/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "env_internal.h" #include #include "spdk/env.h" #define SYSFS_PCI_DRIVERS "/sys/bus/pci/drivers" #define PCI_CFG_SIZE 256 #define PCI_EXT_CAP_ID_SN 0x03 /* DPDK 18.11+ hotplug isn't robust. Multiple apps starting at the same time * might cause the internal IPC to misbehave. Just retry in such case. */ #define DPDK_HOTPLUG_RETRY_COUNT 4 /* DPDK alarm/interrupt thread */ static pthread_t g_dpdk_tid; static pthread_mutex_t g_pci_mutex = PTHREAD_MUTEX_INITIALIZER; static TAILQ_HEAD(, spdk_pci_device) g_pci_devices = TAILQ_HEAD_INITIALIZER(g_pci_devices); /* devices hotplugged on a dpdk thread */ static TAILQ_HEAD(, spdk_pci_device) g_pci_hotplugged_devices = TAILQ_HEAD_INITIALIZER(g_pci_hotplugged_devices); static TAILQ_HEAD(, spdk_pci_driver) g_pci_drivers = TAILQ_HEAD_INITIALIZER(g_pci_drivers); static int spdk_map_bar_rte(struct spdk_pci_device *device, uint32_t bar, void **mapped_addr, uint64_t *phys_addr, uint64_t *size) { struct rte_pci_device *dev = device->dev_handle; *mapped_addr = dev->mem_resource[bar].addr; *phys_addr = (uint64_t)dev->mem_resource[bar].phys_addr; *size = (uint64_t)dev->mem_resource[bar].len; return 0; } static int spdk_unmap_bar_rte(struct spdk_pci_device *device, uint32_t bar, void *addr) { return 0; } static int spdk_cfg_read_rte(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset) { int rc; rc = rte_pci_read_config(dev->dev_handle, value, len, offset); #if defined(__FreeBSD__) && RTE_VERSION < RTE_VERSION_NUM(18, 11, 0, 0) /* Older DPDKs return 0 on success and -1 on failure */ return rc; #endif return (rc > 0 && (uint32_t) rc == len) ? 0 : -1; } static int spdk_cfg_write_rte(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset) { int rc; rc = rte_pci_write_config(dev->dev_handle, value, len, offset); #ifdef __FreeBSD__ /* DPDK returns 0 on success and -1 on failure */ return rc; #endif return (rc > 0 && (uint32_t) rc == len) ? 0 : -1; } static void spdk_detach_rte_cb(void *_dev) { struct rte_pci_device *rte_dev = _dev; #if RTE_VERSION >= RTE_VERSION_NUM(18, 11, 0, 0) char bdf[32]; int i = 0, rc; snprintf(bdf, sizeof(bdf), "%s", rte_dev->device.name); do { rc = rte_eal_hotplug_remove("pci", bdf); } while (rc == -ENOMSG && ++i <= DPDK_HOTPLUG_RETRY_COUNT); #else rte_eal_dev_detach(&rte_dev->device); #endif } static void spdk_detach_rte(struct spdk_pci_device *dev) { struct rte_pci_device *rte_dev = dev->dev_handle; int i; bool removed; /* The device was already marked as available and could be attached * again while we go asynchronous, so we explicitly forbid that. */ dev->internal.pending_removal = true; if (spdk_process_is_primary() && !pthread_equal(g_dpdk_tid, pthread_self())) { rte_eal_alarm_set(1, spdk_detach_rte_cb, rte_dev); /* wait up to 20ms for the cb to start executing */ for (i = 20; i > 0; i--) { spdk_delay_us(1000); pthread_mutex_lock(&g_pci_mutex); removed = dev->internal.removed; pthread_mutex_unlock(&g_pci_mutex); if (removed) { break; } } /* besides checking the removed flag, we also need to wait * for the dpdk detach function to unwind, as it's doing some * operations even after calling our detach callback. Simply * cancell the alarm - if it started executing already, this * call will block and wait for it to finish. */ rte_eal_alarm_cancel(spdk_detach_rte_cb, rte_dev); /* the device could have been finally removed, so just check * it again. */ pthread_mutex_lock(&g_pci_mutex); removed = dev->internal.removed; pthread_mutex_unlock(&g_pci_mutex); if (!removed) { fprintf(stderr, "Timeout waiting for DPDK to remove PCI device %s.\n", rte_dev->name); } } else { spdk_detach_rte_cb(rte_dev); } } void spdk_pci_driver_register(struct spdk_pci_driver *driver) { TAILQ_INSERT_TAIL(&g_pci_drivers, driver, tailq); } #if RTE_VERSION >= RTE_VERSION_NUM(18, 5, 0, 0) static void spdk_pci_device_rte_hotremove(const char *device_name, enum rte_dev_event_type event, void *cb_arg) { struct spdk_pci_device *dev; bool can_detach = false; if (event != RTE_DEV_EVENT_REMOVE) { return; } pthread_mutex_lock(&g_pci_mutex); TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) { struct rte_pci_device *rte_dev = dev->dev_handle; if (strcmp(rte_dev->name, device_name) == 0 && !dev->internal.pending_removal) { can_detach = !dev->internal.attached; /* prevent any further attaches */ dev->internal.pending_removal = true; break; } } pthread_mutex_unlock(&g_pci_mutex); if (dev != NULL && can_detach) { /* if device is not attached, we can remove it right away. */ spdk_detach_rte(dev); } } #endif static void cleanup_pci_devices(void) { struct spdk_pci_device *dev, *tmp; pthread_mutex_lock(&g_pci_mutex); /* cleanup removed devices */ TAILQ_FOREACH_SAFE(dev, &g_pci_devices, internal.tailq, tmp) { if (!dev->internal.removed) { continue; } spdk_vtophys_pci_device_removed(dev->dev_handle); TAILQ_REMOVE(&g_pci_devices, dev, internal.tailq); free(dev); } /* add newly-attached devices */ TAILQ_FOREACH_SAFE(dev, &g_pci_hotplugged_devices, internal.tailq, tmp) { TAILQ_REMOVE(&g_pci_hotplugged_devices, dev, internal.tailq); TAILQ_INSERT_TAIL(&g_pci_devices, dev, internal.tailq); spdk_vtophys_pci_device_added(dev->dev_handle); } pthread_mutex_unlock(&g_pci_mutex); } static void _get_alarm_thread_cb(void *unused) { g_dpdk_tid = pthread_self(); } void spdk_pci_init(void) { #if RTE_VERSION >= RTE_VERSION_NUM(18, 11, 0, 0) struct spdk_pci_driver *driver; /* We need to pre-register pci drivers for the pci devices to be * attachable in multi-process with DPDK 18.11+. * * DPDK 18.11+ does its best to ensure all devices are equally * attached or detached in all processes within a shared memory group. * For SPDK it means that if a device is hotplugged in the primary, * then DPDK will automatically send an IPC hotplug request to all other * processes. Those other processes may not have the same SPDK PCI * driver registered and may fail to attach the device. DPDK will send * back the failure status, and the the primary process will also fail * to hotplug the device. To prevent that, we need to pre-register the * pci drivers here. */ TAILQ_FOREACH(driver, &g_pci_drivers, tailq) { assert(!driver->is_registered); driver->is_registered = true; rte_pci_register(&driver->driver); } #endif #if RTE_VERSION >= RTE_VERSION_NUM(18, 5, 0, 0) /* Register a single hotremove callback for all devices. */ if (spdk_process_is_primary()) { rte_dev_event_callback_register(NULL, spdk_pci_device_rte_hotremove, NULL); } #endif rte_eal_alarm_set(1, _get_alarm_thread_cb, NULL); /* alarms are executed in order, so this one will be always executed * before any real hotremove alarms and we don't need to wait for it. */ } void spdk_pci_fini(void) { struct spdk_pci_device *dev; char bdf[32]; cleanup_pci_devices(); TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) { if (dev->internal.attached) { spdk_pci_addr_fmt(bdf, sizeof(bdf), &dev->addr); fprintf(stderr, "Device %s is still attached at shutdown!\n", bdf); } } #if RTE_VERSION >= RTE_VERSION_NUM(18, 5, 0, 0) if (spdk_process_is_primary()) { rte_dev_event_callback_unregister(NULL, spdk_pci_device_rte_hotremove, NULL); } #endif } int spdk_pci_device_init(struct rte_pci_driver *_drv, struct rte_pci_device *_dev) { struct spdk_pci_driver *driver = (struct spdk_pci_driver *)_drv; struct spdk_pci_device *dev; int rc; #if RTE_VERSION < RTE_VERSION_NUM(18, 11, 0, 0) if (!driver->cb_fn) { /* Return a positive value to indicate that this device does * not belong to this driver, but this isn't an error. */ return 1; } #endif dev = calloc(1, sizeof(*dev)); if (dev == NULL) { return -1; } dev->dev_handle = _dev; dev->addr.domain = _dev->addr.domain; dev->addr.bus = _dev->addr.bus; dev->addr.dev = _dev->addr.devid; dev->addr.func = _dev->addr.function; dev->id.vendor_id = _dev->id.vendor_id; dev->id.device_id = _dev->id.device_id; dev->id.subvendor_id = _dev->id.subsystem_vendor_id; dev->id.subdevice_id = _dev->id.subsystem_device_id; dev->socket_id = _dev->device.numa_node; dev->map_bar = spdk_map_bar_rte; dev->unmap_bar = spdk_unmap_bar_rte; dev->cfg_read = spdk_cfg_read_rte; dev->cfg_write = spdk_cfg_write_rte; dev->detach = spdk_detach_rte; dev->internal.driver = driver; if (driver->cb_fn != NULL) { rc = driver->cb_fn(driver->cb_arg, dev); if (rc != 0) { free(dev); return rc; } dev->internal.attached = true; } pthread_mutex_lock(&g_pci_mutex); TAILQ_INSERT_TAIL(&g_pci_hotplugged_devices, dev, internal.tailq); pthread_mutex_unlock(&g_pci_mutex); return 0; } int spdk_pci_device_fini(struct rte_pci_device *_dev) { struct spdk_pci_device *dev; pthread_mutex_lock(&g_pci_mutex); TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) { if (dev->dev_handle == _dev) { break; } } if (dev == NULL || dev->internal.attached) { /* The device might be still referenced somewhere in SPDK. */ pthread_mutex_unlock(&g_pci_mutex); return -1; } assert(!dev->internal.removed); dev->internal.removed = true; pthread_mutex_unlock(&g_pci_mutex); return 0; } void spdk_pci_device_detach(struct spdk_pci_device *dev) { assert(dev->internal.attached); dev->internal.attached = false; dev->detach(dev); cleanup_pci_devices(); } int spdk_pci_device_attach(struct spdk_pci_driver *driver, spdk_pci_enum_cb enum_cb, void *enum_ctx, struct spdk_pci_addr *pci_address) { struct spdk_pci_device *dev; int rc; char bdf[32]; spdk_pci_addr_fmt(bdf, sizeof(bdf), pci_address); cleanup_pci_devices(); TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) { if (spdk_pci_addr_compare(&dev->addr, pci_address) == 0) { break; } } if (dev != NULL && dev->internal.driver == driver) { pthread_mutex_lock(&g_pci_mutex); if (dev->internal.attached || dev->internal.pending_removal) { pthread_mutex_unlock(&g_pci_mutex); return -1; } rc = enum_cb(enum_ctx, dev); if (rc == 0) { dev->internal.attached = true; } pthread_mutex_unlock(&g_pci_mutex); return rc; } if (!driver->is_registered) { driver->is_registered = true; rte_pci_register(&driver->driver); } driver->cb_fn = enum_cb; driver->cb_arg = enum_ctx; #if RTE_VERSION >= RTE_VERSION_NUM(18, 11, 0, 0) int i = 0; do { rc = rte_eal_hotplug_add("pci", bdf, ""); } while (rc == -ENOMSG && ++i <= DPDK_HOTPLUG_RETRY_COUNT); if (i > 1 && rc == -EEXIST) { /* Even though the previous request timed out, the device * was attached successfully. */ rc = 0; } #else rc = rte_eal_dev_attach(bdf, ""); #endif driver->cb_arg = NULL; driver->cb_fn = NULL; cleanup_pci_devices(); return rc == 0 ? 0 : -1; } /* Note: You can call spdk_pci_enumerate from more than one thread * simultaneously safely, but you cannot call spdk_pci_enumerate * and rte_eal_pci_probe simultaneously. */ int spdk_pci_enumerate(struct spdk_pci_driver *driver, spdk_pci_enum_cb enum_cb, void *enum_ctx) { struct spdk_pci_device *dev; int rc; cleanup_pci_devices(); pthread_mutex_lock(&g_pci_mutex); TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) { if (dev->internal.attached || dev->internal.driver != driver || dev->internal.pending_removal) { continue; } rc = enum_cb(enum_ctx, dev); if (rc == 0) { dev->internal.attached = true; } else if (rc < 0) { pthread_mutex_unlock(&g_pci_mutex); return -1; } } pthread_mutex_unlock(&g_pci_mutex); if (!driver->is_registered) { driver->is_registered = true; rte_pci_register(&driver->driver); } driver->cb_fn = enum_cb; driver->cb_arg = enum_ctx; if (rte_bus_scan() != 0 || rte_bus_probe() != 0) { driver->cb_arg = NULL; driver->cb_fn = NULL; return -1; } driver->cb_arg = NULL; driver->cb_fn = NULL; cleanup_pci_devices(); return 0; } struct spdk_pci_device * spdk_pci_get_first_device(void) { return TAILQ_FIRST(&g_pci_devices); } struct spdk_pci_device * spdk_pci_get_next_device(struct spdk_pci_device *prev) { return TAILQ_NEXT(prev, internal.tailq); } int spdk_pci_device_map_bar(struct spdk_pci_device *dev, uint32_t bar, void **mapped_addr, uint64_t *phys_addr, uint64_t *size) { return dev->map_bar(dev, bar, mapped_addr, phys_addr, size); } int spdk_pci_device_unmap_bar(struct spdk_pci_device *dev, uint32_t bar, void *addr) { return dev->unmap_bar(dev, bar, addr); } uint32_t spdk_pci_device_get_domain(struct spdk_pci_device *dev) { return dev->addr.domain; } uint8_t spdk_pci_device_get_bus(struct spdk_pci_device *dev) { return dev->addr.bus; } uint8_t spdk_pci_device_get_dev(struct spdk_pci_device *dev) { return dev->addr.dev; } uint8_t spdk_pci_device_get_func(struct spdk_pci_device *dev) { return dev->addr.func; } uint16_t spdk_pci_device_get_vendor_id(struct spdk_pci_device *dev) { return dev->id.vendor_id; } uint16_t spdk_pci_device_get_device_id(struct spdk_pci_device *dev) { return dev->id.device_id; } uint16_t spdk_pci_device_get_subvendor_id(struct spdk_pci_device *dev) { return dev->id.subvendor_id; } uint16_t spdk_pci_device_get_subdevice_id(struct spdk_pci_device *dev) { return dev->id.subdevice_id; } struct spdk_pci_id spdk_pci_device_get_id(struct spdk_pci_device *dev) { return dev->id; } int spdk_pci_device_get_socket_id(struct spdk_pci_device *dev) { return dev->socket_id; } int spdk_pci_device_cfg_read(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset) { return dev->cfg_read(dev, value, len, offset); } int spdk_pci_device_cfg_write(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset) { return dev->cfg_write(dev, value, len, offset); } int spdk_pci_device_cfg_read8(struct spdk_pci_device *dev, uint8_t *value, uint32_t offset) { return spdk_pci_device_cfg_read(dev, value, 1, offset); } int spdk_pci_device_cfg_write8(struct spdk_pci_device *dev, uint8_t value, uint32_t offset) { return spdk_pci_device_cfg_write(dev, &value, 1, offset); } int spdk_pci_device_cfg_read16(struct spdk_pci_device *dev, uint16_t *value, uint32_t offset) { return spdk_pci_device_cfg_read(dev, value, 2, offset); } int spdk_pci_device_cfg_write16(struct spdk_pci_device *dev, uint16_t value, uint32_t offset) { return spdk_pci_device_cfg_write(dev, &value, 2, offset); } int spdk_pci_device_cfg_read32(struct spdk_pci_device *dev, uint32_t *value, uint32_t offset) { return spdk_pci_device_cfg_read(dev, value, 4, offset); } int spdk_pci_device_cfg_write32(struct spdk_pci_device *dev, uint32_t value, uint32_t offset) { return spdk_pci_device_cfg_write(dev, &value, 4, offset); } int spdk_pci_device_get_serial_number(struct spdk_pci_device *dev, char *sn, size_t len) { int err; uint32_t pos, header = 0; uint32_t i, buf[2]; if (len < 17) { return -1; } err = spdk_pci_device_cfg_read32(dev, &header, PCI_CFG_SIZE); if (err || !header) { return -1; } pos = PCI_CFG_SIZE; while (1) { if ((header & 0x0000ffff) == PCI_EXT_CAP_ID_SN) { if (pos) { /* skip the header */ pos += 4; for (i = 0; i < 2; i++) { err = spdk_pci_device_cfg_read32(dev, &buf[i], pos + 4 * i); if (err) { return -1; } } snprintf(sn, len, "%08x%08x", buf[1], buf[0]); return 0; } } pos = (header >> 20) & 0xffc; /* 0 if no other items exist */ if (pos < PCI_CFG_SIZE) { return -1; } err = spdk_pci_device_cfg_read32(dev, &header, pos); if (err) { return -1; } } return -1; } struct spdk_pci_addr spdk_pci_device_get_addr(struct spdk_pci_device *dev) { return dev->addr; } bool spdk_pci_device_is_removed(struct spdk_pci_device *dev) { return dev->internal.pending_removal; } int spdk_pci_addr_compare(const struct spdk_pci_addr *a1, const struct spdk_pci_addr *a2) { if (a1->domain > a2->domain) { return 1; } else if (a1->domain < a2->domain) { return -1; } else if (a1->bus > a2->bus) { return 1; } else if (a1->bus < a2->bus) { return -1; } else if (a1->dev > a2->dev) { return 1; } else if (a1->dev < a2->dev) { return -1; } else if (a1->func > a2->func) { return 1; } else if (a1->func < a2->func) { return -1; } return 0; } #ifdef __linux__ int spdk_pci_device_claim(const struct spdk_pci_addr *pci_addr) { int dev_fd; char dev_name[64]; int pid; void *dev_map; struct flock pcidev_lock = { .l_type = F_WRLCK, .l_whence = SEEK_SET, .l_start = 0, .l_len = 0, }; snprintf(dev_name, sizeof(dev_name), "/tmp/spdk_pci_lock_%04x:%02x:%02x.%x", pci_addr->domain, pci_addr->bus, pci_addr->dev, pci_addr->func); dev_fd = open(dev_name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR); if (dev_fd == -1) { fprintf(stderr, "could not open %s\n", dev_name); return -1; } if (ftruncate(dev_fd, sizeof(int)) != 0) { fprintf(stderr, "could not truncate %s\n", dev_name); close(dev_fd); return -1; } dev_map = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, dev_fd, 0); if (dev_map == MAP_FAILED) { fprintf(stderr, "could not mmap dev %s (%d)\n", dev_name, errno); close(dev_fd); return -1; } if (fcntl(dev_fd, F_SETLK, &pcidev_lock) != 0) { pid = *(int *)dev_map; fprintf(stderr, "Cannot create lock on device %s, probably" " process %d has claimed it\n", dev_name, pid); munmap(dev_map, sizeof(int)); close(dev_fd); return -1; } *(int *)dev_map = (int)getpid(); munmap(dev_map, sizeof(int)); /* Keep dev_fd open to maintain the lock. */ return dev_fd; } #endif /* __linux__ */ #ifdef __FreeBSD__ int spdk_pci_device_claim(const struct spdk_pci_addr *pci_addr) { /* TODO */ return 0; } #endif /* __FreeBSD__ */ int spdk_pci_addr_parse(struct spdk_pci_addr *addr, const char *bdf) { unsigned domain, bus, dev, func; if (addr == NULL || bdf == NULL) { return -EINVAL; } if ((sscanf(bdf, "%x:%x:%x.%x", &domain, &bus, &dev, &func) == 4) || (sscanf(bdf, "%x.%x.%x.%x", &domain, &bus, &dev, &func) == 4)) { /* Matched a full address - all variables are initialized */ } else if (sscanf(bdf, "%x:%x:%x", &domain, &bus, &dev) == 3) { func = 0; } else if ((sscanf(bdf, "%x:%x.%x", &bus, &dev, &func) == 3) || (sscanf(bdf, "%x.%x.%x", &bus, &dev, &func) == 3)) { domain = 0; } else if ((sscanf(bdf, "%x:%x", &bus, &dev) == 2) || (sscanf(bdf, "%x.%x", &bus, &dev) == 2)) { domain = 0; func = 0; } else { return -EINVAL; } if (bus > 0xFF || dev > 0x1F || func > 7) { return -EINVAL; } addr->domain = domain; addr->bus = bus; addr->dev = dev; addr->func = func; return 0; } int spdk_pci_addr_fmt(char *bdf, size_t sz, const struct spdk_pci_addr *addr) { int rc; rc = snprintf(bdf, sz, "%04x:%02x:%02x.%x", addr->domain, addr->bus, addr->dev, addr->func); if (rc > 0 && (size_t)rc < sz) { return 0; } return -1; } void spdk_pci_hook_device(struct spdk_pci_driver *drv, struct spdk_pci_device *dev) { assert(dev->map_bar != NULL); assert(dev->unmap_bar != NULL); assert(dev->cfg_read != NULL); assert(dev->cfg_write != NULL); assert(dev->detach != NULL); dev->internal.driver = drv; TAILQ_INSERT_TAIL(&g_pci_devices, dev, internal.tailq); } void spdk_pci_unhook_device(struct spdk_pci_device *dev) { assert(!dev->internal.attached); TAILQ_REMOVE(&g_pci_devices, dev, internal.tailq); }