/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * NVMe/TCP transport */ #include "nvme_internal.h" #include "spdk/endian.h" #include "spdk/likely.h" #include "spdk/string.h" #include "spdk/stdinc.h" #include "spdk/crc32.h" #include "spdk/endian.h" #include "spdk/assert.h" #include "spdk/string.h" #include "spdk/thread.h" #include "spdk/trace.h" #include "spdk/util.h" #include "spdk_internal/nvme_tcp.h" #define NVME_TCP_RW_BUFFER_SIZE 131072 #define NVME_TCP_HPDA_DEFAULT 0 #define NVME_TCP_MAX_R2T_DEFAULT 1 #define NVME_TCP_PDU_H2C_MIN_DATA_SIZE 4096 #define NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE 8192 /* NVMe TCP transport extensions for spdk_nvme_ctrlr */ struct nvme_tcp_ctrlr { struct spdk_nvme_ctrlr ctrlr; }; /* NVMe TCP qpair extensions for spdk_nvme_qpair */ struct nvme_tcp_qpair { struct spdk_nvme_qpair qpair; struct spdk_sock *sock; TAILQ_HEAD(, nvme_tcp_req) free_reqs; TAILQ_HEAD(, nvme_tcp_req) outstanding_reqs; TAILQ_HEAD(, nvme_tcp_pdu) send_queue; struct nvme_tcp_pdu recv_pdu; struct nvme_tcp_pdu send_pdu; /* only for error pdu and init pdu */ enum nvme_tcp_pdu_recv_state recv_state; struct nvme_tcp_req *tcp_reqs; uint16_t num_entries; bool host_hdgst_enable; bool host_ddgst_enable; /** Specifies the maximum number of PDU-Data bytes per H2C Data Transfer PDU */ uint32_t maxh2cdata; uint32_t maxr2t; /* 0 based value, which is used to guide the padding */ uint8_t cpda; enum nvme_tcp_qpair_state state; }; enum nvme_tcp_req_state { NVME_TCP_REQ_FREE, NVME_TCP_REQ_ACTIVE, NVME_TCP_REQ_ACTIVE_R2T, }; struct nvme_tcp_req { struct nvme_request *req; enum nvme_tcp_req_state state; uint16_t cid; uint16_t ttag; uint32_t datao; uint32_t r2tl_remain; uint32_t active_r2ts; bool in_capsule_data; struct nvme_tcp_pdu send_pdu; struct iovec iov[NVME_TCP_MAX_SGL_DESCRIPTORS]; uint32_t iovcnt; TAILQ_ENTRY(nvme_tcp_req) link; }; static void spdk_nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req); static inline struct nvme_tcp_qpair * nvme_tcp_qpair(struct spdk_nvme_qpair *qpair) { assert(qpair->trtype == SPDK_NVME_TRANSPORT_TCP); return SPDK_CONTAINEROF(qpair, struct nvme_tcp_qpair, qpair); } static inline struct nvme_tcp_ctrlr * nvme_tcp_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP); return SPDK_CONTAINEROF(ctrlr, struct nvme_tcp_ctrlr, ctrlr); } static struct nvme_tcp_req * nvme_tcp_req_get(struct nvme_tcp_qpair *tqpair) { struct nvme_tcp_req *tcp_req; tcp_req = TAILQ_FIRST(&tqpair->free_reqs); if (!tcp_req) { return NULL; } assert(tcp_req->state == NVME_TCP_REQ_FREE); tcp_req->state = NVME_TCP_REQ_ACTIVE; TAILQ_REMOVE(&tqpair->free_reqs, tcp_req, link); tcp_req->datao = 0; tcp_req->req = NULL; tcp_req->in_capsule_data = false; tcp_req->r2tl_remain = 0; tcp_req->active_r2ts = 0; tcp_req->iovcnt = 0; memset(&tcp_req->send_pdu, 0, sizeof(tcp_req->send_pdu)); tcp_req->send_pdu.hdr = &tcp_req->send_pdu.hdr_mem; TAILQ_INSERT_TAIL(&tqpair->outstanding_reqs, tcp_req, link); return tcp_req; } static void nvme_tcp_req_put(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { assert(tcp_req->state != NVME_TCP_REQ_FREE); tcp_req->state = NVME_TCP_REQ_FREE; TAILQ_REMOVE(&tqpair->outstanding_reqs, tcp_req, link); TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link); } static int nvme_tcp_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) { struct addrinfo *res; struct addrinfo hints; int ret; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; ret = getaddrinfo(addr, service, &hints, &res); if (ret) { SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); return ret; } if (res->ai_addrlen > sizeof(*sa)) { SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); ret = EINVAL; } else { memcpy(sa, res->ai_addr, res->ai_addrlen); } freeaddrinfo(res); return ret; } static void nvme_tcp_free_reqs(struct nvme_tcp_qpair *tqpair) { free(tqpair->tcp_reqs); tqpair->tcp_reqs = NULL; } static int nvme_tcp_alloc_reqs(struct nvme_tcp_qpair *tqpair) { int i; struct nvme_tcp_req *tcp_req; tqpair->tcp_reqs = calloc(tqpair->num_entries, sizeof(struct nvme_tcp_req)); if (tqpair->tcp_reqs == NULL) { SPDK_ERRLOG("Failed to allocate tcp_reqs\n"); goto fail; } TAILQ_INIT(&tqpair->send_queue); TAILQ_INIT(&tqpair->free_reqs); TAILQ_INIT(&tqpair->outstanding_reqs); for (i = 0; i < tqpair->num_entries; i++) { tcp_req = &tqpair->tcp_reqs[i]; tcp_req->cid = i; TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link); } return 0; fail: nvme_tcp_free_reqs(tqpair); return -ENOMEM; } static void nvme_tcp_qpair_disconnect(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct nvme_tcp_pdu *pdu; spdk_sock_close(&tqpair->sock); /* clear the send_queue */ while (!TAILQ_EMPTY(&tqpair->send_queue)) { pdu = TAILQ_FIRST(&tqpair->send_queue); /* Remove the pdu from the send_queue to prevent the wrong sending out * in the next round connection */ TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq); } } static int nvme_tcp_qpair_destroy(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair; if (!qpair) { return -1; } nvme_tcp_qpair_disconnect(qpair); nvme_tcp_qpair_abort_reqs(qpair, 1); nvme_qpair_deinit(qpair); tqpair = nvme_tcp_qpair(qpair); nvme_tcp_free_reqs(tqpair); free(tqpair); return 0; } int nvme_tcp_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { return 0; } /* This function must only be called while holding g_spdk_nvme_driver->lock */ int nvme_tcp_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect) { struct spdk_nvme_ctrlr_opts discovery_opts; struct spdk_nvme_ctrlr *discovery_ctrlr; union spdk_nvme_cc_register cc; int rc; struct nvme_completion_poll_status status; if (strcmp(probe_ctx->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) { /* Not a discovery controller - connect directly. */ rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL); return rc; } spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts)); /* For discovery_ctrlr set the timeout to 0 */ discovery_opts.keep_alive_timeout_ms = 0; discovery_ctrlr = nvme_tcp_ctrlr_construct(&probe_ctx->trid, &discovery_opts, NULL); if (discovery_ctrlr == NULL) { return -1; } /* TODO: this should be using the normal NVMe controller initialization process */ cc.raw = 0; cc.bits.en = 1; cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), cc.raw); if (rc < 0) { SPDK_ERRLOG("Failed to set cc\n"); nvme_ctrlr_destruct(discovery_ctrlr); return -1; } /* get the cdata info */ status.done = false; rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, &discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata), nvme_completion_poll_cb, &status); if (rc != 0) { SPDK_ERRLOG("Failed to identify cdata\n"); return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(discovery_ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_identify_controller failed!\n"); return -ENXIO; } /* Direct attach through spdk_nvme_connect() API */ if (direct_connect == true) { /* Set the ready state to skip the normal init process */ discovery_ctrlr->state = NVME_CTRLR_STATE_READY; nvme_ctrlr_connected(probe_ctx, discovery_ctrlr); nvme_ctrlr_add_process(discovery_ctrlr, 0); return 0; } rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, probe_ctx); nvme_ctrlr_destruct(discovery_ctrlr); SPDK_DEBUGLOG(SPDK_LOG_NVME, "leave\n"); return rc; } int nvme_tcp_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_tcp_ctrlr *tctrlr = nvme_tcp_ctrlr(ctrlr); if (ctrlr->adminq) { nvme_tcp_qpair_destroy(ctrlr->adminq); } nvme_ctrlr_destruct_finish(ctrlr); free(tctrlr); return 0; } int nvme_tcp_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value); } int nvme_tcp_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value); } int nvme_tcp_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value); } int nvme_tcp_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value); } static int nvme_tcp_qpair_process_send_queue(struct nvme_tcp_qpair *tqpair) { const int array_size = 32; struct iovec iovs[array_size]; int iovcnt = 0; int bytes = 0; uint32_t mapped_length; struct nvme_tcp_pdu *pdu; int pdu_length; TAILQ_HEAD(, nvme_tcp_pdu) completed_pdus_list; pdu = TAILQ_FIRST(&tqpair->send_queue); if (pdu == NULL) { return 0; } /* * Build up a list of iovecs for the first few PDUs in the * tqpair 's send_queue. */ while (pdu != NULL && ((array_size - iovcnt) >= (2 + (int)pdu->data_iovcnt))) { iovcnt += nvme_tcp_build_iovs(&iovs[iovcnt], array_size - iovcnt, pdu, tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length); pdu = TAILQ_NEXT(pdu, tailq); } bytes = spdk_sock_writev(tqpair->sock, iovs, iovcnt); SPDK_DEBUGLOG(SPDK_LOG_NVME, "bytes=%d are out\n", bytes); if (bytes == -1) { if (errno == EWOULDBLOCK || errno == EAGAIN) { return 1; } else { SPDK_ERRLOG("spdk_sock_writev() failed, errno %d: %s\n", errno, spdk_strerror(errno)); return -errno; } } pdu = TAILQ_FIRST(&tqpair->send_queue); /* * Free any PDUs that were fully written. If a PDU was only * partially written, update its writev_offset so that next * time only the unwritten portion will be sent to writev(). */ TAILQ_INIT(&completed_pdus_list); while (bytes > 0) { pdu_length = pdu->hdr->common.plen - pdu->writev_offset; assert(pdu_length > 0); if (bytes >= pdu_length) { bytes -= pdu_length; TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq); TAILQ_INSERT_TAIL(&completed_pdus_list, pdu, tailq); pdu = TAILQ_FIRST(&tqpair->send_queue); } else { pdu->writev_offset += bytes; bytes = 0; } } while (!TAILQ_EMPTY(&completed_pdus_list)) { pdu = TAILQ_FIRST(&completed_pdus_list); TAILQ_REMOVE(&completed_pdus_list, pdu, tailq); assert(pdu->cb_fn != NULL); pdu->cb_fn(pdu->cb_arg); } return TAILQ_EMPTY(&tqpair->send_queue) ? 0 : 1; } static int nvme_tcp_qpair_write_pdu(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, nvme_tcp_qpair_xfer_complete_cb cb_fn, void *cb_arg) { int enable_digest; int hlen; uint32_t crc32c; hlen = pdu->hdr->common.hlen; enable_digest = 1; if (pdu->hdr->common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ || pdu->hdr->common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) { /* this PDU should be sent without digest */ enable_digest = 0; } /* Header Digest */ if (enable_digest && tqpair->host_hdgst_enable) { crc32c = nvme_tcp_pdu_calc_header_digest(pdu); MAKE_DIGEST_WORD((uint8_t *)pdu->hdr->raw + hlen, crc32c); } /* Data Digest */ if (pdu->data_len > 0 && enable_digest && tqpair->host_ddgst_enable) { crc32c = nvme_tcp_pdu_calc_data_digest(pdu); MAKE_DIGEST_WORD(pdu->data_digest, crc32c); } pdu->cb_fn = cb_fn; pdu->cb_arg = cb_arg; TAILQ_INSERT_TAIL(&tqpair->send_queue, pdu, tailq); return 0; } /* * Build SGL describing contiguous payload buffer. */ static int nvme_tcp_build_contig_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { struct nvme_request *req = tcp_req->req; tcp_req->iov[0].iov_base = req->payload.contig_or_cb_arg + req->payload_offset; tcp_req->iov[0].iov_len = req->payload_size; tcp_req->iovcnt = 1; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); return 0; } /* * Build SGL describing scattered payload buffer. */ static int nvme_tcp_build_sgl_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { int rc, iovcnt; uint32_t length; uint64_t remaining_size; struct nvme_request *req = tcp_req->req; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.reset_sgl_fn != NULL); assert(req->payload.next_sge_fn != NULL); req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); remaining_size = req->payload_size; iovcnt = 0; do { rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &tcp_req->iov[iovcnt].iov_base, &length); if (rc) { return -1; } length = spdk_min(length, remaining_size); tcp_req->iov[iovcnt].iov_len = length; remaining_size -= length; iovcnt++; } while (remaining_size > 0 && iovcnt < NVME_TCP_MAX_SGL_DESCRIPTORS); /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ if (remaining_size > 0) { return -1; } tcp_req->iovcnt = iovcnt; return 0; } static inline uint32_t nvme_tcp_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr) { return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd)); } static int nvme_tcp_req_init(struct nvme_tcp_qpair *tqpair, struct nvme_request *req, struct nvme_tcp_req *tcp_req) { struct spdk_nvme_ctrlr *ctrlr = tqpair->qpair.ctrlr; int rc = 0; enum spdk_nvme_data_transfer xfer; uint32_t max_incapsule_data_size; tcp_req->req = req; req->cmd.cid = tcp_req->cid; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_TRANSPORT; req->cmd.dptr.sgl1.unkeyed.length = req->payload_size; if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) { rc = nvme_tcp_build_contig_request(tqpair, tcp_req); } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) { rc = nvme_tcp_build_sgl_request(tqpair, tcp_req); } else { rc = -1; } if (rc) { return rc; } if (req->cmd.opc == SPDK_NVME_OPC_FABRIC) { struct spdk_nvmf_capsule_cmd *nvmf_cmd = (struct spdk_nvmf_capsule_cmd *)&req->cmd; xfer = spdk_nvme_opc_get_data_transfer(nvmf_cmd->fctype); } else { xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc); } if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { max_incapsule_data_size = nvme_tcp_icdsz_bytes(ctrlr); if ((req->cmd.opc == SPDK_NVME_OPC_FABRIC) || nvme_qpair_is_admin_queue(&tqpair->qpair)) { max_incapsule_data_size = spdk_min(max_incapsule_data_size, NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE); } if (req->payload_size <= max_incapsule_data_size) { req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.address = 0; tcp_req->in_capsule_data = true; } } return 0; } static void nvme_tcp_qpair_cmd_send_complete(void *cb_arg) { } static int nvme_tcp_qpair_capsule_cmd_send(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { struct nvme_tcp_pdu *pdu; struct spdk_nvme_tcp_cmd *capsule_cmd; uint32_t plen = 0, alignment; uint8_t pdo; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); pdu = &tcp_req->send_pdu; capsule_cmd = &pdu->hdr->capsule_cmd; capsule_cmd->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD; plen = capsule_cmd->common.hlen = sizeof(*capsule_cmd); capsule_cmd->ccsqe = tcp_req->req->cmd; SPDK_DEBUGLOG(SPDK_LOG_NVME, "capsule_cmd cid=%u on tqpair(%p)\n", tcp_req->req->cmd.cid, tqpair); if (tqpair->host_hdgst_enable) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Header digest is enabled for capsule command on tcp_req=%p\n", tcp_req); capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } if ((tcp_req->req->payload_size == 0) || !tcp_req->in_capsule_data) { goto end; } pdo = plen; pdu->padding_len = 0; if (tqpair->cpda) { alignment = (tqpair->cpda + 1) << 2; if (alignment > plen) { pdu->padding_len = alignment - plen; pdo = alignment; plen = alignment; } } capsule_cmd->common.pdo = pdo; plen += tcp_req->req->payload_size; if (tqpair->host_ddgst_enable) { capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } tcp_req->datao = 0; nvme_tcp_pdu_set_data_buf(pdu, tcp_req->iov, tcp_req->iovcnt, 0, tcp_req->req->payload_size); end: capsule_cmd->common.plen = plen; return nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_qpair_cmd_send_complete, NULL); } int nvme_tcp_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { struct nvme_tcp_qpair *tqpair; struct nvme_tcp_req *tcp_req; tqpair = nvme_tcp_qpair(qpair); assert(tqpair != NULL); assert(req != NULL); tcp_req = nvme_tcp_req_get(tqpair); if (!tcp_req) { /* * No tcp_req is available, so queue the request to be * processed later. */ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); return 0; } if (nvme_tcp_req_init(tqpair, req, tcp_req)) { SPDK_ERRLOG("nvme_tcp_req_init() failed\n"); nvme_tcp_req_put(tqpair, tcp_req); return -1; } return nvme_tcp_qpair_capsule_cmd_send(tqpair, tcp_req); } int nvme_tcp_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return nvme_tcp_qpair_destroy(qpair); } int nvme_tcp_qpair_reset(struct spdk_nvme_qpair *qpair) { return 0; } static void nvme_tcp_req_complete(struct nvme_request *req, struct spdk_nvme_cpl *rsp) { nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp); nvme_free_request(req); } void nvme_tcp_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { struct nvme_tcp_req *tcp_req, *tmp; struct nvme_request *req; struct spdk_nvme_cpl cpl; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.dnr = dnr; TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { assert(tcp_req->req != NULL); req = tcp_req->req; nvme_tcp_req_complete(req, &cpl); nvme_tcp_req_put(tqpair, tcp_req); } } static void nvme_tcp_qpair_set_recv_state(struct nvme_tcp_qpair *tqpair, enum nvme_tcp_pdu_recv_state state) { if (tqpair->recv_state == state) { SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n", tqpair, state); return; } tqpair->recv_state = state; switch (state) { case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: case NVME_TCP_PDU_RECV_STATE_ERROR: memset(&tqpair->recv_pdu, 0, sizeof(struct nvme_tcp_pdu)); tqpair->recv_pdu.hdr = &tqpair->recv_pdu.hdr_mem; break; case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: default: break; } } static void nvme_tcp_qpair_send_h2c_term_req_complete(void *cb_arg) { struct nvme_tcp_qpair *tqpair = cb_arg; tqpair->state = NVME_TCP_QPAIR_STATE_EXITING; } static void nvme_tcp_qpair_send_h2c_term_req(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset) { struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_term_req_hdr *h2c_term_req; uint32_t h2c_term_req_hdr_len = sizeof(*h2c_term_req); uint8_t copy_len; rsp_pdu = &tqpair->send_pdu; memset(rsp_pdu, 0, sizeof(*rsp_pdu)); rsp_pdu->hdr = &rsp_pdu->hdr_mem; h2c_term_req = &rsp_pdu->hdr->term_req; h2c_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ; h2c_term_req->common.hlen = h2c_term_req_hdr_len; if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { DSET32(&h2c_term_req->fei, error_offset); } copy_len = pdu->hdr->common.hlen; if (copy_len > SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE) { copy_len = SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE; } /* Copy the error info into the buffer */ memcpy((uint8_t *)rsp_pdu->hdr->raw + h2c_term_req_hdr_len, pdu->hdr->raw, copy_len); nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr->raw + h2c_term_req_hdr_len, copy_len); /* Contain the header len of the wrong received pdu */ h2c_term_req->common.plen = h2c_term_req->common.hlen + copy_len; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_send_h2c_term_req_complete, NULL); } static void nvme_tcp_pdu_ch_handle(struct nvme_tcp_qpair *tqpair) { struct nvme_tcp_pdu *pdu; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; uint32_t expected_hlen, hd_len = 0; bool plen_error = false; pdu = &tqpair->recv_pdu; SPDK_DEBUGLOG(SPDK_LOG_NVME, "pdu type = %d\n", pdu->hdr->common.pdu_type); if (pdu->hdr->common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP) { if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) { SPDK_ERRLOG("Already received IC_RESP PDU, and we should reject this pdu=%p\n", pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; goto err; } expected_hlen = sizeof(struct spdk_nvme_tcp_ic_resp); if (pdu->hdr->common.plen != expected_hlen) { plen_error = true; } } else { if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) { SPDK_ERRLOG("The TCP/IP tqpair connection is not negotitated\n"); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; goto err; } switch (pdu->hdr->common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP: expected_hlen = sizeof(struct spdk_nvme_tcp_rsp); if (pdu->hdr->common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) { hd_len = SPDK_NVME_TCP_DIGEST_LEN; } if (pdu->hdr->common.plen != (expected_hlen + hd_len)) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: expected_hlen = sizeof(struct spdk_nvme_tcp_c2h_data_hdr); if (pdu->hdr->common.plen < pdu->hdr->common.pdo) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr); if ((pdu->hdr->common.plen <= expected_hlen) || (pdu->hdr->common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_R2T: expected_hlen = sizeof(struct spdk_nvme_tcp_r2t_hdr); if (pdu->hdr->common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) { hd_len = SPDK_NVME_TCP_DIGEST_LEN; } if (pdu->hdr->common.plen != (expected_hlen + hd_len)) { plen_error = true; } break; default: SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu.hdr->common.pdu_type); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type); goto err; } } if (pdu->hdr->common.hlen != expected_hlen) { SPDK_ERRLOG("Expected PDU header length %u, got %u\n", expected_hlen, pdu->hdr->common.hlen); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen); goto err; } else if (plen_error) { fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen); goto err; } else { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); nvme_tcp_pdu_calc_psh_len(&tqpair->recv_pdu, tqpair->host_hdgst_enable); return; } err: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static struct nvme_tcp_req * get_nvme_active_req_by_cid(struct nvme_tcp_qpair *tqpair, uint32_t cid) { assert(tqpair != NULL); if ((cid >= tqpair->num_entries) || (tqpair->tcp_reqs[cid].state == NVME_TCP_REQ_FREE)) { return NULL; } return &tqpair->tcp_reqs[cid]; } static void nvme_tcp_free_and_handle_queued_req(struct spdk_nvme_qpair *qpair) { struct nvme_request *req; if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); nvme_qpair_submit_request(qpair, req); } } static void nvme_tcp_c2h_data_payload_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, uint32_t *reaped) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_c2h_data_hdr *c2h_data; struct spdk_nvme_cpl cpl = {}; uint8_t flags; tcp_req = pdu->ctx; assert(tcp_req != NULL); SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); c2h_data = &pdu->hdr->c2h_data; tcp_req->datao += pdu->data_len; flags = c2h_data->common.flags; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) { if (tcp_req->datao == tcp_req->req->payload_size) { cpl.status.p = 0; } else { cpl.status.p = 1; } cpl.cid = tcp_req->cid; cpl.sqid = tqpair->qpair.id; nvme_tcp_req_complete(tcp_req->req, &cpl); nvme_tcp_req_put(tqpair, tcp_req); (*reaped)++; nvme_tcp_free_and_handle_queued_req(&tqpair->qpair); } } static const char *spdk_nvme_tcp_term_req_fes_str[] = { "Invalid PDU Header Field", "PDU Sequence Error", "Header Digest Error", "Data Transfer Out of Range", "Data Transfer Limit Exceeded", "Unsupported parameter", }; static void nvme_tcp_c2h_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *c2h_term_req) { SPDK_ERRLOG("Error info of pdu(%p): %s\n", c2h_term_req, spdk_nvme_tcp_term_req_fes_str[c2h_term_req->fes]); if ((c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || (c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "The offset from the start of the PDU header is %u\n", DGET32(c2h_term_req->fei)); } /* we may also need to dump some other info here */ } static void nvme_tcp_c2h_term_req_payload_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { nvme_tcp_c2h_term_req_dump(&pdu->hdr->term_req); nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); } static void nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { int rc = 0; struct nvme_tcp_pdu *pdu; uint32_t crc32c, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); pdu = &tqpair->recv_pdu; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); /* check data digest if need */ if (pdu->ddgst_enable) { crc32c = nvme_tcp_pdu_calc_data_digest(pdu); rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c); if (rc == 0) { SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR; nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } } switch (pdu->hdr->common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: nvme_tcp_c2h_data_payload_handle(tqpair, pdu, reaped); break; case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: nvme_tcp_c2h_term_req_payload_handle(tqpair, pdu); break; default: /* The code should not go to here */ SPDK_ERRLOG("The code should not go to here\n"); break; } } static void nvme_tcp_send_icreq_complete(void *cb_arg) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Complete the icreq send for tqpair=%p\n", (struct nvme_tcp_qpair *)cb_arg); } static void nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_ic_resp *ic_resp = &pdu->hdr->ic_resp; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; /* Only PFV 0 is defined currently */ if (ic_resp->pfv != 0) { SPDK_ERRLOG("Expected ICResp PFV %u, got %u\n", 0u, ic_resp->pfv); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, pfv); goto end; } if (ic_resp->maxh2cdata < NVME_TCP_PDU_H2C_MIN_DATA_SIZE) { SPDK_ERRLOG("Expected ICResp maxh2cdata >=%u, got %u\n", NVME_TCP_PDU_H2C_MIN_DATA_SIZE, ic_resp->maxh2cdata); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, maxh2cdata); goto end; } tqpair->maxh2cdata = ic_resp->maxh2cdata; if (ic_resp->cpda > SPDK_NVME_TCP_CPDA_MAX) { SPDK_ERRLOG("Expected ICResp cpda <=%u, got %u\n", SPDK_NVME_TCP_CPDA_MAX, ic_resp->cpda); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, cpda); goto end; } tqpair->cpda = ic_resp->cpda; tqpair->host_hdgst_enable = ic_resp->dgst.bits.hdgst_enable ? true : false; tqpair->host_ddgst_enable = ic_resp->dgst.bits.ddgst_enable ? true : false; SPDK_DEBUGLOG(SPDK_LOG_NVME, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable); SPDK_DEBUGLOG(SPDK_LOG_NVME, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable); tqpair->state = NVME_TCP_QPAIR_STATE_RUNNING; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } static void nvme_tcp_capsule_resp_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, uint32_t *reaped) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_rsp *capsule_resp = &pdu->hdr->capsule_resp; uint32_t cid, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; struct spdk_nvme_cpl cpl; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); cpl = capsule_resp->rccqe; cid = cpl.cid; /* Recv the pdu again */ nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); tcp_req = get_nvme_active_req_by_cid(tqpair, cid); if (!tcp_req) { SPDK_ERRLOG("no tcp_req is found with cid=%u for tqpair=%p\n", cid, tqpair); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_rsp, rccqe); goto end; } assert(tcp_req->req != NULL); assert(tcp_req->state == NVME_TCP_REQ_ACTIVE); nvme_tcp_req_complete(tcp_req->req, &cpl); nvme_tcp_req_put(tqpair, tcp_req); (*reaped)++; nvme_tcp_free_and_handle_queued_req(&tqpair->qpair); SPDK_DEBUGLOG(SPDK_LOG_NVME, "complete tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } static void nvme_tcp_c2h_term_req_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_term_req_hdr *c2h_term_req = &pdu->hdr->term_req; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; if (c2h_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) { SPDK_ERRLOG("Fatal Error Stauts(FES) is unknown for c2h_term_req pdu=%p\n", pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes); goto end; } /* set the data buffer */ nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr->raw + c2h_term_req->common.hlen, c2h_term_req->common.plen - c2h_term_req->common.hlen); nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } static void nvme_tcp_c2h_data_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_c2h_data_hdr *c2h_data = &pdu->hdr->c2h_data; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); SPDK_DEBUGLOG(SPDK_LOG_NVME, "c2h_data info on tqpair(%p): datao=%u, datal=%u, cccid=%d\n", tqpair, c2h_data->datao, c2h_data->datal, c2h_data->cccid); tcp_req = get_nvme_active_req_by_cid(tqpair, c2h_data->cccid); if (!tcp_req) { SPDK_ERRLOG("no tcp_req found for c2hdata cid=%d\n", c2h_data->cccid); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, cccid); goto end; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "tcp_req(%p) on tqpair(%p): datao=%u, payload_size=%u\n", tcp_req, tqpair, tcp_req->datao, tcp_req->req->payload_size); if (c2h_data->datal > tcp_req->req->payload_size) { SPDK_ERRLOG("Invalid datal for tcp_req(%p), datal(%u) exceeds payload_size(%u)\n", tcp_req, c2h_data->datal, tcp_req->req->payload_size); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; goto end; } if (tcp_req->datao != c2h_data->datao) { SPDK_ERRLOG("Invalid datao for tcp_req(%p), received datal(%u) != datao(%u) in tcp_req\n", tcp_req, c2h_data->datao, tcp_req->datao); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datao); goto end; } if ((c2h_data->datao + c2h_data->datal) > tcp_req->req->payload_size) { SPDK_ERRLOG("Invalid data range for tcp_req(%p), received (datao(%u) + datal(%u)) > datao(%u) in tcp_req\n", tcp_req, c2h_data->datao, c2h_data->datal, tcp_req->req->payload_size); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datal); goto end; } nvme_tcp_pdu_set_data_buf(pdu, tcp_req->iov, tcp_req->iovcnt, c2h_data->datao, c2h_data->datal); pdu->ctx = tcp_req; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } static void nvme_tcp_qpair_h2c_data_send_complete(void *cb_arg) { struct nvme_tcp_req *tcp_req = cb_arg; assert(tcp_req != NULL); if (tcp_req->r2tl_remain) { spdk_nvme_tcp_send_h2c_data(tcp_req); } else { assert(tcp_req->active_r2ts > 0); tcp_req->active_r2ts--; tcp_req->state = NVME_TCP_REQ_ACTIVE; } } static void spdk_nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(tcp_req->req->qpair); struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_h2c_data_hdr *h2c_data; uint32_t plen, pdo, alignment; rsp_pdu = &tcp_req->send_pdu; memset(rsp_pdu, 0, sizeof(*rsp_pdu)); rsp_pdu->hdr = &rsp_pdu->hdr_mem; h2c_data = &rsp_pdu->hdr->h2c_data; h2c_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_DATA; plen = h2c_data->common.hlen = sizeof(*h2c_data); h2c_data->cccid = tcp_req->cid; h2c_data->ttag = tcp_req->ttag; h2c_data->datao = tcp_req->datao; h2c_data->datal = spdk_min(tcp_req->r2tl_remain, tqpair->maxh2cdata); nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->iov, tcp_req->iovcnt, h2c_data->datao, h2c_data->datal); tcp_req->r2tl_remain -= h2c_data->datal; if (tqpair->host_hdgst_enable) { h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } rsp_pdu->padding_len = 0; pdo = plen; if (tqpair->cpda) { alignment = (tqpair->cpda + 1) << 2; if (alignment > plen) { rsp_pdu->padding_len = alignment - plen; pdo = plen = alignment; } } h2c_data->common.pdo = pdo; plen += h2c_data->datal; if (tqpair->host_ddgst_enable) { h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } h2c_data->common.plen = plen; tcp_req->datao += h2c_data->datal; if (!tcp_req->r2tl_remain) { h2c_data->common.flags |= SPDK_NVME_TCP_H2C_DATA_FLAGS_LAST_PDU; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "h2c_data info: datao=%u, datal=%u, pdu_len=%u for tqpair=%p\n", h2c_data->datao, h2c_data->datal, h2c_data->common.plen, tqpair); nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_h2c_data_send_complete, tcp_req); } static void nvme_tcp_r2t_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_r2t_hdr *r2t = &pdu->hdr->r2t; uint32_t cid, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n"); cid = r2t->cccid; tcp_req = get_nvme_active_req_by_cid(tqpair, cid); if (!tcp_req) { SPDK_ERRLOG("Cannot find tcp_req for tqpair=%p\n", tqpair); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, cccid); goto end; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "r2t info: r2to=%u, r2tl=%u for tqpair=%p\n", r2t->r2to, r2t->r2tl, tqpair); if (tcp_req->state == NVME_TCP_REQ_ACTIVE) { assert(tcp_req->active_r2ts == 0); tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T; } tcp_req->active_r2ts++; if (tcp_req->active_r2ts > tqpair->maxr2t) { fes = SPDK_NVME_TCP_TERM_REQ_FES_R2T_LIMIT_EXCEEDED; SPDK_ERRLOG("Invalid R2T: it exceeds the R2T maixmal=%u for tqpair=%p\n", tqpair->maxr2t, tqpair); goto end; } if (tcp_req->datao != r2t->r2to) { fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2to); goto end; } if ((r2t->r2tl + r2t->r2to) > tcp_req->req->payload_size) { SPDK_ERRLOG("Invalid R2T info for tcp_req=%p: (r2to(%u) + r2tl(%u)) exceeds payload_size(%u)\n", tcp_req, r2t->r2to, r2t->r2tl, tqpair->maxh2cdata); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2tl); goto end; } tcp_req->ttag = r2t->ttag; tcp_req->r2tl_remain = r2t->r2tl; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); spdk_nvme_tcp_send_h2c_data(tcp_req); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } static void nvme_tcp_pdu_psh_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { struct nvme_tcp_pdu *pdu; int rc; uint32_t crc32c, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); pdu = &tqpair->recv_pdu; SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter: pdu type =%u\n", pdu->hdr->common.pdu_type); /* check header digest if needed */ if (pdu->has_hdgst) { crc32c = nvme_tcp_pdu_calc_header_digest(pdu); rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr->raw + pdu->hdr->common.hlen, crc32c); if (rc == 0) { SPDK_ERRLOG("header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR; nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } } switch (pdu->hdr->common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_IC_RESP: nvme_tcp_icresp_handle(tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP: nvme_tcp_capsule_resp_hdr_handle(tqpair, pdu, reaped); break; case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: nvme_tcp_c2h_data_hdr_handle(tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: nvme_tcp_c2h_term_req_hdr_handle(tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_R2T: nvme_tcp_r2t_hdr_handle(tqpair, pdu); break; default: SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu.hdr->common.pdu_type); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = 1; nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); break; } } static int nvme_tcp_read_pdu(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { int rc = 0; struct nvme_tcp_pdu *pdu; uint32_t data_len; enum nvme_tcp_pdu_recv_state prev_state; /* The loop here is to allow for several back-to-back state changes. */ do { prev_state = tqpair->recv_state; switch (tqpair->recv_state) { /* If in a new state */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH); break; /* common header */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: pdu = &tqpair->recv_pdu; if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { rc = nvme_tcp_read_data(tqpair->sock, sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes, (uint8_t *)&pdu->hdr->common + pdu->ch_valid_bytes); if (rc < 0) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; } pdu->ch_valid_bytes += rc; if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { return NVME_TCP_PDU_IN_PROGRESS; } } /* The command header of this PDU has now been read from the socket. */ nvme_tcp_pdu_ch_handle(tqpair); break; /* Wait for the pdu specific header */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: pdu = &tqpair->recv_pdu; rc = nvme_tcp_read_data(tqpair->sock, pdu->psh_len - pdu->psh_valid_bytes, (uint8_t *)&pdu->hdr->raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes); if (rc < 0) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; } pdu->psh_valid_bytes += rc; if (pdu->psh_valid_bytes < pdu->psh_len) { return NVME_TCP_PDU_IN_PROGRESS; } /* All header(ch, psh, head digist) of this PDU has now been read from the socket. */ nvme_tcp_pdu_psh_handle(tqpair, reaped); break; case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: pdu = &tqpair->recv_pdu; /* check whether the data is valid, if not we just return */ if (!pdu->data_len) { return NVME_TCP_PDU_IN_PROGRESS; } data_len = pdu->data_len; /* data digest */ if (spdk_unlikely((pdu->hdr->common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) && tqpair->host_ddgst_enable)) { data_len += SPDK_NVME_TCP_DIGEST_LEN; pdu->ddgst_enable = true; } rc = nvme_tcp_read_payload_data(tqpair->sock, pdu); if (rc < 0) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; } pdu->readv_offset += rc; if (pdu->readv_offset < data_len) { return NVME_TCP_PDU_IN_PROGRESS; } assert(pdu->readv_offset == data_len); /* All of this PDU has now been read from the socket. */ nvme_tcp_pdu_payload_handle(tqpair, reaped); break; case NVME_TCP_PDU_RECV_STATE_ERROR: rc = NVME_TCP_PDU_FATAL; break; default: assert(0); break; } } while (prev_state != tqpair->recv_state); return rc; } static void nvme_tcp_qpair_check_timeout(struct spdk_nvme_qpair *qpair) { uint64_t t02; struct nvme_tcp_req *tcp_req, *tmp; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct spdk_nvme_ctrlr_process *active_proc; /* Don't check timeouts during controller initialization. */ if (ctrlr->state != NVME_CTRLR_STATE_READY) { return; } if (nvme_qpair_is_admin_queue(qpair)) { active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr); } else { active_proc = qpair->active_proc; } /* Only check timeouts if the current process has a timeout callback. */ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { return; } t02 = spdk_get_ticks(); TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { assert(tcp_req->req != NULL); if (nvme_request_check_timeout(tcp_req->req, tcp_req->cid, active_proc, t02)) { /* * The requests are in order, so as soon as one has not timed out, * stop iterating. */ break; } } } int nvme_tcp_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); uint32_t reaped; int rc; rc = nvme_tcp_qpair_process_send_queue(tqpair); if (rc < 0) { return rc; } if (max_completions == 0) { max_completions = tqpair->num_entries; } else { max_completions = spdk_min(max_completions, tqpair->num_entries); } reaped = 0; do { rc = nvme_tcp_read_pdu(tqpair, &reaped); if (rc < 0) { SPDK_DEBUGLOG(SPDK_LOG_NVME, "Error polling CQ! (%d): %s\n", errno, spdk_strerror(errno)); return -1; } else if (rc == 0) { /* Partial PDU is read */ break; } } while (reaped < max_completions); if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) { nvme_tcp_qpair_check_timeout(qpair); } return reaped; } static int nvme_tcp_qpair_icreq_send(struct nvme_tcp_qpair *tqpair) { struct spdk_nvme_tcp_ic_req *ic_req; struct nvme_tcp_pdu *pdu; pdu = &tqpair->send_pdu; memset(&tqpair->send_pdu, 0, sizeof(tqpair->send_pdu)); pdu->hdr = &pdu->hdr_mem; ic_req = &pdu->hdr->ic_req; ic_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_REQ; ic_req->common.hlen = ic_req->common.plen = sizeof(*ic_req); ic_req->pfv = 0; ic_req->maxr2t = NVME_TCP_MAX_R2T_DEFAULT - 1; ic_req->hpda = NVME_TCP_HPDA_DEFAULT; ic_req->dgst.bits.hdgst_enable = tqpair->qpair.ctrlr->opts.header_digest; ic_req->dgst.bits.ddgst_enable = tqpair->qpair.ctrlr->opts.data_digest; nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_send_icreq_complete, tqpair); while (tqpair->state == NVME_TCP_QPAIR_STATE_INVALID) { nvme_tcp_qpair_process_completions(&tqpair->qpair, 0); } if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) { SPDK_ERRLOG("Failed to construct the tqpair=%p via correct icresp\n", tqpair); return -1; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "Succesfully construct the tqpair=%p via correct icresp\n", tqpair); return 0; } static int nvme_tcp_qpair_connect(struct nvme_tcp_qpair *tqpair) { struct sockaddr_storage dst_addr; struct sockaddr_storage src_addr; int rc; struct spdk_nvme_ctrlr *ctrlr; int family; long int port; ctrlr = tqpair->qpair.ctrlr; switch (ctrlr->trid.adrfam) { case SPDK_NVMF_ADRFAM_IPV4: family = AF_INET; break; case SPDK_NVMF_ADRFAM_IPV6: family = AF_INET6; break; default: SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); return -1; } SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); memset(&dst_addr, 0, sizeof(dst_addr)); SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid); rc = nvme_tcp_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); if (rc != 0) { SPDK_ERRLOG("dst_addr nvme_tcp_parse_addr() failed\n"); return -1; } if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { memset(&src_addr, 0, sizeof(src_addr)); rc = nvme_tcp_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); if (rc != 0) { SPDK_ERRLOG("src_addr nvme_tcp_parse_addr() failed\n"); return -1; } } port = spdk_strtol(ctrlr->trid.trsvcid, 10); if (port <= 0 || port >= INT_MAX) { SPDK_ERRLOG("Invalid port: %s\n", ctrlr->trid.trsvcid); return -1; } tqpair->sock = spdk_sock_connect(ctrlr->trid.traddr, port); if (!tqpair->sock) { SPDK_ERRLOG("sock connection error of tqpair=%p with addr=%s, port=%ld\n", tqpair, ctrlr->trid.traddr, port); return -1; } tqpair->maxr2t = NVME_TCP_MAX_R2T_DEFAULT; /* Explicitly set the state and recv_state of tqpair */ tqpair->state = NVME_TCP_QPAIR_STATE_INVALID; if (tqpair->recv_state != NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); } rc = nvme_tcp_qpair_icreq_send(tqpair); if (rc != 0) { SPDK_ERRLOG("Unable to connect the tqpair\n"); return -1; } rc = nvme_fabric_qpair_connect(&tqpair->qpair, tqpair->num_entries); if (rc < 0) { SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); return -1; } return 0; } int nvme_tcp_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return nvme_tcp_qpair_connect(nvme_tcp_qpair(qpair)); } void nvme_tcp_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return nvme_tcp_qpair_disconnect(qpair); } static struct spdk_nvme_qpair * nvme_tcp_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, uint32_t qsize, enum spdk_nvme_qprio qprio, uint32_t num_requests) { struct nvme_tcp_qpair *tqpair; struct spdk_nvme_qpair *qpair; int rc; tqpair = calloc(1, sizeof(struct nvme_tcp_qpair)); if (!tqpair) { SPDK_ERRLOG("failed to get create tqpair\n"); return NULL; } tqpair->num_entries = qsize; qpair = &tqpair->qpair; tqpair->recv_pdu.hdr = &tqpair->recv_pdu.hdr_mem; rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests); if (rc != 0) { free(tqpair); return NULL; } rc = nvme_tcp_alloc_reqs(tqpair); if (rc) { nvme_tcp_qpair_destroy(qpair); return NULL; } rc = nvme_tcp_qpair_connect(tqpair); if (rc < 0) { nvme_tcp_qpair_destroy(qpair); return NULL; } return qpair; } struct spdk_nvme_qpair * nvme_tcp_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts) { return nvme_tcp_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, opts->io_queue_requests); } struct spdk_nvme_ctrlr *nvme_tcp_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { struct nvme_tcp_ctrlr *tctrlr; union spdk_nvme_cap_register cap; union spdk_nvme_vs_register vs; int rc; tctrlr = calloc(1, sizeof(*tctrlr)); if (tctrlr == NULL) { SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } tctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_TCP; tctrlr->ctrlr.opts = *opts; tctrlr->ctrlr.trid = *trid; rc = nvme_ctrlr_construct(&tctrlr->ctrlr); if (rc != 0) { free(tctrlr); return NULL; } tctrlr->ctrlr.adminq = nvme_tcp_ctrlr_create_qpair(&tctrlr->ctrlr, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES); if (!tctrlr->ctrlr.adminq) { SPDK_ERRLOG("failed to create admin qpair\n"); nvme_tcp_ctrlr_destruct(&tctrlr->ctrlr); return NULL; } if (nvme_ctrlr_get_cap(&tctrlr->ctrlr, &cap)) { SPDK_ERRLOG("get_cap() failed\n"); nvme_ctrlr_destruct(&tctrlr->ctrlr); return NULL; } if (nvme_ctrlr_get_vs(&tctrlr->ctrlr, &vs)) { SPDK_ERRLOG("get_vs() failed\n"); nvme_ctrlr_destruct(&tctrlr->ctrlr); return NULL; } if (nvme_ctrlr_add_process(&tctrlr->ctrlr, 0) != 0) { SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); nvme_ctrlr_destruct(&tctrlr->ctrlr); return NULL; } nvme_ctrlr_init_cap(&tctrlr->ctrlr, &cap, &vs); return &tctrlr->ctrlr; } uint32_t nvme_tcp_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { /* TCP transport doens't limit maximum IO transfer size. */ return UINT32_MAX; } uint16_t nvme_tcp_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { /* * We do not support >1 SGE in the initiator currently, * so we can only return 1 here. Once that support is * added, this should return ctrlr->cdata.nvmf_specific.msdbd * instead. */ return 1; } volatile struct spdk_nvme_registers * nvme_tcp_ctrlr_get_registers(struct spdk_nvme_ctrlr *ctrlr) { return NULL; } void * nvme_tcp_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size) { return NULL; } int nvme_tcp_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size) { return 0; } void nvme_tcp_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_req *tcp_req, *tmp; struct nvme_request *req; struct spdk_nvme_cpl cpl; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { assert(tcp_req->req != NULL); req = tcp_req->req; if (req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { continue; } nvme_tcp_req_complete(req, &cpl); nvme_tcp_req_put(tqpair, tcp_req); } }