/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/likely.h" #include "spdk_internal/event.h" #include "spdk_internal/log.h" #include "spdk/log.h" #include "spdk/thread.h" #include "spdk/env.h" #include "spdk/util.h" #define SPDK_MAX_SOCKET 64 #define SPDK_REACTOR_SPIN_TIME_USEC 1000 #define SPDK_EVENT_BATCH_SIZE 8 #define SPDK_SEC_TO_USEC 1000000ULL enum spdk_poller_state { /* The poller is registered with a reactor but not currently executing its fn. */ SPDK_POLLER_STATE_WAITING, /* The poller is currently running its fn. */ SPDK_POLLER_STATE_RUNNING, /* The poller was unregistered during the execution of its fn. */ SPDK_POLLER_STATE_UNREGISTERED, }; struct spdk_poller { TAILQ_ENTRY(spdk_poller) tailq; uint32_t lcore; /* Current state of the poller; should only be accessed from the poller's thread. */ enum spdk_poller_state state; uint64_t period_ticks; uint64_t next_run_tick; spdk_poller_fn fn; void *arg; }; enum spdk_reactor_state { SPDK_REACTOR_STATE_INVALID = 0, SPDK_REACTOR_STATE_INITIALIZED = 1, SPDK_REACTOR_STATE_RUNNING = 2, SPDK_REACTOR_STATE_EXITING = 3, SPDK_REACTOR_STATE_SHUTDOWN = 4, }; struct spdk_reactor { /* Logical core number for this reactor. */ uint32_t lcore; /* Socket ID for this reactor. */ uint32_t socket_id; /* Poller for get the rusage for the reactor. */ struct spdk_poller *rusage_poller; /* Reactor tsc stats */ struct spdk_reactor_tsc_stats tsc_stats; uint64_t tsc_last; /* The last known rusage values */ struct rusage rusage; /* * Contains pollers actively running on this reactor. Pollers * are run round-robin. The reactor takes one poller from the head * of the ring, executes it, then puts it back at the tail of * the ring. */ TAILQ_HEAD(, spdk_poller) active_pollers; /** * Contains pollers running on this reactor with a periodic timer. */ TAILQ_HEAD(timer_pollers_head, spdk_poller) timer_pollers; struct spdk_ring *events; /* Pointer to the per-socket g_spdk_event_mempool for this reactor. */ struct spdk_mempool *event_mempool; uint64_t max_delay_us; } __attribute__((aligned(64))); static struct spdk_reactor *g_reactors; static enum spdk_reactor_state g_reactor_state = SPDK_REACTOR_STATE_INVALID; static bool g_context_switch_monitor_enabled = true; static void spdk_reactor_construct(struct spdk_reactor *w, uint32_t lcore, uint64_t max_delay_us); static struct spdk_mempool *g_spdk_event_mempool[SPDK_MAX_SOCKET]; static struct spdk_cpuset *g_spdk_app_core_mask; static struct spdk_reactor * spdk_reactor_get(uint32_t lcore) { struct spdk_reactor *reactor; reactor = spdk_likely(g_reactors) ? &g_reactors[lcore] : NULL; return reactor; } struct spdk_event * spdk_event_allocate(uint32_t lcore, spdk_event_fn fn, void *arg1, void *arg2) { struct spdk_event *event = NULL; struct spdk_reactor *reactor = spdk_reactor_get(lcore); if (!reactor) { assert(false); return NULL; } event = spdk_mempool_get(reactor->event_mempool); if (event == NULL) { assert(false); return NULL; } event->lcore = lcore; event->fn = fn; event->arg1 = arg1; event->arg2 = arg2; return event; } void spdk_event_call(struct spdk_event *event) { int rc; struct spdk_reactor *reactor; reactor = spdk_reactor_get(event->lcore); assert(reactor->events != NULL); rc = spdk_ring_enqueue(reactor->events, (void **)&event, 1); if (rc != 1) { assert(false); } } static inline uint32_t _spdk_event_queue_run_batch(struct spdk_reactor *reactor) { unsigned count, i; void *events[SPDK_EVENT_BATCH_SIZE]; #ifdef DEBUG /* * spdk_ring_dequeue() fills events and returns how many entries it wrote, * so we will never actually read uninitialized data from events, but just to be sure * (and to silence a static analyzer false positive), initialize the array to NULL pointers. */ memset(events, 0, sizeof(events)); #endif count = spdk_ring_dequeue(reactor->events, events, SPDK_EVENT_BATCH_SIZE); if (count == 0) { return 0; } for (i = 0; i < count; i++) { struct spdk_event *event = events[i]; assert(event != NULL); event->fn(event->arg1, event->arg2); } spdk_mempool_put_bulk(reactor->event_mempool, events, count); return count; } static void _spdk_reactor_msg_passed(void *arg1, void *arg2) { spdk_thread_fn fn = arg1; fn(arg2); } static void _spdk_reactor_send_msg(spdk_thread_fn fn, void *ctx, void *thread_ctx) { struct spdk_event *event; struct spdk_reactor *reactor; reactor = thread_ctx; event = spdk_event_allocate(reactor->lcore, _spdk_reactor_msg_passed, fn, ctx); spdk_event_call(event); } static void _spdk_poller_insert_timer(struct spdk_reactor *reactor, struct spdk_poller *poller, uint64_t now) { struct spdk_poller *iter; uint64_t next_run_tick; next_run_tick = now + poller->period_ticks; poller->next_run_tick = next_run_tick; /* * Insert poller in the reactor's timer_pollers list in sorted order by next scheduled * run time. */ TAILQ_FOREACH_REVERSE(iter, &reactor->timer_pollers, timer_pollers_head, tailq) { if (iter->next_run_tick <= next_run_tick) { TAILQ_INSERT_AFTER(&reactor->timer_pollers, iter, poller, tailq); return; } } /* No earlier pollers were found, so this poller must be the new head */ TAILQ_INSERT_HEAD(&reactor->timer_pollers, poller, tailq); } static struct spdk_poller * _spdk_reactor_start_poller(void *thread_ctx, spdk_poller_fn fn, void *arg, uint64_t period_microseconds) { struct spdk_poller *poller; struct spdk_reactor *reactor; uint64_t quotient, remainder, ticks; reactor = thread_ctx; poller = calloc(1, sizeof(*poller)); if (poller == NULL) { SPDK_ERRLOG("Poller memory allocation failed\n"); return NULL; } poller->lcore = reactor->lcore; poller->state = SPDK_POLLER_STATE_WAITING; poller->fn = fn; poller->arg = arg; if (period_microseconds) { quotient = period_microseconds / SPDK_SEC_TO_USEC; remainder = period_microseconds % SPDK_SEC_TO_USEC; ticks = spdk_get_ticks_hz(); poller->period_ticks = ticks * quotient + (ticks * remainder) / SPDK_SEC_TO_USEC; } else { poller->period_ticks = 0; } if (poller->period_ticks) { _spdk_poller_insert_timer(reactor, poller, spdk_get_ticks()); } else { TAILQ_INSERT_TAIL(&reactor->active_pollers, poller, tailq); } return poller; } static void _spdk_reactor_stop_poller(struct spdk_poller *poller, void *thread_ctx) { struct spdk_reactor *reactor; reactor = thread_ctx; assert(poller->lcore == spdk_env_get_current_core()); if (poller->state == SPDK_POLLER_STATE_RUNNING) { /* * We are being called from the poller_fn, so set the state to unregistered * and let the reactor loop free the poller. */ poller->state = SPDK_POLLER_STATE_UNREGISTERED; } else { /* Poller is not running currently, so just free it. */ if (poller->period_ticks) { TAILQ_REMOVE(&reactor->timer_pollers, poller, tailq); } else { TAILQ_REMOVE(&reactor->active_pollers, poller, tailq); } free(poller); } } static int get_rusage(void *arg) { struct spdk_reactor *reactor = arg; struct rusage rusage; if (getrusage(RUSAGE_THREAD, &rusage) != 0) { return -1; } if (rusage.ru_nvcsw != reactor->rusage.ru_nvcsw || rusage.ru_nivcsw != reactor->rusage.ru_nivcsw) { SPDK_INFOLOG(SPDK_LOG_REACTOR, "Reactor %d: %ld voluntary context switches and %ld involuntary context switches in the last second.\n", reactor->lcore, rusage.ru_nvcsw - reactor->rusage.ru_nvcsw, rusage.ru_nivcsw - reactor->rusage.ru_nivcsw); } reactor->rusage = rusage; return -1; } static void _spdk_reactor_context_switch_monitor_start(void *arg1, void *arg2) { struct spdk_reactor *reactor = arg1; if (reactor->rusage_poller == NULL) { getrusage(RUSAGE_THREAD, &reactor->rusage); reactor->rusage_poller = spdk_poller_register(get_rusage, reactor, 1000000); } } static void _spdk_reactor_context_switch_monitor_stop(void *arg1, void *arg2) { struct spdk_reactor *reactor = arg1; if (reactor->rusage_poller != NULL) { spdk_poller_unregister(&reactor->rusage_poller); } } static size_t _spdk_reactor_get_max_event_cnt(uint8_t socket_count) { size_t cnt; /* Try to make event ring fill at most 2MB of memory, * as some ring implementations may require physical address * contingency. We don't want to introduce a requirement of * at least 2 physically contiguous 2MB hugepages. */ cnt = spdk_min(262144 / socket_count, 262144 / 2); /* Take into account one extra element required by * some ring implementations. */ cnt -= 1; return cnt; } void spdk_reactor_enable_context_switch_monitor(bool enable) { struct spdk_reactor *reactor; spdk_event_fn fn; uint32_t core; if (enable != g_context_switch_monitor_enabled) { g_context_switch_monitor_enabled = enable; if (enable) { fn = _spdk_reactor_context_switch_monitor_start; } else { fn = _spdk_reactor_context_switch_monitor_stop; } SPDK_ENV_FOREACH_CORE(core) { reactor = spdk_reactor_get(core); spdk_event_call(spdk_event_allocate(core, fn, reactor, NULL)); } } } bool spdk_reactor_context_switch_monitor_enabled(void) { return g_context_switch_monitor_enabled; } static void spdk_reactor_add_tsc_stats(void *arg, int rc, uint64_t now) { struct spdk_reactor *reactor = arg; struct spdk_reactor_tsc_stats *tsc_stats = &reactor->tsc_stats; if (rc == 0) { /* Poller status idle */ tsc_stats->idle_tsc += now - reactor->tsc_last; } else if (rc == 1) { /* Poller status busy */ tsc_stats->busy_tsc += now - reactor->tsc_last; } else { /* Poller status unknown */ tsc_stats->unknown_tsc += now - reactor->tsc_last; } reactor->tsc_last = now; } int spdk_reactor_get_tsc_stats(struct spdk_reactor_tsc_stats *tsc_stats, uint32_t core) { struct spdk_reactor *reactor; if (!spdk_cpuset_get_cpu(g_spdk_app_core_mask, core)) { return -1; } reactor = spdk_reactor_get(core); *tsc_stats = reactor->tsc_stats; return 0; } /** * * \brief This is the main function of the reactor thread. * * \code * * while (1) * if (events to run) * dequeue and run a batch of events * * if (active pollers) * run the first poller in the list and move it to the back * * if (first timer poller has expired) * run the first timer poller and reinsert it in the timer list * * if (idle for at least SPDK_REACTOR_SPIN_TIME_USEC) * sleep until next timer poller is scheduled to expire * \endcode * */ static int _spdk_reactor_run(void *arg) { struct spdk_reactor *reactor = arg; struct spdk_poller *poller; uint32_t event_count; uint64_t idle_started, now; uint64_t spin_cycles, sleep_cycles; uint32_t sleep_us; int rc = -1; char thread_name[32]; snprintf(thread_name, sizeof(thread_name), "reactor_%u", reactor->lcore); if (spdk_allocate_thread(_spdk_reactor_send_msg, _spdk_reactor_start_poller, _spdk_reactor_stop_poller, reactor, thread_name) == NULL) { return -1; } SPDK_NOTICELOG("Reactor started on core %u on socket %u\n", reactor->lcore, reactor->socket_id); spin_cycles = SPDK_REACTOR_SPIN_TIME_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; sleep_cycles = reactor->max_delay_us * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; idle_started = 0; if (g_context_switch_monitor_enabled) { _spdk_reactor_context_switch_monitor_start(reactor, NULL); } now = spdk_get_ticks(); reactor->tsc_last = now; while (1) { bool took_action = false; event_count = _spdk_event_queue_run_batch(reactor); if (event_count > 0) { rc = 1; now = spdk_get_ticks(); spdk_reactor_add_tsc_stats(reactor, rc, now); took_action = true; } poller = TAILQ_FIRST(&reactor->active_pollers); if (poller) { TAILQ_REMOVE(&reactor->active_pollers, poller, tailq); poller->state = SPDK_POLLER_STATE_RUNNING; rc = poller->fn(poller->arg); now = spdk_get_ticks(); spdk_reactor_add_tsc_stats(reactor, rc, now); if (poller->state == SPDK_POLLER_STATE_UNREGISTERED) { free(poller); } else { poller->state = SPDK_POLLER_STATE_WAITING; TAILQ_INSERT_TAIL(&reactor->active_pollers, poller, tailq); } took_action = true; } poller = TAILQ_FIRST(&reactor->timer_pollers); if (poller) { if (took_action == false) { now = spdk_get_ticks(); } if (now >= poller->next_run_tick) { uint64_t tmp_timer_tsc; TAILQ_REMOVE(&reactor->timer_pollers, poller, tailq); poller->state = SPDK_POLLER_STATE_RUNNING; rc = poller->fn(poller->arg); /* Save the tsc value from before poller->fn was executed. We want to * use the current time for idle/busy tsc value accounting, but want to * use the older time to reinsert to the timer poller below. */ tmp_timer_tsc = now; now = spdk_get_ticks(); spdk_reactor_add_tsc_stats(reactor, rc, now); if (poller->state == SPDK_POLLER_STATE_UNREGISTERED) { free(poller); } else { poller->state = SPDK_POLLER_STATE_WAITING; _spdk_poller_insert_timer(reactor, poller, tmp_timer_tsc); } took_action = true; } } if (took_action) { /* We were busy this loop iteration. Reset the idle timer. */ idle_started = 0; } else if (idle_started == 0) { /* We were previously busy, but this loop we took no actions. */ idle_started = spdk_get_ticks(); } /* Determine if the thread can sleep */ if (sleep_cycles && idle_started) { now = spdk_get_ticks(); if (now >= (idle_started + spin_cycles)) { sleep_us = reactor->max_delay_us; poller = TAILQ_FIRST(&reactor->timer_pollers); if (poller) { /* There are timers registered, so don't sleep beyond * when the next timer should fire */ if (poller->next_run_tick < (now + sleep_cycles)) { if (poller->next_run_tick <= now) { sleep_us = 0; } else { sleep_us = ((poller->next_run_tick - now) * SPDK_SEC_TO_USEC) / spdk_get_ticks_hz(); } } } if (sleep_us > 0) { usleep(sleep_us); } } } if (g_reactor_state != SPDK_REACTOR_STATE_RUNNING) { break; } } _spdk_reactor_context_switch_monitor_stop(reactor, NULL); spdk_free_thread(); return 0; } static void spdk_reactor_construct(struct spdk_reactor *reactor, uint32_t lcore, uint64_t max_delay_us) { reactor->lcore = lcore; reactor->socket_id = spdk_env_get_socket_id(lcore); assert(reactor->socket_id < SPDK_MAX_SOCKET); reactor->max_delay_us = max_delay_us; TAILQ_INIT(&reactor->active_pollers); TAILQ_INIT(&reactor->timer_pollers); reactor->events = spdk_ring_create(SPDK_RING_TYPE_MP_SC, 65536, reactor->socket_id); if (!reactor->events) { SPDK_NOTICELOG("Ring creation failed on preferred socket %d. Try other sockets.\n", reactor->socket_id); reactor->events = spdk_ring_create(SPDK_RING_TYPE_MP_SC, 65536, SPDK_ENV_SOCKET_ID_ANY); } assert(reactor->events != NULL); reactor->event_mempool = g_spdk_event_mempool[reactor->socket_id]; } int spdk_app_parse_core_mask(const char *mask, struct spdk_cpuset *cpumask) { int ret; struct spdk_cpuset *validmask; ret = spdk_cpuset_parse(cpumask, mask); if (ret < 0) { return ret; } validmask = spdk_app_get_core_mask(); spdk_cpuset_and(cpumask, validmask); return 0; } struct spdk_cpuset * spdk_app_get_core_mask(void) { return g_spdk_app_core_mask; } static uint64_t spdk_reactor_get_socket_mask(void) { uint32_t i; uint32_t socket_id; uint64_t socket_info = 0; SPDK_ENV_FOREACH_CORE(i) { socket_id = spdk_env_get_socket_id(i); socket_info |= (1ULL << socket_id); } return socket_info; } void spdk_reactors_start(void) { struct spdk_reactor *reactor; uint32_t i, current_core; int rc; g_reactor_state = SPDK_REACTOR_STATE_RUNNING; g_spdk_app_core_mask = spdk_cpuset_alloc(); current_core = spdk_env_get_current_core(); SPDK_ENV_FOREACH_CORE(i) { if (i != current_core) { reactor = spdk_reactor_get(i); rc = spdk_env_thread_launch_pinned(reactor->lcore, _spdk_reactor_run, reactor); if (rc < 0) { SPDK_ERRLOG("Unable to start reactor thread on core %u\n", reactor->lcore); assert(false); return; } } spdk_cpuset_set_cpu(g_spdk_app_core_mask, i, true); } /* Start the master reactor */ reactor = spdk_reactor_get(current_core); _spdk_reactor_run(reactor); spdk_env_thread_wait_all(); g_reactor_state = SPDK_REACTOR_STATE_SHUTDOWN; spdk_cpuset_free(g_spdk_app_core_mask); g_spdk_app_core_mask = NULL; } void spdk_reactors_stop(void *arg1, void *arg2) { g_reactor_state = SPDK_REACTOR_STATE_EXITING; } int spdk_reactors_init(unsigned int max_delay_us) { int rc; uint32_t i, j, last_core; struct spdk_reactor *reactor; uint64_t socket_mask = 0x0; uint8_t socket_count = 0; char mempool_name[32]; socket_mask = spdk_reactor_get_socket_mask(); SPDK_NOTICELOG("Occupied cpu socket mask is 0x%lx\n", socket_mask); for (i = 0; i < SPDK_MAX_SOCKET; i++) { if ((1ULL << i) & socket_mask) { socket_count++; } } if (socket_count == 0) { SPDK_ERRLOG("No sockets occupied (internal error)\n"); return -1; } for (i = 0; i < SPDK_MAX_SOCKET; i++) { if ((1ULL << i) & socket_mask) { snprintf(mempool_name, sizeof(mempool_name), "evtpool%d_%d", i, getpid()); g_spdk_event_mempool[i] = spdk_mempool_create(mempool_name, _spdk_reactor_get_max_event_cnt(socket_count), sizeof(struct spdk_event), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, i); if (g_spdk_event_mempool[i] == NULL) { SPDK_NOTICELOG("Event_mempool creation failed on preferred socket %d.\n", i); /* * Instead of failing the operation directly, try to create * the mempool on any available sockets in the case that * memory is not evenly installed on all sockets. If still * fails, free all allocated memory and exits. */ g_spdk_event_mempool[i] = spdk_mempool_create( mempool_name, _spdk_reactor_get_max_event_cnt(socket_count), sizeof(struct spdk_event), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (g_spdk_event_mempool[i] == NULL) { for (j = i - 1; j < i; j--) { if (g_spdk_event_mempool[j] != NULL) { spdk_mempool_free(g_spdk_event_mempool[j]); } } SPDK_ERRLOG("spdk_event_mempool creation failed\n"); return -1; } } } else { g_spdk_event_mempool[i] = NULL; } } /* struct spdk_reactor must be aligned on 64 byte boundary */ last_core = spdk_env_get_last_core(); rc = posix_memalign((void **)&g_reactors, 64, (last_core + 1) * sizeof(struct spdk_reactor)); if (rc != 0) { SPDK_ERRLOG("Could not allocate array size=%u for g_reactors\n", last_core + 1); for (i = 0; i < SPDK_MAX_SOCKET; i++) { if (g_spdk_event_mempool[i] != NULL) { spdk_mempool_free(g_spdk_event_mempool[i]); } } return -1; } memset(g_reactors, 0, (last_core + 1) * sizeof(struct spdk_reactor)); SPDK_ENV_FOREACH_CORE(i) { reactor = spdk_reactor_get(i); spdk_reactor_construct(reactor, i, max_delay_us); } g_reactor_state = SPDK_REACTOR_STATE_INITIALIZED; return 0; } void spdk_reactors_fini(void) { uint32_t i; struct spdk_reactor *reactor; SPDK_ENV_FOREACH_CORE(i) { reactor = spdk_reactor_get(i); if (spdk_likely(reactor != NULL) && reactor->events != NULL) { spdk_ring_free(reactor->events); } } for (i = 0; i < SPDK_MAX_SOCKET; i++) { if (g_spdk_event_mempool[i] != NULL) { spdk_mempool_free(g_spdk_event_mempool[i]); } } free(g_reactors); g_reactors = NULL; } SPDK_LOG_REGISTER_COMPONENT("reactor", SPDK_LOG_REACTOR)