/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/log.h" #include "spdk/nvme.h" #include "spdk/queue.h" #include "spdk/string.h" #include "spdk/util.h" #include "spdk/likely.h" struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; enum spdk_nvme_transport_type trtype; TAILQ_ENTRY(ctrlr_entry) link; char name[1024]; }; struct ns_entry { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; TAILQ_ENTRY(ns_entry) link; uint32_t io_size_blocks; uint32_t num_io_requests; uint64_t size_in_ios; uint32_t block_size; char name[1024]; }; struct ctrlr_worker_ctx { pthread_mutex_t mutex; struct ctrlr_entry *entry; uint64_t abort_submitted; uint64_t abort_submit_failed; uint64_t successful_abort; uint64_t unsuccessful_abort; uint64_t abort_failed; uint64_t current_queue_depth; struct spdk_nvme_ctrlr *ctrlr; TAILQ_ENTRY(ctrlr_worker_ctx) link; }; struct ns_worker_ctx { struct ns_entry *entry; uint64_t io_submitted; uint64_t io_completed; uint64_t io_aborted; uint64_t io_failed; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; struct spdk_nvme_qpair *qpair; struct ctrlr_worker_ctx *ctrlr_ctx; TAILQ_ENTRY(ns_worker_ctx) link; }; struct perf_task { struct ns_worker_ctx *ns_ctx; void *buf; }; struct worker_thread { TAILQ_HEAD(, ns_worker_ctx) ns_ctx; TAILQ_HEAD(, ctrlr_worker_ctx) ctrlr_ctx; TAILQ_ENTRY(worker_thread) link; unsigned lcore; }; static const char *g_workload_type = "read"; static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers); static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces); static int g_num_namespaces; static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers); static int g_num_workers = 0; static uint32_t g_main_core; static int g_abort_interval = 1; static uint64_t g_tsc_rate; static uint32_t g_io_size_bytes = 131072; static uint32_t g_max_io_size_blocks; static int g_rw_percentage = -1; static int g_is_random; static int g_queue_depth = 128; static int g_time_in_sec = 3; static int g_dpdk_mem; static int g_shm_id = -1; static bool g_no_pci; static bool g_warn; static bool g_mix_specified; static const char *g_core_mask; struct trid_entry { struct spdk_nvme_transport_id trid; uint16_t nsid; TAILQ_ENTRY(trid_entry) tailq; }; static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list); static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl); static int build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr) { const struct spdk_nvme_transport_id *trid; int res = 0; trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); switch (trid->trtype) { case SPDK_NVME_TRANSPORT_PCIE: res = snprintf(name, length, "PCIE (%s)", trid->traddr); break; case SPDK_NVME_TRANSPORT_RDMA: res = snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); break; case SPDK_NVME_TRANSPORT_TCP: res = snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); break; case SPDK_NVME_TRANSPORT_CUSTOM: res = snprintf(name, length, "CUSTOM (%s)", trid->traddr); break; default: fprintf(stderr, "Unknown transport type %d\n", trid->trtype); break; } return res; } static void build_nvme_ns_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { int res = 0; res = build_nvme_name(name, length, ctrlr); if (res > 0) { snprintf(name + res, length - res, " NSID %u", nsid); } } static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; uint32_t max_xfer_size, entries, sector_size; uint64_t ns_size; struct spdk_nvme_io_qpair_opts opts; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!spdk_nvme_ns_is_active(ns)) { printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns)); g_warn = true; return; } ns_size = spdk_nvme_ns_get_size(ns); sector_size = spdk_nvme_ns_get_sector_size(ns); if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); g_warn = true; return; } max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); /* NVMe driver may add additional entries based on * stripe size and maximum transfer size, we assume * 1 more entry be used for stripe. */ entries = (g_io_size_bytes - 1) / max_xfer_size + 2; if ((g_queue_depth * entries) > opts.io_queue_size) { printf("controller IO queue size %u less than required\n", opts.io_queue_size); printf("Consider using lower queue depth or small IO size because " "IO requests may be queued at the NVMe driver.\n"); } /* For requests which have children requests, parent request itself * will also occupy 1 entry. */ entries += 1; entry = calloc(1, sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->ctrlr = ctrlr; entry->ns = ns; entry->num_io_requests = g_queue_depth * entries; entry->size_in_ios = ns_size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / sector_size; entry->block_size = spdk_nvme_ns_get_sector_size(ns); if (g_max_io_size_blocks < entry->io_size_blocks) { g_max_io_size_blocks = entry->io_size_blocks; } build_nvme_ns_name(entry->name, sizeof(entry->name), ctrlr, spdk_nvme_ns_get_id(ns)); g_num_namespaces++; TAILQ_INSERT_TAIL(&g_namespaces, entry, link); } static void unregister_namespaces(void) { struct ns_entry *entry, *tmp; TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) { TAILQ_REMOVE(&g_namespaces, entry, link); free(entry); } } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry) { struct spdk_nvme_ns *ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); uint32_t nsid; if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } build_nvme_name(entry->name, sizeof(entry->name), ctrlr); entry->ctrlr = ctrlr; entry->trtype = trid_entry->trid.trtype; TAILQ_INSERT_TAIL(&g_controllers, entry, link); if (trid_entry->nsid == 0) { for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); if (ns == NULL) { continue; } register_ns(ctrlr, ns); } } else { ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid); if (!ns) { perror("Namespace does not exist."); exit(1); } register_ns(ctrlr, ns); } } static void abort_complete(void *ctx, const struct spdk_nvme_cpl *cpl) { struct ctrlr_worker_ctx *ctrlr_ctx = ctx; ctrlr_ctx->current_queue_depth--; if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { ctrlr_ctx->abort_failed++; } else if ((cpl->cdw0 & 0x1) == 0) { ctrlr_ctx->successful_abort++; } else { ctrlr_ctx->unsuccessful_abort++; } } static void abort_task(struct perf_task *task) { struct ns_worker_ctx *ns_ctx = task->ns_ctx; struct ctrlr_worker_ctx *ctrlr_ctx = ns_ctx->ctrlr_ctx; int rc; /* Hold mutex to guard ctrlr_ctx->current_queue_depth. */ pthread_mutex_lock(&ctrlr_ctx->mutex); rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ctx->ctrlr, ns_ctx->qpair, task, abort_complete, ctrlr_ctx); if (spdk_unlikely(rc != 0)) { ctrlr_ctx->abort_submit_failed++; } else { ctrlr_ctx->current_queue_depth++; ctrlr_ctx->abort_submitted++; } pthread_mutex_unlock(&ctrlr_ctx->mutex); } static __thread unsigned int seed = 0; static inline void submit_single_io(struct perf_task *task) { uint64_t offset_in_ios, lba; int rc; struct ns_worker_ctx *ns_ctx = task->ns_ctx; struct ns_entry *entry = ns_ctx->entry; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } lba = offset_in_ios * entry->io_size_blocks; if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && (rand_r(&seed) % 100) < g_rw_percentage)) { rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf, lba, entry->io_size_blocks, io_complete, task, 0); } else { rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf, lba, entry->io_size_blocks, io_complete, task, 0); } if (spdk_unlikely(rc != 0)) { fprintf(stderr, "I/O submission failed\n"); } else { ns_ctx->current_queue_depth++; ns_ctx->io_submitted++; if ((ns_ctx->io_submitted % g_abort_interval) == 0) { abort_task(task); } } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl) { struct perf_task *task = ctx; struct ns_worker_ctx *ns_ctx = task->ns_ctx; ns_ctx->current_queue_depth--; if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { ns_ctx->io_failed++; } else { ns_ctx->io_completed++; } /* is_draining indicates when time has expired for the test run and we are * just waiting for the previously submitted I/O to complete. In this case, * do not submit a new I/O to replace the one just completed. */ if (spdk_unlikely(ns_ctx->is_draining)) { spdk_dma_free(task->buf); free(task); } else { submit_single_io(task); } } static struct perf_task * allocate_task(struct ns_worker_ctx *ns_ctx) { struct perf_task *task; task = calloc(1, sizeof(*task)); if (task == NULL) { fprintf(stderr, "Failed to allocate task\n"); exit(1); } task->buf = spdk_dma_zmalloc(g_io_size_bytes, 0x200, NULL); if (task->buf == NULL) { free(task); fprintf(stderr, "Failed to allocate task->buf\n"); exit(1); } task->ns_ctx = ns_ctx; return task; } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { struct perf_task *task; while (queue_depth-- > 0) { task = allocate_task(ns_ctx); submit_single_io(task); } } static int work_fn(void *arg) { struct worker_thread *worker = (struct worker_thread *)arg; struct ns_worker_ctx *ns_ctx; struct ctrlr_worker_ctx *ctrlr_ctx; struct ns_entry *ns_entry; struct spdk_nvme_io_qpair_opts opts; uint64_t tsc_end; uint32_t unfinished_ctx; /* Allocate queue pair for each namespace. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { ns_entry = ns_ctx->entry; spdk_nvme_ctrlr_get_default_io_qpair_opts(ns_entry->ctrlr, &opts, sizeof(opts)); if (opts.io_queue_requests < ns_entry->num_io_requests) { opts.io_queue_requests = ns_entry->num_io_requests; } ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, &opts, sizeof(opts)); if (ns_ctx->qpair == NULL) { fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair failed\n"); return 1; } } tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; /* Submit initial I/O for each namespace. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { submit_io(ns_ctx, g_queue_depth); } while (1) { TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); } if (worker->lcore == g_main_core) { TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) { /* Hold mutex to guard ctrlr_ctx->current_queue_depth. */ pthread_mutex_lock(&ctrlr_ctx->mutex); spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr); pthread_mutex_unlock(&ctrlr_ctx->mutex); } } if (spdk_get_ticks() > tsc_end) { break; } } do { unfinished_ctx = 0; TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { if (!ns_ctx->is_draining) { ns_ctx->is_draining = true; } if (ns_ctx->current_queue_depth > 0) { spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); if (ns_ctx->current_queue_depth == 0) { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair); } else { unfinished_ctx++; } } } } while (unfinished_ctx > 0); if (worker->lcore == g_main_core) { do { unfinished_ctx = 0; TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) { pthread_mutex_lock(&ctrlr_ctx->mutex); if (ctrlr_ctx->current_queue_depth > 0) { spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr); if (ctrlr_ctx->current_queue_depth > 0) { unfinished_ctx++; } } pthread_mutex_unlock(&ctrlr_ctx->mutex); } } while (unfinished_ctx > 0); } return 0; } static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-o io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-t time in seconds]\n"); printf("\t[-c core mask for I/O submission/completion.]\n"); printf("\t\t(default: 1)\n"); printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n"); printf("\t Format: 'key:value [key:value] ...'\n"); printf("\t Keys:\n"); printf("\t trtype Transport type (e.g. PCIe, RDMA)\n"); printf("\t adrfam Address family (e.g. IPv4, IPv6)\n"); printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n"); printf("\t trsvcid Transport service identifier (e.g. 4420)\n"); printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n"); printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n"); printf("\t[-s DPDK huge memory size in MB.]\n"); printf("\t[-i shared memory group ID]\n"); printf("\t[-a abort interval.]\n"); printf("\t"); spdk_log_usage(stdout, "-T"); #ifdef DEBUG printf("\t[-G enable debug logging]\n"); #else printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)\n"); #endif } static void unregister_trids(void) { struct trid_entry *trid_entry, *tmp; TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) { TAILQ_REMOVE(&g_trid_list, trid_entry, tailq); free(trid_entry); } } static int add_trid(const char *trid_str) { struct trid_entry *trid_entry; struct spdk_nvme_transport_id *trid; char *ns; trid_entry = calloc(1, sizeof(*trid_entry)); if (trid_entry == NULL) { return -1; } trid = &trid_entry->trid; trid->trtype = SPDK_NVME_TRANSPORT_PCIE; snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) { fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str); free(trid_entry); return 1; } spdk_nvme_transport_id_populate_trstring(trid, spdk_nvme_transport_id_trtype_str(trid->trtype)); ns = strcasestr(trid_str, "ns:"); if (ns) { char nsid_str[6]; /* 5 digits maximum in an nsid */ int len; int nsid; ns += 3; len = strcspn(ns, " \t\n"); if (len > 5) { fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n"); free(trid_entry); return 1; } memcpy(nsid_str, ns, len); nsid_str[len] = '\0'; nsid = spdk_strtol(nsid_str, 10); if (nsid <= 0 || nsid > 65535) { fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n"); free(trid_entry); return 1; } trid_entry->nsid = (uint16_t)nsid; } TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq); return 0; } static int parse_args(int argc, char **argv) { int op; long int val; int rc; while ((op = getopt(argc, argv, "a:c:i:o:q:r:s:t:w:M:")) != -1) { switch (op) { case 'a': case 'i': case 'o': case 'q': case 's': case 't': case 'M': val = spdk_strtol(optarg, 10); if (val < 0) { fprintf(stderr, "Converting a string to integer failed\n"); return val; } switch (op) { case 'a': g_abort_interval = val; break; case 'i': g_shm_id = val; break; case 'o': g_io_size_bytes = val; break; case 'q': g_queue_depth = val; break; case 's': g_dpdk_mem = val; break; case 't': g_time_in_sec = val; break; case 'M': g_rw_percentage = val; g_mix_specified = true; break; } break; case 'c': g_core_mask = optarg; break; case 'r': if (add_trid(optarg)) { usage(argv[0]); return 1; } break; case 'w': g_workload_type = optarg; break; case 'G': #ifndef DEBUG fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n", argv[0]); usage(argv[0]); return 1; #else spdk_log_set_flag("nvme"); spdk_log_set_print_level(SPDK_LOG_DEBUG); break; #endif case 'T': rc = spdk_log_set_flag(optarg); if (rc < 0) { fprintf(stderr, "unknown flag\n"); usage(argv[0]); exit(EXIT_FAILURE); } #ifdef DEBUG spdk_log_set_print_level(SPDK_LOG_DEBUG); #endif break; default: usage(argv[0]); return 1; } } if (!g_queue_depth) { fprintf(stderr, "missing -q (queue size) operand\n"); usage(argv[0]); return 1; } if (!g_io_size_bytes) { fprintf(stderr, "missing -o (block size) operand\n"); usage(argv[0]); return 1; } if (!g_workload_type) { fprintf(stderr, "missing -t (test time in seconds) operand\n"); usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strncmp(g_workload_type, "rand", 4) == 0) { g_is_random = 1; g_workload_type = &g_workload_type[4]; } if (strcmp(g_workload_type, "read") == 0 || strcmp(g_workload_type, "write") == 0) { g_rw_percentage = strcmp(g_workload_type, "read") == 0 ? 100 : 0; if (g_mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } else if (strcmp(g_workload_type, "rw") == 0) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } else { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (TAILQ_EMPTY(&g_trid_list)) { /* If no transport IDs specified, default to enumerating all local PCIe devices */ add_trid("trtype:PCIe"); } else { struct trid_entry *trid_entry, *trid_entry_tmp; g_no_pci = true; /* check whether there is local PCIe type */ TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) { if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { g_no_pci = false; break; } } } return 0; } static int register_workers(void) { uint32_t i; struct worker_thread *worker; SPDK_ENV_FOREACH_CORE(i) { worker = calloc(1, sizeof(*worker)); if (worker == NULL) { fprintf(stderr, "Unable to allocate worker\n"); return -1; } TAILQ_INIT(&worker->ns_ctx); TAILQ_INIT(&worker->ctrlr_ctx); worker->lcore = i; TAILQ_INSERT_TAIL(&g_workers, worker, link); g_num_workers++; } return 0; } static void unregister_workers(void) { struct worker_thread *worker, *tmp_worker; struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx; struct ctrlr_worker_ctx *ctrlr_ctx, *tmp_ctrlr_ctx; /* Free namespace context and worker thread */ TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) { TAILQ_REMOVE(&g_workers, worker, link); TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) { TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link); printf("NS: %s I/O completed: %" PRIu64 ", failed: %" PRIu64 "\n", ns_ctx->entry->name, ns_ctx->io_completed, ns_ctx->io_failed); free(ns_ctx); } TAILQ_FOREACH_SAFE(ctrlr_ctx, &worker->ctrlr_ctx, link, tmp_ctrlr_ctx) { TAILQ_REMOVE(&worker->ctrlr_ctx, ctrlr_ctx, link); printf("CTRLR: %s abort submitted %" PRIu64 ", failed to submit %" PRIu64 "\n", ctrlr_ctx->entry->name, ctrlr_ctx->abort_submitted, ctrlr_ctx->abort_submit_failed); printf("\t success %" PRIu64 ", unsuccess %" PRIu64 ", failed %" PRIu64 "\n", ctrlr_ctx->successful_abort, ctrlr_ctx->unsuccessful_abort, ctrlr_ctx->abort_failed); free(ctrlr_ctx); } free(worker); } } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct trid_entry *trid_entry = cb_ctx; struct spdk_pci_addr pci_addr; struct spdk_pci_device *pci_dev; struct spdk_pci_id pci_id; if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); } else { if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) { return; } pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); if (!pci_dev) { return; } pci_id = spdk_pci_device_get_id(pci_dev); printf("Attached to NVMe Controller at %s [%04x:%04x]\n", trid->traddr, pci_id.vendor_id, pci_id.device_id); } register_ctrlr(ctrlr, trid_entry); } static int register_controllers(void) { struct trid_entry *trid_entry; printf("Initializing NVMe Controllers\n"); TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) { if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n", trid_entry->trid.traddr); return -1; } } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry, *tmp; struct spdk_nvme_detach_ctx *detach_ctx = NULL; TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) { TAILQ_REMOVE(&g_controllers, entry, link); spdk_nvme_detach_async(entry->ctrlr, &detach_ctx); free(entry); } while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) { ; } } static int associate_main_worker_with_ctrlr(void) { struct ctrlr_entry *entry; struct worker_thread *worker; struct ctrlr_worker_ctx *ctrlr_ctx; TAILQ_FOREACH(worker, &g_workers, link) { if (worker->lcore == g_main_core) { break; } } if (!worker) { return -1; } TAILQ_FOREACH(entry, &g_controllers, link) { ctrlr_ctx = calloc(1, sizeof(struct ctrlr_worker_ctx)); if (!ctrlr_ctx) { return -1; } pthread_mutex_init(&ctrlr_ctx->mutex, NULL); ctrlr_ctx->entry = entry; ctrlr_ctx->ctrlr = entry->ctrlr; TAILQ_INSERT_TAIL(&worker->ctrlr_ctx, ctrlr_ctx, link); } return 0; } static struct ctrlr_worker_ctx * get_ctrlr_worker_ctx(struct spdk_nvme_ctrlr *ctrlr) { struct worker_thread *worker; struct ctrlr_worker_ctx *ctrlr_ctx; TAILQ_FOREACH(worker, &g_workers, link) { if (worker->lcore == g_main_core) { break; } } if (!worker) { return NULL; } TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) { if (ctrlr_ctx->ctrlr == ctrlr) { return ctrlr_ctx; } } return NULL; } static int associate_workers_with_ns(void) { struct ns_entry *entry = TAILQ_FIRST(&g_namespaces); struct worker_thread *worker = TAILQ_FIRST(&g_workers); struct ns_worker_ctx *ns_ctx; int i, count; count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; for (i = 0; i < count; i++) { if (entry == NULL) { break; } ns_ctx = calloc(1, sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return -1; } printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->entry = entry; ns_ctx->ctrlr_ctx = get_ctrlr_worker_ctx(entry->ctrlr); if (!ns_ctx->ctrlr_ctx) { free(ns_ctx); return -1; } TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link); worker = TAILQ_NEXT(worker, link); if (worker == NULL) { worker = TAILQ_FIRST(&g_workers); } entry = TAILQ_NEXT(entry, link); if (entry == NULL) { entry = TAILQ_FIRST(&g_namespaces); } } return 0; } int main(int argc, char **argv) { int rc; struct worker_thread *worker, *main_worker; struct spdk_env_opts opts; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "abort"; opts.shm_id = g_shm_id; if (g_core_mask) { opts.core_mask = g_core_mask; } if (g_dpdk_mem) { opts.mem_size = g_dpdk_mem; } if (g_no_pci) { opts.no_pci = g_no_pci; } if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); rc = -1; goto cleanup; } g_tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { rc = -1; goto cleanup; } if (register_controllers() != 0) { rc = -1; goto cleanup; } if (g_warn) { printf("WARNING: Some requested NVMe devices were skipped\n"); } if (g_num_namespaces == 0) { fprintf(stderr, "No valid NVMe controllers found\n"); goto cleanup; } if (associate_main_worker_with_ctrlr() != 0) { rc = -1; goto cleanup; } if (associate_workers_with_ns() != 0) { rc = -1; goto cleanup; } printf("Initialization complete. Launching workers.\n"); /* Launch all of the secondary workers */ g_main_core = spdk_env_get_current_core(); main_worker = NULL; TAILQ_FOREACH(worker, &g_workers, link) { if (worker->lcore != g_main_core) { spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); } else { assert(main_worker == NULL); main_worker = worker; } } assert(main_worker != NULL); rc = work_fn(main_worker); spdk_env_thread_wait_all(); cleanup: unregister_trids(); unregister_workers(); unregister_namespaces(); unregister_controllers(); if (rc != 0) { fprintf(stderr, "%s: errors occured\n", argv[0]); } return rc; }