); return &group->group; } struct nvme_rdma_qpair * nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, uint32_t qp_num) { struct spdk_nvme_qpair *qpair; struct nvme_rdma_destroyed_qpair *rqpair_tracker; struct nvme_rdma_qpair *rqpair; STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) { rqpair = nvme_rdma_qpair(qpair); if (rqpair->rdma_qp->qp->qp_num == qp_num) { return rqpair; } } STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) { rqpair = nvme_rdma_qpair(qpair); if (rqpair->rdma_qp->qp->qp_num == qp_num) { return rqpair; } } STAILQ_FOREACH(rqpair_tracker, &group->destroyed_qpairs, link) { rqpair = rqpair_tracker->destroyed_qpair_tracker; if (rqpair->rdma_qp->qp->qp_num == qp_num) { return rqpair; } } return NULL; } static int nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller) { int current_num_wc, required_num_wc; required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries); current_num_wc = poller->current_num_wc; if (current_num_wc < required_num_wc) { current_num_wc = spdk_max(current_num_wc * 2, required_num_wc); } if (poller->current_num_wc != current_num_wc) { SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc, current_num_wc); if (ibv_resize_cq(poller->cq, current_num_wc)) { SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); return -1; } poller->current_num_wc = current_num_wc; } poller->required_num_wc = required_num_wc; return 0; } static int nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); struct nvme_rdma_poller *poller; assert(rqpair->cq == NULL); STAILQ_FOREACH(poller, &group->pollers, link) { if (poller->device == rqpair->cm_id->verbs) { if (nvme_rdma_resize_cq(rqpair, poller)) { return -EPROTO; } rqpair->cq = poller->cq; rqpair->poller = poller; break; } } if (rqpair->cq == NULL) { SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group); return -EINVAL; } return 0; } static int nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) { struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); struct nvme_rdma_poll_group *group; struct nvme_rdma_destroyed_qpair *destroyed_qpair; enum nvme_qpair_state state; if (rqpair->poll_group_disconnect_in_progress) { return -EINPROGRESS; } rqpair->poll_group_disconnect_in_progress = true; state = nvme_qpair_get_state(qpair); group = nvme_rdma_poll_group(qpair->poll_group); rqpair->cq = NULL; /* * We want to guard against an endless recursive loop while making * sure the qpair is disconnected before we disconnect it from the qpair. */ if (state > NVME_QPAIR_DISCONNECTING && state != NVME_QPAIR_DESTROYING) { nvme_ctrlr_disconnect_qpair(qpair); } /* * If this fails, the system is in serious trouble, * just let the qpair get cleaned up immediately. */ destroyed_qpair = calloc(1, sizeof(*destroyed_qpair)); if (destroyed_qpair == NULL) { return 0; } destroyed_qpair->destroyed_qpair_tracker = rqpair; destroyed_qpair->completed_cycles = 0; STAILQ_INSERT_TAIL(&group->destroyed_qpairs, destroyed_qpair, link); rqpair->defer_deletion_to_pg = true; rqpair->poll_group_disconnect_in_progress = false; return 0; } static int nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_qpair *qpair) { return 0; } static int nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_qpair *qpair) { if (qpair->poll_group_tailq_head == &tgroup->connected_qpairs) { return nvme_poll_group_disconnect_qpair(qpair); } return 0; } static void nvme_rdma_poll_group_delete_qpair(struct nvme_rdma_poll_group *group, struct nvme_rdma_destroyed_qpair *qpair_tracker) { struct nvme_rdma_qpair *rqpair = qpair_tracker->destroyed_qpair_tracker; rqpair->defer_deletion_to_pg = false; if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) { nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair); } STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link); free(qpair_tracker); } static int64_t nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) { struct spdk_nvme_qpair *qpair, *tmp_qpair; struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker; struct nvme_rdma_qpair *rqpair; struct nvme_rdma_poll_group *group; struct nvme_rdma_poller *poller; int num_qpairs = 0, batch_size, rc; int64_t total_completions = 0; uint64_t completions_allowed = 0; uint64_t completions_per_poller = 0; uint64_t poller_completions = 0; uint64_t rdma_completions; if (completions_per_qpair == 0) { completions_per_qpair = MAX_COMPLETIONS_PER_POLL; } group = nvme_rdma_poll_group(tgroup); STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { disconnected_qpair_cb(qpair, tgroup->group->ctx); } STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { rqpair = nvme_rdma_qpair(qpair); rqpair->num_completions = 0; nvme_rdma_qpair_process_cm_event(rqpair); if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { nvme_rdma_fail_qpair(qpair, 0); disconnected_qpair_cb(qpair, tgroup->group->ctx); continue; } num_qpairs++; } completions_allowed = completions_per_qpair * num_qpairs; completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1); STAILQ_FOREACH(poller, &group->pollers, link) { poller_completions = 0; rdma_completions = 0; do { poller->stats.polls++; batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL); rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, group, NULL, &rdma_completions); if (rc <= 0) { if (rc == -ECANCELED) { return -EIO; } else if (rc == 0) { poller->stats.idle_polls++; } break; } poller_completions += rc; } while (poller_completions < completions_per_poller); total_completions += poller_completions; poller->stats.completions += rdma_completions; } STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { rqpair = nvme_rdma_qpair(qpair); if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { nvme_rdma_qpair_check_timeout(qpair); } nvme_rdma_qpair_submit_sends(rqpair); nvme_rdma_qpair_submit_recvs(rqpair); if (rqpair->num_completions > 0) { nvme_qpair_resubmit_requests(&rqpair->qpair, rqpair->num_completions); } } /* * Once a qpair is disconnected, we can still get flushed completions for those disconnected qpairs. * For most pieces of hardware, those requests will complete immediately. However, there are certain * cases where flushed requests will linger. Default is to destroy qpair after all completions are freed, * but have a fallback for other cases where we don't get all of our completions back. */ STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) { qpair_tracker->completed_cycles++; rqpair = qpair_tracker->destroyed_qpair_tracker; if ((rqpair->current_num_sends == 0 && rqpair->current_num_recvs == 0) || qpair_tracker->completed_cycles > NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES) { nvme_rdma_poll_group_delete_qpair(group, qpair_tracker); } } return total_completions; } static int nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) { struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker; struct nvme_rdma_qpair *rqpair; if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { return -EBUSY; } STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) { rqpair = qpair_tracker->destroyed_qpair_tracker; if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) { rqpair->defer_deletion_to_pg = false; nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair); } STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link); free(qpair_tracker); } nvme_rdma_poll_group_free_pollers(group); free(group); return 0; } static int nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_transport_poll_group_stat **_stats) { struct nvme_rdma_poll_group *group; struct spdk_nvme_transport_poll_group_stat *stats; struct spdk_nvme_rdma_device_stat *device_stat; struct nvme_rdma_poller *poller; uint32_t i = 0; if (tgroup == NULL || _stats == NULL) { SPDK_ERRLOG("Invalid stats or group pointer\n"); return -EINVAL; } group = nvme_rdma_poll_group(tgroup); stats = calloc(1, sizeof(*stats)); if (!stats) { SPDK_ERRLOG("Can't allocate memory for RDMA stats\n"); return -ENOMEM; } stats->trtype = SPDK_NVME_TRANSPORT_RDMA; stats->rdma.num_devices = group->num_pollers; stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats)); if (!stats->rdma.device_stats) { SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n"); free(stats); return -ENOMEM; } STAILQ_FOREACH(poller, &group->pollers, link) { device_stat = &stats->rdma.device_stats[i]; device_stat->name = poller->device->device->name; device_stat->polls = poller->stats.polls; device_stat->idle_polls = poller->stats.idle_polls; device_stat->completions = poller->stats.completions; device_stat->queued_requests = poller->stats.queued_requests; device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs; device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates; device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs; device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates; i++; } *_stats = stats; return 0; } static void nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_transport_poll_group_stat *stats) { if (stats) { free(stats->rdma.device_stats); } free(stats); } void spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) { g_nvme_hooks = *hooks; } const struct spdk_nvme_transport_ops rdma_ops = { .name = "RDMA", .type = SPDK_NVME_TRANSPORT_RDMA, .ctrlr_construct = nvme_rdma_ctrlr_construct, .ctrlr_scan = nvme_fabric_ctrlr_scan, .ctrlr_destruct = nvme_rdma_ctrlr_destruct, .ctrlr_enable = nvme_rdma_ctrlr_enable, .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size, .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges, .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair, .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair, .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair, .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair, .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs, .qpair_reset = nvme_rdma_qpair_reset, .qpair_submit_request = nvme_rdma_qpair_submit_request, .qpair_process_completions = nvme_rdma_qpair_process_completions, .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests, .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers, .poll_group_create = nvme_rdma_poll_group_create, .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair, .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair, .poll_group_add = nvme_rdma_poll_group_add, .poll_group_remove = nvme_rdma_poll_group_remove, .poll_group_process_completions = nvme_rdma_poll_group_process_completions, .poll_group_destroy = nvme_rdma_poll_group_destroy, .poll_group_get_stats = nvme_rdma_poll_group_get_stats, .poll_group_free_stats = nvme_rdma_poll_group_free_stats, }; SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);