/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "nvme_internal.h" #include "spdk/env.h" #include "spdk/string.h" static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr, struct nvme_async_event_request *aer); static int nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc) { return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), &cc->raw); } static int nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts) { return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw), &csts->raw); } int nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap) { return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw), &cap->raw); } static int nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs) { return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw), &vs->raw); } static int nvme_ctrlr_set_cc(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cc_register *cc) { return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), cc->raw); } void spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size) { char host_id_str[SPDK_UUID_STRING_LEN]; assert(opts); memset(opts, 0, opts_size); #define FIELD_OK(field) \ offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size if (FIELD_OK(num_io_queues)) { opts->num_io_queues = DEFAULT_MAX_IO_QUEUES; } if (FIELD_OK(use_cmb_sqs)) { opts->use_cmb_sqs = true; } if (FIELD_OK(arb_mechanism)) { opts->arb_mechanism = SPDK_NVME_CC_AMS_RR; } if (FIELD_OK(keep_alive_timeout_ms)) { opts->keep_alive_timeout_ms = 10 * 1000; } if (FIELD_OK(io_queue_size)) { opts->io_queue_size = DEFAULT_IO_QUEUE_SIZE; } if (FIELD_OK(io_queue_requests)) { opts->io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS; } if (FIELD_OK(host_id)) { memset(opts->host_id, 0, sizeof(opts->host_id)); } if (FIELD_OK(extended_host_id)) { memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id, sizeof(opts->extended_host_id)); } if (FIELD_OK(hostnqn)) { spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str), &g_spdk_nvme_driver->default_extended_host_id); snprintf(opts->hostnqn, sizeof(opts->hostnqn), "2014-08.org.nvmexpress:uuid:%s", host_id_str); } if (FIELD_OK(src_addr)) { memset(opts->src_addr, 0, sizeof(opts->src_addr)); } if (FIELD_OK(src_svcid)) { memset(opts->src_svcid, 0, sizeof(opts->src_svcid)); } #undef FIELD_OK } /** * This function will be called when the process allocates the IO qpair. * Note: the ctrlr_lock must be held when calling this function. */ static void nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_ctrlr_process *active_proc; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; pid_t pid = getpid(); TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == pid) { TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq); qpair->active_proc = active_proc; break; } } } /** * This function will be called when the process frees the IO qpair. * Note: the ctrlr_lock must be held when calling this function. */ static void nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_ctrlr_process *active_proc; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct spdk_nvme_qpair *active_qpair, *tmp_qpair; pid_t pid = getpid(); bool proc_found = false; TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == pid) { proc_found = true; break; } } if (proc_found == false) { return; } TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { if (active_qpair == qpair) { TAILQ_REMOVE(&active_proc->allocated_io_qpairs, active_qpair, per_process_tailq); break; } } } void spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_io_qpair_opts *opts, size_t opts_size) { assert(ctrlr); assert(opts); memset(opts, 0, opts_size); #define FIELD_OK(field) \ offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size if (FIELD_OK(qprio)) { opts->qprio = SPDK_NVME_QPRIO_URGENT; } if (FIELD_OK(io_queue_size)) { opts->io_queue_size = ctrlr->opts.io_queue_size; } if (FIELD_OK(io_queue_requests)) { opts->io_queue_requests = ctrlr->opts.io_queue_requests; } #undef FIELD_OK } struct spdk_nvme_qpair * spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_io_qpair_opts *user_opts, size_t opts_size) { uint32_t qid; struct spdk_nvme_qpair *qpair; union spdk_nvme_cc_register cc; struct spdk_nvme_io_qpair_opts opts; if (!ctrlr) { return NULL; } /* * Get the default options, then overwrite them with the user-provided options * up to opts_size. * * This allows for extensions of the opts structure without breaking * ABI compatibility. */ spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); if (user_opts) { memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size)); } if (nvme_ctrlr_get_cc(ctrlr, &cc)) { SPDK_ERRLOG("get_cc failed\n"); return NULL; } /* Only the low 2 bits (values 0, 1, 2, 3) of QPRIO are valid. */ if ((opts.qprio & 3) != opts.qprio) { return NULL; } /* * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the * default round robin arbitration method. */ if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts.qprio != SPDK_NVME_QPRIO_URGENT)) { SPDK_ERRLOG("invalid queue priority for default round robin arbitration method\n"); return NULL; } nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); /* * Get the first available I/O queue ID. */ qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1); if (qid > ctrlr->opts.num_io_queues) { SPDK_ERRLOG("No free I/O queue IDs\n"); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return NULL; } qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, &opts); if (qpair == NULL) { SPDK_ERRLOG("nvme_transport_ctrlr_create_io_qpair() failed\n"); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return NULL; } spdk_bit_array_clear(ctrlr->free_io_qids, qid); TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq); nvme_ctrlr_proc_add_io_qpair(qpair); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) { spdk_delay_us(100); } return qpair; } int spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_ctrlr *ctrlr; void *req_buf; if (qpair == NULL) { return 0; } ctrlr = qpair->ctrlr; if (qpair->in_completion_context) { /* * There are many cases where it is convenient to delete an io qpair in the context * of that qpair's completion routine. To handle this properly, set a flag here * so that the completion routine will perform an actual delete after the context * unwinds. */ qpair->delete_after_completion_context = 1; return 0; } nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); nvme_ctrlr_proc_remove_io_qpair(qpair); TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq); spdk_bit_array_set(ctrlr->free_io_qids, qpair->id); req_buf = qpair->req_buf; if (nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair)) { nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return -1; } spdk_dma_free(req_buf); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return 0; } static void nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_intel_log_page_directory *log_page_directory) { if (log_page_directory == NULL) { return; } if (ctrlr->cdata.vid != SPDK_PCI_VID_INTEL) { return; } ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true; if (log_page_directory->read_latency_log_len || (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) { ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true; } if (log_page_directory->write_latency_log_len || (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) { ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true; } if (log_page_directory->temperature_statistics_log_len) { ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true; } if (log_page_directory->smart_log_len) { ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true; } if (log_page_directory->marketing_description_log_len) { ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true; } } static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr) { uint64_t phys_addr = 0; struct nvme_completion_poll_status status; struct spdk_nvme_intel_log_page_directory *log_page_directory; log_page_directory = spdk_dma_zmalloc(sizeof(struct spdk_nvme_intel_log_page_directory), 64, &phys_addr); if (log_page_directory == NULL) { SPDK_ERRLOG("could not allocate log_page_directory\n"); return -ENXIO; } status.done = false; spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY, SPDK_NVME_GLOBAL_NS_TAG, log_page_directory, sizeof(struct spdk_nvme_intel_log_page_directory), 0, nvme_completion_poll_cb, &status); while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { spdk_dma_free(log_page_directory); SPDK_ERRLOG("nvme_ctrlr_cmd_get_log_page failed!\n"); return -ENXIO; } nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory); spdk_dma_free(log_page_directory); return 0; } static void nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr) { memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported)); /* Mandatory pages */ ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true; ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true; ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true; if (ctrlr->cdata.lpa.celp) { ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true; } if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) { nvme_ctrlr_set_intel_support_log_pages(ctrlr); } } static void nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr) { ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true; ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true; ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true; ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true; ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true; ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true; ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true; } static void nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr) { memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported)); /* Mandatory features */ ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true; ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true; /* Optional features */ if (ctrlr->cdata.vwc.present) { ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true; } if (ctrlr->cdata.apsta.supported) { ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true; } if (ctrlr->cdata.hmpre) { ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true; } if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) { nvme_ctrlr_set_intel_supported_features(ctrlr); } } void nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove) { /* * Set the flag here and leave the work failure of qpairs to * spdk_nvme_qpair_process_completions(). */ if (hot_remove) { ctrlr->is_removed = true; } ctrlr->is_failed = true; SPDK_ERRLOG("ctrlr %s in failed state.\n", ctrlr->trid.traddr); } static void nvme_ctrlr_shutdown(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_cc_register cc; union spdk_nvme_csts_register csts; uint32_t ms_waited = 0; uint32_t shutdown_timeout_ms; if (ctrlr->is_removed) { return; } if (nvme_ctrlr_get_cc(ctrlr, &cc)) { SPDK_ERRLOG("get_cc() failed\n"); return; } cc.bits.shn = SPDK_NVME_SHN_NORMAL; if (nvme_ctrlr_set_cc(ctrlr, &cc)) { SPDK_ERRLOG("set_cc() failed\n"); return; } /* * The NVMe specification defines RTD3E to be the time between * setting SHN = 1 until the controller will set SHST = 10b. * If the device doesn't report RTD3 entry latency, or if it * reports RTD3 entry latency less than 10 seconds, pick * 10 seconds as a reasonable amount of time to * wait before proceeding. */ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e); shutdown_timeout_ms = (ctrlr->cdata.rtd3e + 999) / 1000; shutdown_timeout_ms = spdk_max(shutdown_timeout_ms, 10000); SPDK_DEBUGLOG(SPDK_LOG_NVME, "shutdown timeout = %" PRIu32 " ms\n", shutdown_timeout_ms); do { if (nvme_ctrlr_get_csts(ctrlr, &csts)) { SPDK_ERRLOG("get_csts() failed\n"); return; } if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "shutdown complete in %u milliseconds\n", ms_waited); return; } nvme_delay(1000); ms_waited++; } while (ms_waited < shutdown_timeout_ms); SPDK_ERRLOG("did not shutdown within %u milliseconds\n", shutdown_timeout_ms); } static int nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_cc_register cc; int rc; rc = nvme_transport_ctrlr_enable(ctrlr); if (rc != 0) { SPDK_ERRLOG("transport ctrlr_enable failed\n"); return rc; } if (nvme_ctrlr_get_cc(ctrlr, &cc)) { SPDK_ERRLOG("get_cc() failed\n"); return -EIO; } if (cc.bits.en != 0) { SPDK_ERRLOG("%s called with CC.EN = 1\n", __func__); return -EINVAL; } cc.bits.en = 1; cc.bits.css = 0; cc.bits.shn = 0; cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ /* Page size is 2 ^ (12 + mps). */ cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12; switch (ctrlr->opts.arb_mechanism) { case SPDK_NVME_CC_AMS_RR: break; case SPDK_NVME_CC_AMS_WRR: if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) { break; } return -EINVAL; case SPDK_NVME_CC_AMS_VS: if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) { break; } return -EINVAL; default: return -EINVAL; } cc.bits.ams = ctrlr->opts.arb_mechanism; if (nvme_ctrlr_set_cc(ctrlr, &cc)) { SPDK_ERRLOG("set_cc() failed\n"); return -EIO; } return 0; } #ifdef DEBUG static const char * nvme_ctrlr_state_string(enum nvme_ctrlr_state state) { switch (state) { case NVME_CTRLR_STATE_INIT: return "init"; case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: return "disable and wait for CSTS.RDY = 1"; case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: return "disable and wait for CSTS.RDY = 0"; case NVME_CTRLR_STATE_ENABLE: return "enable controller by writing CC.EN = 1"; case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: return "wait for CSTS.RDY = 1"; case NVME_CTRLR_STATE_READY: return "ready"; } return "unknown"; }; #endif /* DEBUG */ static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, uint64_t timeout_in_ms) { ctrlr->state = state; if (timeout_in_ms == NVME_TIMEOUT_INFINITE) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "setting state to %s (no timeout)\n", nvme_ctrlr_state_string(ctrlr->state)); ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE; } else { SPDK_DEBUGLOG(SPDK_LOG_NVME, "setting state to %s (timeout %" PRIu64 " ms)\n", nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms); ctrlr->state_timeout_tsc = spdk_get_ticks() + (timeout_in_ms * spdk_get_ticks_hz()) / 1000; } } static void nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr) { if (ctrlr->shadow_doorbell) { spdk_dma_free(ctrlr->shadow_doorbell); ctrlr->shadow_doorbell = NULL; } if (ctrlr->eventidx) { spdk_dma_free(ctrlr->eventidx); ctrlr->eventidx = NULL; } } static int nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr) { int rc; struct nvme_completion_poll_status status; uint64_t prp1, prp2; if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { return 0; } /* only 1 page size for doorbell buffer */ ctrlr->shadow_doorbell = spdk_dma_zmalloc(ctrlr->page_size, ctrlr->page_size, &prp1); if (ctrlr->shadow_doorbell == NULL) { return -1; } ctrlr->eventidx = spdk_dma_zmalloc(ctrlr->page_size, ctrlr->page_size, &prp2); if (ctrlr->eventidx == NULL) { goto error; } status.done = false; rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2, nvme_completion_poll_cb, &status); if (rc != 0) { goto error; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { goto error; } SPDK_INFOLOG(SPDK_LOG_NVME, "NVMe controller: %s doorbell buffer config enabled\n", ctrlr->trid.traddr); return 0; error: nvme_ctrlr_free_doorbell_buffer(ctrlr); return -1; } int spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr) { int rc = 0; struct spdk_nvme_qpair *qpair; struct nvme_request *req, *tmp; nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); if (ctrlr->is_resetting || ctrlr->is_failed) { /* * Controller is already resetting or has failed. Return * immediately since there is no need to kick off another * reset in these cases. */ nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return 0; } ctrlr->is_resetting = true; SPDK_NOTICELOG("resetting controller\n"); /* Free all of the queued abort requests */ STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) { STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq); nvme_free_request(req); ctrlr->outstanding_aborts--; } /* Disable all queues before disabling the controller hardware. */ nvme_qpair_disable(ctrlr->adminq); TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { nvme_qpair_disable(qpair); } /* Doorbell buffer config is invalid during reset */ nvme_ctrlr_free_doorbell_buffer(ctrlr); /* Set the state back to INIT to cause a full hardware reset. */ nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); while (ctrlr->state != NVME_CTRLR_STATE_READY) { if (nvme_ctrlr_process_init(ctrlr) != 0) { SPDK_ERRLOG("%s: controller reinitialization failed\n", __func__); nvme_ctrlr_fail(ctrlr, false); rc = -1; break; } } if (!ctrlr->is_failed) { /* Reinitialize qpairs */ TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { if (nvme_transport_ctrlr_reinit_io_qpair(ctrlr, qpair) != 0) { nvme_ctrlr_fail(ctrlr, false); rc = -1; } } } ctrlr->is_resetting = false; nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return rc; } static int nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_completion_poll_status status; int rc; status.done = false; rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, &ctrlr->cdata, sizeof(ctrlr->cdata), nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_identify_controller failed!\n"); return -ENXIO; } /* * Use MDTS to ensure our default max_xfer_size doesn't exceed what the * controller supports. */ ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr); SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport max_xfer_size %u\n", ctrlr->max_xfer_size); if (ctrlr->cdata.mdts > 0) { ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size, ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); SPDK_DEBUGLOG(SPDK_LOG_NVME, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size); } return 0; } int nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_completion_poll_status status; int rc; uint32_t i; uint32_t num_pages; uint32_t next_nsid = 0; uint32_t *new_ns_list = NULL; /* * The allocated size must be a multiple of sizeof(struct spdk_nvme_ns_list) */ num_pages = (ctrlr->num_ns * sizeof(new_ns_list[0]) - 1) / sizeof(struct spdk_nvme_ns_list) + 1; new_ns_list = spdk_dma_zmalloc(num_pages * sizeof(struct spdk_nvme_ns_list), ctrlr->page_size, NULL); if (!new_ns_list) { SPDK_ERRLOG("Failed to allocate active_ns_list!\n"); return -ENOMEM; } status.done = false; if (SPDK_NVME_VERSION(ctrlr->cdata.ver.bits.mjr, ctrlr->cdata.ver.bits.mnr, ctrlr->cdata.ver.bits.ter) >= SPDK_NVME_VERSION(1, 1, 0)) { /* * Iterate through the pages and fetch each chunk of 1024 namespaces until * there are no more active namespaces */ for (i = 0; i < num_pages; i++) { status.done = false; rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, next_nsid, &new_ns_list[1024 * i], sizeof(struct spdk_nvme_ns_list), nvme_completion_poll_cb, &status); if (rc != 0) { goto fail; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_ctrlr_cmd_identify_active_ns_list failed!\n"); rc = -ENXIO; goto fail; } next_nsid = new_ns_list[1024 * i + 1023]; if (next_nsid == 0) { /* * No more active namespaces found, no need to fetch additional chunks */ break; } } } else { /* * Controller doesn't support active ns list CNS 0x02 so dummy up * an active ns list */ for (i = 0; i < ctrlr->num_ns; i++) { new_ns_list[i] = i + 1; } } /* * Now that that the list is properly setup, we can swap it in to the ctrlr and * free up the previous one. */ spdk_dma_free(ctrlr->active_ns_list); ctrlr->active_ns_list = new_ns_list; return 0; fail: spdk_dma_free(new_ns_list); return rc; } static int nvme_ctrlr_set_num_qpairs(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_completion_poll_status status; uint32_t cq_allocated, sq_allocated, min_allocated, i; int rc; status.done = false; if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) { SPDK_NOTICELOG("Limiting requested num_io_queues %u to max %d\n", ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES); ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES; } else if (ctrlr->opts.num_io_queues < 1) { SPDK_NOTICELOG("Requested num_io_queues 0, increasing to 1\n"); ctrlr->opts.num_io_queues = 1; } rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("Set Features - Number of Queues failed!\n"); } /* Obtain the number of queues allocated using Get Features. */ status.done = false; rc = nvme_ctrlr_cmd_get_num_queues(ctrlr, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("Get Features - Number of Queues failed!\n"); ctrlr->opts.num_io_queues = 0; } else { /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; cq_allocated = (status.cpl.cdw0 >> 16) + 1; /* * For 1:1 queue mapping, set number of allocated queues to be minimum of * submission and completion queues. */ min_allocated = spdk_min(sq_allocated, cq_allocated); /* Set number of queues to be minimum of requested and actually allocated. */ ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues); } ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1); if (ctrlr->free_io_qids == NULL) { return -ENOMEM; } /* Initialize list of free I/O queue IDs. QID 0 is the admin queue. */ spdk_bit_array_clear(ctrlr->free_io_qids, 0); for (i = 1; i <= ctrlr->opts.num_io_queues; i++) { spdk_bit_array_set(ctrlr->free_io_qids, i); } return 0; } static int nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_completion_poll_status status; uint32_t keep_alive_interval_ms; int rc; if (ctrlr->opts.keep_alive_timeout_ms == 0) { return 0; } if (ctrlr->cdata.kas == 0) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Controller KAS is 0 - not enabling Keep Alive\n"); ctrlr->opts.keep_alive_timeout_ms = 0; return 0; } /* Retrieve actual keep alive timeout, since the controller may have adjusted it. */ status.done = false; rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0, nvme_completion_poll_cb, &status); if (rc != 0) { SPDK_ERRLOG("Keep alive timeout Get Feature failed: %d\n", rc); ctrlr->opts.keep_alive_timeout_ms = 0; return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("Keep alive timeout Get Feature failed: SC %x SCT %x\n", status.cpl.status.sc, status.cpl.status.sct); ctrlr->opts.keep_alive_timeout_ms = 0; return -ENXIO; } if (ctrlr->opts.keep_alive_timeout_ms != status.cpl.cdw0) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Controller adjusted keep alive timeout to %u ms\n", status.cpl.cdw0); } ctrlr->opts.keep_alive_timeout_ms = status.cpl.cdw0; keep_alive_interval_ms = ctrlr->opts.keep_alive_timeout_ms / 2; if (keep_alive_interval_ms == 0) { keep_alive_interval_ms = 1; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "Sending keep alive every %u ms\n", keep_alive_interval_ms); ctrlr->keep_alive_interval_ticks = (keep_alive_interval_ms * spdk_get_ticks_hz()) / UINT64_C(1000); /* Schedule the first Keep Alive to be sent as soon as possible. */ ctrlr->next_keep_alive_tick = spdk_get_ticks(); return 0; } static int nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_completion_poll_status status; uint8_t *host_id; uint32_t host_id_size; int rc; if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { /* * NVMe-oF sends the host ID during Connect and doesn't allow * Set Features - Host Identifier after Connect, so we don't need to do anything here. */ SPDK_DEBUGLOG(SPDK_LOG_NVME, "NVMe-oF transport - not sending Set Features - Host ID\n"); return 0; } if (ctrlr->cdata.ctratt.host_id_exhid_supported) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Using 128-bit extended host identifier\n"); host_id = ctrlr->opts.extended_host_id; host_id_size = sizeof(ctrlr->opts.extended_host_id); } else { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Using 64-bit host identifier\n"); host_id = ctrlr->opts.host_id; host_id_size = sizeof(ctrlr->opts.host_id); } /* If the user specified an all-zeroes host identifier, don't send the command. */ if (spdk_mem_all_zero(host_id, host_id_size)) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "User did not specify host ID - not sending Set Features - Host ID\n"); return 0; } SPDK_TRACEDUMP(SPDK_LOG_NVME, "host_id", host_id, host_id_size); status.done = false; rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_completion_poll_cb, &status); if (rc != 0) { SPDK_ERRLOG("Set Features - Host ID failed: %d\n", rc); return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_WARNLOG("Set Features - Host ID failed: SC 0x%x SCT 0x%x\n", status.cpl.status.sc, status.cpl.status.sct); /* * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature * is optional. */ return 0; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "Set Features - Host ID was successful\n"); return 0; } static void nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr) { if (ctrlr->ns) { uint32_t i, num_ns = ctrlr->num_ns; for (i = 0; i < num_ns; i++) { nvme_ns_destruct(&ctrlr->ns[i]); } spdk_dma_free(ctrlr->ns); ctrlr->ns = NULL; ctrlr->num_ns = 0; } if (ctrlr->nsdata) { spdk_dma_free(ctrlr->nsdata); ctrlr->nsdata = NULL; } spdk_dma_free(ctrlr->active_ns_list); ctrlr->active_ns_list = NULL; } static int nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr) { uint32_t i, nn = ctrlr->cdata.nn; uint64_t phys_addr = 0; /* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset), * so check if we need to reallocate. */ if (nn != ctrlr->num_ns) { nvme_ctrlr_destruct_namespaces(ctrlr); if (nn == 0) { SPDK_WARNLOG("controller has 0 namespaces\n"); return 0; } ctrlr->ns = spdk_dma_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64, &phys_addr); if (ctrlr->ns == NULL) { goto fail; } ctrlr->nsdata = spdk_dma_zmalloc(nn * sizeof(struct spdk_nvme_ns_data), 64, &phys_addr); if (ctrlr->nsdata == NULL) { goto fail; } ctrlr->num_ns = nn; } if (nvme_ctrlr_identify_active_ns(ctrlr)) { goto fail; } for (i = 0; i < nn; i++) { struct spdk_nvme_ns *ns = &ctrlr->ns[i]; uint32_t nsid = i + 1; if (nvme_ns_construct(ns, nsid, ctrlr) != 0) { goto fail; } } return 0; fail: nvme_ctrlr_destruct_namespaces(ctrlr); return -1; } static void nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_async_event_request *aer = arg; struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr; if (cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) { /* * This is simulated when controller is being shut down, to * effectively abort outstanding asynchronous event requests * and make sure all memory is freed. Do not repost the * request in this case. */ return; } if (ctrlr->aer_cb_fn != NULL) { ctrlr->aer_cb_fn(ctrlr->aer_cb_arg, cpl); } /* * Repost another asynchronous event request to replace the one * that just completed. */ if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) { /* * We can't do anything to recover from a failure here, * so just print a warning message and leave the AER unsubmitted. */ SPDK_ERRLOG("resubmitting AER failed!\n"); } } static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr, struct nvme_async_event_request *aer) { struct nvme_request *req; aer->ctrlr = ctrlr; req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer); aer->req = req; if (req == NULL) { return -1; } req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_feat_async_event_configuration config; struct nvme_async_event_request *aer; uint32_t i; struct nvme_completion_poll_status status; int rc; status.done = false; config.raw = 0; config.bits.crit_warn.bits.available_spare = 1; config.bits.crit_warn.bits.temperature = 1; config.bits.crit_warn.bits.device_reliability = 1; config.bits.crit_warn.bits.read_only = 1; config.bits.crit_warn.bits.volatile_memory_backup = 1; config.bits.ns_attr_notice = 1; config.bits.fw_activation_notice = 1; config.bits.telemetry_log_notice = 1; rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_ctrlr_cmd_set_async_event_config failed!\n"); return 0; } /* aerl is a zero-based value, so we need to add 1 here. */ ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1)); for (i = 0; i < ctrlr->num_aers; i++) { aer = &ctrlr->aer[i]; if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) { SPDK_ERRLOG("nvme_ctrlr_construct_and_submit_aer failed!\n"); return -1; } } return 0; } /** * This function will be called when a process is using the controller. * 1. For the primary process, it is called when constructing the controller. * 2. For the secondary process, it is called at probing the controller. * Note: will check whether the process is already added for the same process. */ int nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle) { struct spdk_nvme_ctrlr_process *ctrlr_proc, *active_proc; pid_t pid = getpid(); /* Check whether the process is already added or not */ TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == pid) { return 0; } } /* Initialize the per process properties for this ctrlr */ ctrlr_proc = spdk_dma_zmalloc(sizeof(struct spdk_nvme_ctrlr_process), 64, NULL); if (ctrlr_proc == NULL) { SPDK_ERRLOG("failed to allocate memory to track the process props\n"); return -1; } ctrlr_proc->is_primary = spdk_process_is_primary(); ctrlr_proc->pid = pid; STAILQ_INIT(&ctrlr_proc->active_reqs); ctrlr_proc->devhandle = devhandle; ctrlr_proc->ref = 0; TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs); TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq); return 0; } /** * This function will be called when the process detaches the controller. * Note: the ctrlr_lock must be held when calling this function. */ static void nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ctrlr_process *proc) { struct spdk_nvme_qpair *qpair, *tmp_qpair; assert(STAILQ_EMPTY(&proc->active_reqs)); TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { spdk_nvme_ctrlr_free_io_qpair(qpair); } TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq); spdk_dma_free(proc); } /** * This function will be called when the process exited unexpectedly * in order to free any incomplete nvme request, allocated IO qpairs * and allocated memory. * Note: the ctrlr_lock must be held when calling this function. */ static void nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc) { struct nvme_request *req, *tmp_req; struct spdk_nvme_qpair *qpair, *tmp_qpair; STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); assert(req->pid == proc->pid); nvme_free_request(req); } TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq); /* * The process may have been killed while some qpairs were in their * completion context. Clear that flag here to allow these IO * qpairs to be deleted. */ qpair->in_completion_context = 0; qpair->no_deletion_notification_needed = 1; spdk_nvme_ctrlr_free_io_qpair(qpair); } spdk_dma_free(proc); } /** * This function will be called when destructing the controller. * 1. There is no more admin request on this controller. * 2. Clean up any left resource allocation when its associated process is gone. */ void nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_ctrlr_process *active_proc, *tmp; /* Free all the processes' properties and make sure no pending admin IOs */ TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq); assert(STAILQ_EMPTY(&active_proc->active_reqs)); spdk_dma_free(active_proc); } } /** * This function will be called when any other process attaches or * detaches the controller in order to cleanup those unexpectedly * terminated processes. * Note: the ctrlr_lock must be held when calling this function. */ static int nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_ctrlr_process *active_proc, *tmp; int active_proc_count = 0; TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) { SPDK_ERRLOG("process %d terminated unexpected\n", active_proc->pid); TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq); nvme_ctrlr_cleanup_process(active_proc); } else { active_proc_count++; } } return active_proc_count; } void nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_ctrlr_process *active_proc; pid_t pid = getpid(); nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); nvme_ctrlr_remove_inactive_proc(ctrlr); TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == pid) { active_proc->ref++; break; } } nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } void nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_ctrlr_process *active_proc, *tmp; pid_t pid = getpid(); int proc_count; nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr); TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { if (active_proc->pid == pid) { active_proc->ref--; assert(active_proc->ref >= 0); /* * The last active process will be removed at the end of * the destruction of the controller. */ if (active_proc->ref == 0 && proc_count != 1) { nvme_ctrlr_remove_process(ctrlr, active_proc); } break; } } nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } int nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_ctrlr_process *active_proc; int ref = 0; nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); nvme_ctrlr_remove_inactive_proc(ctrlr); TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { ref += active_proc->ref; } nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return ref; } /** * Get the PCI device handle which is only visible to its associated process. */ struct spdk_pci_device * nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_ctrlr_process *active_proc; pid_t pid = getpid(); struct spdk_pci_device *devhandle = NULL; nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == pid) { devhandle = active_proc->devhandle; break; } } nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return devhandle; } /** * This function will be called repeatedly during initialization until the controller is ready. */ int nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_cc_register cc; union spdk_nvme_csts_register csts; uint32_t ready_timeout_in_ms; int rc; /* * May need to avoid accessing any register on the target controller * for a while. Return early without touching the FSM. * Check sleep_timeout_tsc > 0 for unit test. */ if ((ctrlr->sleep_timeout_tsc > 0) && (spdk_get_ticks() <= ctrlr->sleep_timeout_tsc)) { return 0; } ctrlr->sleep_timeout_tsc = 0; if (nvme_ctrlr_get_cc(ctrlr, &cc) || nvme_ctrlr_get_csts(ctrlr, &csts)) { if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) { /* While a device is resetting, it may be unable to service MMIO reads * temporarily. Allow for this case. */ SPDK_ERRLOG("Get registers failed while waiting for CSTS.RDY == 0\n"); goto init_timeout; } SPDK_ERRLOG("Failed to read CC and CSTS in state %d\n", ctrlr->state); nvme_ctrlr_fail(ctrlr, false); return -EIO; } ready_timeout_in_ms = 500 * ctrlr->cap.bits.to; /* * Check if the current initialization step is done or has timed out. */ switch (ctrlr->state) { case NVME_CTRLR_STATE_INIT: /* Begin the hardware initialization by making sure the controller is disabled. */ if (cc.bits.en) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1\n"); /* * Controller is currently enabled. We need to disable it to cause a reset. * * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready. * Wait for the ready bit to be 1 before disabling the controller. */ if (csts.bits.rdy == 0) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n"); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); return 0; } /* CC.EN = 1 && CSTS.RDY == 1, so we can immediately disable the controller. */ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 0\n"); cc.bits.en = 0; if (nvme_ctrlr_set_cc(ctrlr, &cc)) { SPDK_ERRLOG("set_cc() failed\n"); nvme_ctrlr_fail(ctrlr, false); return -EIO; } nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); /* * Wait 2 secsonds before accessing PCI registers. * Not using sleep() to avoid blocking other controller's initialization. */ if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Applying quirk: delay 2 seconds before reading registers\n"); ctrlr->sleep_timeout_tsc = spdk_get_ticks() + 2 * spdk_get_ticks_hz(); } return 0; } else { if (csts.bits.rdy == 1) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 0 && CSTS.RDY = 1 - waiting for shutdown to complete\n"); } nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); return 0; } break; case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: if (csts.bits.rdy == 1) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 1 - disabling controller\n"); /* CC.EN = 1 && CSTS.RDY = 1, so we can set CC.EN = 0 now. */ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 0\n"); cc.bits.en = 0; if (nvme_ctrlr_set_cc(ctrlr, &cc)) { SPDK_ERRLOG("set_cc() failed\n"); nvme_ctrlr_fail(ctrlr, false); return -EIO; } nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); return 0; } break; case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: if (csts.bits.rdy == 0) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 0 && CSTS.RDY = 0\n"); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms); /* * Delay 100us before setting CC.EN = 1. Some NVMe SSDs miss CC.EN getting * set to 1 if it is too soon after CSTS.RDY is reported as 0. */ spdk_delay_us(100); return 0; } break; case NVME_CTRLR_STATE_ENABLE: SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 1\n"); rc = nvme_ctrlr_enable(ctrlr); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); return rc; case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: if (csts.bits.rdy == 1) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n"); /* * The controller has been enabled. * Perform the rest of initialization in nvme_ctrlr_start() serially. */ rc = nvme_ctrlr_start(ctrlr); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); return rc; } break; case NVME_CTRLR_STATE_READY: SPDK_DEBUGLOG(SPDK_LOG_NVME, "Ctrlr already in ready state\n"); return 0; default: assert(0); nvme_ctrlr_fail(ctrlr, false); return -1; } init_timeout: if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE && spdk_get_ticks() > ctrlr->state_timeout_tsc) { SPDK_ERRLOG("Initialization timed out in state %d\n", ctrlr->state); nvme_ctrlr_fail(ctrlr, false); return -1; } return 0; } int nvme_ctrlr_start(struct spdk_nvme_ctrlr *ctrlr) { nvme_transport_qpair_reset(ctrlr->adminq); nvme_qpair_enable(ctrlr->adminq); if (nvme_ctrlr_identify(ctrlr) != 0) { return -1; } if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { return -1; } if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { return -1; } if (nvme_ctrlr_configure_aer(ctrlr) != 0) { return -1; } nvme_ctrlr_set_supported_log_pages(ctrlr); nvme_ctrlr_set_supported_features(ctrlr); if (ctrlr->cdata.sgls.supported) { ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED; ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr); } if (ctrlr->cdata.oacs.doorbell_buffer_config) { if (nvme_ctrlr_set_doorbell_buffer_config(ctrlr)) { SPDK_WARNLOG("Doorbell buffer config failed\n"); } } if (nvme_ctrlr_set_keep_alive_timeout(ctrlr) != 0) { SPDK_ERRLOG("Setting keep alive timeout failed\n"); return -1; } if (nvme_ctrlr_set_host_id(ctrlr) != 0) { return -1; } return 0; } int nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx) { pthread_mutexattr_t attr; int rc = 0; if (pthread_mutexattr_init(&attr)) { return -1; } if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) || #ifndef __FreeBSD__ pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) || pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) || #endif pthread_mutex_init(mtx, &attr)) { rc = -1; } pthread_mutexattr_destroy(&attr); return rc; } int nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr) { int rc; nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); ctrlr->flags = 0; ctrlr->free_io_qids = NULL; ctrlr->is_resetting = false; ctrlr->is_failed = false; TAILQ_INIT(&ctrlr->active_io_qpairs); STAILQ_INIT(&ctrlr->queued_aborts); ctrlr->outstanding_aborts = 0; rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock); if (rc != 0) { return rc; } TAILQ_INIT(&ctrlr->active_procs); return rc; } /* This function should be called once at ctrlr initialization to set up constant properties. */ void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap) { ctrlr->cap = *cap; ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin); /* For now, always select page_size == min_page_size. */ ctrlr->page_size = ctrlr->min_page_size; ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES); ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u); ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size); } void nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr) { pthread_mutex_destroy(&ctrlr->ctrlr_lock); } void nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct spdk_nvme_qpair *qpair, *tmp; SPDK_DEBUGLOG(SPDK_LOG_NVME, "Prepare to destruct SSD: %s\n", ctrlr->trid.traddr); TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) { spdk_nvme_ctrlr_free_io_qpair(qpair); } nvme_ctrlr_free_doorbell_buffer(ctrlr); nvme_ctrlr_shutdown(ctrlr); nvme_ctrlr_destruct_namespaces(ctrlr); spdk_bit_array_free(&ctrlr->free_io_qids); nvme_transport_ctrlr_destruct(ctrlr); } int nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr, struct nvme_request *req) { return nvme_qpair_submit_request(ctrlr->adminq, req); } static void nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl) { /* Do nothing */ } /* * Check if we need to send a Keep Alive command. * Caller must hold ctrlr->ctrlr_lock. */ static void nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr) { uint64_t now; struct nvme_request *req; struct spdk_nvme_cmd *cmd; int rc; now = spdk_get_ticks(); if (now < ctrlr->next_keep_alive_tick) { return; } req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL); if (req == NULL) { return; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE; rc = nvme_ctrlr_submit_admin_request(ctrlr, req); if (rc != 0) { SPDK_ERRLOG("Submitting Keep Alive failed\n"); } ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks; } int32_t spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr) { int32_t num_completions; nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); if (ctrlr->keep_alive_interval_ticks) { nvme_ctrlr_keep_alive(ctrlr); } num_completions = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return num_completions; } const struct spdk_nvme_ctrlr_data * spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr) { return &ctrlr->cdata; } union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_csts_register csts; if (nvme_ctrlr_get_csts(ctrlr, &csts)) { csts.raw = 0xFFFFFFFFu; } return csts; } union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr) { return ctrlr->cap; } union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr) { union spdk_nvme_vs_register vs; if (nvme_ctrlr_get_vs(ctrlr, &vs)) { vs.raw = 0xFFFFFFFFu; } return vs; } uint32_t spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr) { return ctrlr->num_ns; } static int32_t spdk_nvme_ctrlr_active_ns_idx(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { int32_t result = -1; if (ctrlr->active_ns_list == NULL || nsid == 0 || nsid > ctrlr->num_ns) { return result; } int32_t lower = 0; int32_t upper = ctrlr->num_ns - 1; int32_t mid; while (lower <= upper) { mid = lower + (upper - lower) / 2; if (ctrlr->active_ns_list[mid] == nsid) { result = mid; break; } else { if (ctrlr->active_ns_list[mid] != 0 && ctrlr->active_ns_list[mid] < nsid) { lower = mid + 1; } else { upper = mid - 1; } } } return result; } bool spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { return spdk_nvme_ctrlr_active_ns_idx(ctrlr, nsid) != -1; } uint32_t spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr) { return ctrlr->active_ns_list ? ctrlr->active_ns_list[0] : 0; } uint32_t spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid) { int32_t nsid_idx = spdk_nvme_ctrlr_active_ns_idx(ctrlr, prev_nsid); if (ctrlr->active_ns_list && nsid_idx >= 0 && (uint32_t)nsid_idx < ctrlr->num_ns - 1) { return ctrlr->active_ns_list[nsid_idx + 1]; } return 0; } struct spdk_nvme_ns * spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { if (nsid < 1 || nsid > ctrlr->num_ns) { return NULL; } return &ctrlr->ns[nsid - 1]; } struct spdk_pci_device * spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr) { if (ctrlr == NULL) { return NULL; } if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { return NULL; } return nvme_ctrlr_proc_get_devhandle(ctrlr); } void spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr, spdk_nvme_aer_cb aer_cb_fn, void *aer_cb_arg) { ctrlr->aer_cb_fn = aer_cb_fn; ctrlr->aer_cb_arg = aer_cb_arg; } void spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr, uint32_t nvme_timeout, spdk_nvme_timeout_cb cb_fn, void *cb_arg) { struct spdk_nvme_ctrlr_process *active_proc = NULL; pid_t pid = getpid(); TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == pid) { break; } } assert(active_proc != NULL); active_proc->timeout_ticks = nvme_timeout * spdk_get_ticks_hz(); active_proc->timeout_cb_fn = cb_fn; active_proc->timeout_cb_arg = cb_arg; } bool spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page) { /* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */ SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch"); return ctrlr->log_page_supported[log_page]; } bool spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code) { /* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */ SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch"); return ctrlr->feature_supported[feature_code]; } int spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload) { struct nvme_completion_poll_status status; int res; status.done = false; res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload, nvme_completion_poll_cb, &status); if (res) { return res; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("spdk_nvme_ctrlr_attach_ns failed!\n"); return -ENXIO; } return spdk_nvme_ctrlr_reset(ctrlr); } int spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload) { struct nvme_completion_poll_status status; int res; status.done = false; res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload, nvme_completion_poll_cb, &status); if (res) { return res; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("spdk_nvme_ctrlr_detach_ns failed!\n"); return -ENXIO; } return spdk_nvme_ctrlr_reset(ctrlr); } uint32_t spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload) { struct nvme_completion_poll_status status; int res; status.done = false; res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, &status); if (res) { return 0; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("spdk_nvme_ctrlr_create_ns failed!\n"); return 0; } res = spdk_nvme_ctrlr_reset(ctrlr); if (res) { return 0; } /* Return the namespace ID that was created */ return status.cpl.cdw0; } int spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { struct nvme_completion_poll_status status; int res; status.done = false; res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, &status); if (res) { return res; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("spdk_nvme_ctrlr_delete_ns failed!\n"); return -ENXIO; } return spdk_nvme_ctrlr_reset(ctrlr); } int spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_format *format) { struct nvme_completion_poll_status status; int res; status.done = false; res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb, &status); if (res) { return res; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("spdk_nvme_ctrlr_format failed!\n"); return -ENXIO; } return spdk_nvme_ctrlr_reset(ctrlr); } int spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size, int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status) { struct spdk_nvme_fw_commit fw_commit; struct nvme_completion_poll_status status; int res; unsigned int size_remaining; unsigned int offset; unsigned int transfer; void *p; if (!completion_status) { return -EINVAL; } memset(completion_status, 0, sizeof(struct spdk_nvme_status)); if (size % 4) { SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid size!\n"); return -1; } /* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG */ if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) && (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) { SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid command!\n"); return -1; } /* Firmware download */ size_remaining = size; offset = 0; p = payload; while (size_remaining > 0) { transfer = spdk_min(size_remaining, ctrlr->min_page_size); status.done = false; res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p, nvme_completion_poll_cb, &status); if (res) { return res; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("spdk_nvme_ctrlr_fw_image_download failed!\n"); return -ENXIO; } p += transfer; offset += transfer; size_remaining -= transfer; } /* Firmware commit */ memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit)); fw_commit.fs = slot; fw_commit.ca = commit_action; status.done = false; res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb, &status); if (res) { return res; } while (status.done == false) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } memcpy(completion_status, &status.cpl.status, sizeof(struct spdk_nvme_status)); if (spdk_nvme_cpl_is_error(&status.cpl)) { if (status.cpl.status.sct != SPDK_NVME_SCT_COMMAND_SPECIFIC || status.cpl.status.sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) { if (status.cpl.status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC && status.cpl.status.sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) { SPDK_NOTICELOG("firmware activation requires conventional reset to be performed. !\n"); } else { SPDK_ERRLOG("nvme_ctrlr_cmd_fw_commit failed!\n"); } return -ENXIO; } } return spdk_nvme_ctrlr_reset(ctrlr); } void * spdk_nvme_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size) { void *buf; if (size == 0) { return NULL; } nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); buf = nvme_transport_ctrlr_alloc_cmb_io_buffer(ctrlr, size); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); return buf; } void spdk_nvme_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size) { if (buf && size) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); nvme_transport_ctrlr_free_cmb_io_buffer(ctrlr, buf, size); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } }