/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/nvmf_spec.h" #include "nvme_internal.h" #define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver" struct nvme_driver *g_spdk_nvme_driver; int32_t spdk_nvme_retry_count; int spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr) { nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); nvme_ctrlr_proc_put_ref(ctrlr); if (nvme_ctrlr_get_ref_count(ctrlr) == 0) { TAILQ_REMOVE(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq); nvme_ctrlr_destruct(ctrlr); } nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return 0; } void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_completion_poll_status *status = arg; /* * Copy status into the argument passed by the caller, so that * the caller can check the status to determine if the * the request passed or failed. */ memcpy(&status->cpl, cpl, sizeof(*cpl)); status->done = true; } struct nvme_request * nvme_allocate_request(struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; req = STAILQ_FIRST(&qpair->free_req); if (req == NULL) { return req; } STAILQ_REMOVE_HEAD(&qpair->free_req, stailq); /* * Only memset up to (but not including) the children * TAILQ_ENTRY. children, and following members, are * only used as part of I/O splitting so we avoid * memsetting them until it is actually needed. * They will be initialized in nvme_request_add_child() * if the request is split. */ memset(req, 0, offsetof(struct nvme_request, children)); req->cb_fn = cb_fn; req->cb_arg = cb_arg; req->payload = *payload; req->payload_size = payload_size; req->qpair = qpair; req->pid = getpid(); return req; } struct nvme_request * nvme_allocate_request_contig(struct spdk_nvme_qpair *qpair, void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = NULL; return nvme_allocate_request(qpair, &payload, payload_size, cb_fn, cb_arg); } struct nvme_request * nvme_allocate_request_null(struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return nvme_allocate_request_contig(qpair, NULL, 0, cb_fn, cb_arg); } static void nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_request *req = arg; enum spdk_nvme_data_transfer xfer; if (req->user_buffer && req->payload_size) { /* Copy back to the user buffer and free the contig buffer */ assert(req->payload.type == NVME_PAYLOAD_TYPE_CONTIG); xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc); if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST || xfer == SPDK_NVME_DATA_BIDIRECTIONAL) { assert(req->pid == getpid()); memcpy(req->user_buffer, req->payload.u.contig, req->payload_size); } spdk_free(req->payload.u.contig); } /* Call the user's original callback now that the buffer has been copied */ req->user_cb_fn(req->user_cb_arg, cpl); } /** * Allocate a request as well as a physically contiguous buffer to copy to/from the user's buffer. * * This is intended for use in non-fast-path functions (admin commands, reservations, etc.) * where the overhead of a copy is not a problem. */ struct nvme_request * nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair, void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg, bool host_to_controller) { struct nvme_request *req; void *contig_buffer = NULL; uint64_t phys_addr; if (buffer && payload_size) { contig_buffer = spdk_zmalloc(payload_size, 4096, &phys_addr); if (!contig_buffer) { return NULL; } if (host_to_controller) { memcpy(contig_buffer, buffer, payload_size); } } req = nvme_allocate_request_contig(qpair, contig_buffer, payload_size, nvme_user_copy_cmd_complete, NULL); if (!req) { spdk_free(contig_buffer); return NULL; } req->user_cb_fn = cb_fn; req->user_cb_arg = cb_arg; req->user_buffer = buffer; req->cb_arg = req; return req; } void nvme_free_request(struct nvme_request *req) { assert(req != NULL); assert(req->num_children == 0); assert(req->qpair != NULL); STAILQ_INSERT_HEAD(&req->qpair->free_req, req, stailq); } int nvme_robust_mutex_init_shared(pthread_mutex_t *mtx) { int rc = 0; #ifdef __FreeBSD__ pthread_mutex_init(mtx, NULL); #else pthread_mutexattr_t attr; if (pthread_mutexattr_init(&attr)) { return -1; } if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) || pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) || pthread_mutex_init(mtx, &attr)) { rc = -1; } pthread_mutexattr_destroy(&attr); #endif return rc; } static int nvme_driver_init(void) { int ret = 0; /* Any socket ID */ int socket_id = -1; /* * Only one thread from one process will do this driver init work. * The primary process will reserve the shared memory and do the * initialization. * The secondary process will lookup the existing reserved memory. */ if (spdk_process_is_primary()) { /* The unique named memzone already reserved. */ if (g_spdk_nvme_driver != NULL) { assert(g_spdk_nvme_driver->initialized == true); return 0; } else { g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME, sizeof(struct nvme_driver), socket_id, 0); } if (g_spdk_nvme_driver == NULL) { SPDK_ERRLOG("primary process failed to reserve memory\n"); return -1; } } else { g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME); /* The unique named memzone already reserved by the primary process. */ if (g_spdk_nvme_driver != NULL) { /* Wait the nvme driver to get initialized. */ while (g_spdk_nvme_driver->initialized == false) { nvme_delay(1000); } } else { SPDK_ERRLOG("primary process is not started yet\n"); return -1; } return 0; } /* * At this moment, only one thread from the primary process will do * the g_spdk_nvme_driver initialization */ assert(spdk_process_is_primary()); ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock); if (ret != 0) { SPDK_ERRLOG("failed to initialize mutex\n"); spdk_memzone_free(SPDK_NVME_DRIVER_NAME); return ret; } nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); g_spdk_nvme_driver->initialized = false; TAILQ_INIT(&g_spdk_nvme_driver->init_ctrlrs); TAILQ_INIT(&g_spdk_nvme_driver->attached_ctrlrs); nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return ret; } int nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid, void *devhandle, spdk_nvme_probe_cb probe_cb, void *cb_ctx) { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ctrlr_opts opts; spdk_nvme_ctrlr_opts_set_defaults(&opts); if (probe_cb(cb_ctx, trid, &opts)) { ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle); if (ctrlr == NULL) { SPDK_ERRLOG("Failed to construct NVMe controller\n"); return -1; } TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq); return 0; } return 1; } static int nvme_init_controllers(void *cb_ctx, spdk_nvme_attach_cb attach_cb) { int rc = 0; int start_rc; struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp; nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); /* Initialize all new controllers in the init_ctrlrs list in parallel. */ while (!TAILQ_EMPTY(&g_spdk_nvme_driver->init_ctrlrs)) { TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->init_ctrlrs, tailq, ctrlr_tmp) { /* Drop the driver lock while calling nvme_ctrlr_process_init() * since it needs to acquire the driver lock internally when calling * nvme_ctrlr_start(). * * TODO: Rethink the locking - maybe reset should take the lock so that start() and * the functions it calls (in particular nvme_ctrlr_set_num_qpairs()) * can assume it is held. */ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); start_rc = nvme_ctrlr_process_init(ctrlr); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); if (start_rc) { /* Controller failed to initialize. */ TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq); nvme_ctrlr_destruct(ctrlr); rc = -1; break; } if (ctrlr->state == NVME_CTRLR_STATE_READY) { /* * Controller has been initialized. * Move it to the attached_ctrlrs list. */ TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq); TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq); /* * Increase the ref count before calling attach_cb() as the user may * call nvme_detach() immediately. */ nvme_ctrlr_proc_get_ref(ctrlr); /* * Unlock while calling attach_cb() so the user can call other functions * that may take the driver lock, like nvme_detach(). */ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); break; } } } g_spdk_nvme_driver->initialized = true; nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return rc; } int spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb, spdk_nvme_remove_cb remove_cb) { int rc; struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_transport_id trid_pcie; rc = nvme_driver_init(); if (rc != 0) { return rc; } if (trid == NULL) { memset(&trid_pcie, 0, sizeof(trid_pcie)); trid_pcie.trtype = SPDK_NVME_TRANSPORT_PCIE; trid = &trid_pcie; } if (!spdk_nvme_transport_available(trid->trtype)) { SPDK_ERRLOG("NVMe trtype %u not available\n", trid->trtype); return -1; } nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); nvme_transport_ctrlr_scan(trid, cb_ctx, probe_cb, remove_cb); if (!spdk_process_is_primary()) { TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) { nvme_ctrlr_proc_get_ref(ctrlr); /* * Unlock while calling attach_cb() so the user can call other functions * that may take the driver lock, like nvme_detach(). */ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); } nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return 0; } nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); /* * Keep going even if one or more nvme_attach() calls failed, * but maintain the value of rc to signal errors when we return. */ rc = nvme_init_controllers(cb_ctx, attach_cb); return rc; } int spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str) { if (trtype == NULL || str == NULL) { return -EINVAL; } if (strcasecmp(str, "PCIe") == 0) { *trtype = SPDK_NVME_TRANSPORT_PCIE; } else if (strcasecmp(str, "RDMA") == 0) { *trtype = SPDK_NVME_TRANSPORT_RDMA; } else { return -ENOENT; } return 0; } int spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str) { if (adrfam == NULL || str == NULL) { return -EINVAL; } if (strcasecmp(str, "IPv4") == 0) { *adrfam = SPDK_NVMF_ADRFAM_IPV4; } else if (strcasecmp(str, "IPv6") == 0) { *adrfam = SPDK_NVMF_ADRFAM_IPV6; } else if (strcasecmp(str, "IB") == 0) { *adrfam = SPDK_NVMF_ADRFAM_IB; } else if (strcasecmp(str, "FC") == 0) { *adrfam = SPDK_NVMF_ADRFAM_FC; } else { return -ENOENT; } return 0; } int spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str) { const char *sep; const char *whitespace = " \t\n"; size_t key_len, val_len; char key[32]; char val[1024]; if (trid == NULL || str == NULL) { return -EINVAL; } while (*str != '\0') { str += strspn(str, whitespace); sep = strchr(str, ':'); if (!sep) { sep = strchr(str, '='); if (!sep) { SPDK_ERRLOG("Key without ':' or '=' separator\n"); return -EINVAL; } } key_len = sep - str; if (key_len >= sizeof(key)) { SPDK_ERRLOG("Transport key length %zu greater than maximum allowed %zu\n", key_len, sizeof(key) - 1); return -EINVAL; } memcpy(key, str, key_len); key[key_len] = '\0'; str += key_len + 1; /* Skip key: */ val_len = strcspn(str, whitespace); if (val_len == 0) { SPDK_ERRLOG("Key without value\n"); return -EINVAL; } if (val_len >= sizeof(val)) { SPDK_ERRLOG("Transport value length %zu greater than maximum allowed %zu\n", val_len, sizeof(val) - 1); return -EINVAL; } memcpy(val, str, val_len); val[val_len] = '\0'; str += val_len; if (strcasecmp(key, "trtype") == 0) { if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) { SPDK_ERRLOG("Unknown trtype '%s'\n", val); return -EINVAL; } } else if (strcasecmp(key, "adrfam") == 0) { if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) { SPDK_ERRLOG("Unknown adrfam '%s'\n", val); return -EINVAL; } } else if (strcasecmp(key, "traddr") == 0) { if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) { SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n", val_len, SPDK_NVMF_TRADDR_MAX_LEN); return -EINVAL; } memcpy(trid->traddr, val, val_len + 1); } else if (strcasecmp(key, "trsvcid") == 0) { if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) { SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n", val_len, SPDK_NVMF_TRSVCID_MAX_LEN); return -EINVAL; } memcpy(trid->trsvcid, val, val_len + 1); } else if (strcasecmp(key, "subnqn") == 0) { if (val_len > SPDK_NVMF_NQN_MAX_LEN) { SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n", val_len, SPDK_NVMF_NQN_MAX_LEN); return -EINVAL; } memcpy(trid->subnqn, val, val_len + 1); } else { SPDK_ERRLOG("Unknown transport ID key '%s'\n", key); } } return 0; } static int cmp_int(int a, int b) { return a - b; } int spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1, const struct spdk_nvme_transport_id *trid2) { int cmp; cmp = cmp_int(trid1->trtype, trid2->trtype); if (cmp) { return cmp; } cmp = cmp_int(trid1->adrfam, trid2->adrfam); if (cmp) { return cmp; } cmp = strcasecmp(trid1->traddr, trid2->traddr); if (cmp) { return cmp; } cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid); if (cmp) { return cmp; } cmp = strcasecmp(trid1->subnqn, trid2->subnqn); if (cmp) { return cmp; } return 0; } SPDK_LOG_REGISTER_TRACE_FLAG("nvme", SPDK_TRACE_NVME)