/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * NVMe over PCIe transport */ #include "spdk/stdinc.h" #include "spdk/likely.h" #include "nvme_internal.h" #include "nvme_uevent.h" #define NVME_ADMIN_ENTRIES (128) #define NVME_ADMIN_TRACKERS (64) /* * NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion * queues, this value will be used to negotiate with user specified size and * hardware allowed size to determine the maximum number of outstanding IOs on * an I/O qpair at any time. */ #define NVME_IO_ENTRIES (512) /* * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL * segment. */ #define NVME_MAX_SGL_DESCRIPTORS (253) #define NVME_MAX_PRP_LIST_ENTRIES (506) /* * For commands requiring more than 2 PRP entries, one PRP will be * embedded in the command (prp1), and the rest of the PRP entries * will be in a list pointed to by the command (prp2). This means * that real max number of PRP entries we support is 506+1, which * results in a max xfer size of 506*PAGE_SIZE. */ #define NVME_MAX_XFER_SIZE NVME_MAX_PRP_LIST_ENTRIES * PAGE_SIZE struct nvme_pcie_enum_ctx { spdk_nvme_probe_cb probe_cb; void *cb_ctx; struct spdk_pci_addr pci_addr; bool has_pci_addr; }; /* PCIe transport extensions for spdk_nvme_ctrlr */ struct nvme_pcie_ctrlr { struct spdk_nvme_ctrlr ctrlr; /** NVMe MMIO register space */ volatile struct spdk_nvme_registers *regs; /** NVMe MMIO register size */ uint64_t regs_size; /* BAR mapping address which contains controller memory buffer */ void *cmb_bar_virt_addr; /* BAR physical address which contains controller memory buffer */ uint64_t cmb_bar_phys_addr; /* Controller memory buffer size in Bytes */ uint64_t cmb_size; /* Current offset of controller memory buffer */ uint64_t cmb_current_offset; /** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */ uint32_t doorbell_stride_u32; /* Opaque handle to associated PCI device. */ struct spdk_pci_device *devhandle; /* Flag to indicate the MMIO register has been remapped */ bool is_remapped; }; struct nvme_tracker { TAILQ_ENTRY(nvme_tracker) tq_list; struct nvme_request *req; uint16_t cid; uint16_t rsvd1: 14; uint16_t timed_out: 1; uint16_t active: 1; uint32_t rsvd2; /* The value of spdk_get_ticks() when the tracker was submitted to the hardware. */ uint64_t submit_tick; uint64_t prp_sgl_bus_addr; union { uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES]; struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS]; } u; }; /* * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary * and so that there is no padding required to meet alignment requirements. */ SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K"); SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned"); /* PCIe transport extensions for spdk_nvme_qpair */ struct nvme_pcie_qpair { /* Submission queue tail doorbell */ volatile uint32_t *sq_tdbl; /* Completion queue head doorbell */ volatile uint32_t *cq_hdbl; /* Submission queue */ struct spdk_nvme_cmd *cmd; /* Completion queue */ struct spdk_nvme_cpl *cpl; TAILQ_HEAD(, nvme_tracker) free_tr; TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr; /* Array of trackers indexed by command ID. */ struct nvme_tracker *tr; uint16_t num_entries; uint16_t sq_tail; uint16_t cq_head; uint8_t phase; bool is_enabled; /* * Base qpair structure. * This is located after the hot data in this structure so that the important parts of * nvme_pcie_qpair are in the same cache line. */ struct spdk_nvme_qpair qpair; /* * Fields below this point should not be touched on the normal I/O path. */ bool sq_in_cmb; uint64_t cmd_bus_addr; uint64_t cpl_bus_addr; }; static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr); static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair); static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair); __thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL; static volatile uint16_t g_signal_lock; static bool g_sigset = false; static int hotplug_fd = -1; static void nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx) { void *map_address; if (!__sync_bool_compare_and_swap(&g_signal_lock, 0, 1)) { return; } assert(g_thread_mmio_ctrlr != NULL); if (!g_thread_mmio_ctrlr->is_remapped) { map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); if (map_address == MAP_FAILED) { SPDK_ERRLOG("mmap failed\n"); g_signal_lock = 0; return; } memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers)); g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address; g_thread_mmio_ctrlr->is_remapped = true; } g_signal_lock = 0; return; } static void nvme_pcie_ctrlr_setup_signal(void) { struct sigaction sa; sa.sa_sigaction = nvme_sigbus_fault_sighandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO; sigaction(SIGBUS, &sa, NULL); } static int _nvme_pcie_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_remove_cb remove_cb) { struct spdk_nvme_ctrlr *ctrlr; struct spdk_uevent event; struct spdk_pci_addr pci_addr; while (spdk_get_uevent(hotplug_fd, &event) > 0) { if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO) { if (event.action == SPDK_NVME_UEVENT_ADD) { SPDK_TRACELOG(SPDK_TRACE_NVME, "add nvme address: %s\n", event.traddr); if (spdk_process_is_primary()) { if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) { nvme_pcie_ctrlr_attach(probe_cb, cb_ctx, &pci_addr); } } } else if (event.action == SPDK_NVME_UEVENT_REMOVE) { bool in_list = false; TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) { if (strcmp(event.traddr, ctrlr->trid.traddr) == 0) { in_list = true; break; } } if (in_list == false) { return 0; } SPDK_TRACELOG(SPDK_TRACE_NVME, "remove nvme address: %s\n", event.traddr); nvme_ctrlr_fail(ctrlr, true); /* get the user app to clean up and stop I/O */ if (remove_cb) { nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); remove_cb(cb_ctx, ctrlr); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); } } } } return 0; } static inline struct nvme_pcie_ctrlr * nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE); return (struct nvme_pcie_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_pcie_ctrlr, ctrlr)); } static inline struct nvme_pcie_qpair * nvme_pcie_qpair(struct spdk_nvme_qpair *qpair) { assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE); return (struct nvme_pcie_qpair *)((uintptr_t)qpair - offsetof(struct nvme_pcie_qpair, qpair)); } static volatile void * nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); return (volatile void *)((uintptr_t)pctrlr->regs + offset); } int nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 4); g_thread_mmio_ctrlr = pctrlr; spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value); g_thread_mmio_ctrlr = NULL; return 0; } int nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 8); g_thread_mmio_ctrlr = pctrlr; spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value); g_thread_mmio_ctrlr = NULL; return 0; } int nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 4); assert(value != NULL); g_thread_mmio_ctrlr = pctrlr; *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset)); g_thread_mmio_ctrlr = NULL; if (~(*value) == 0) { return -1; } return 0; } int nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 8); assert(value != NULL); g_thread_mmio_ctrlr = pctrlr; *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset)); g_thread_mmio_ctrlr = NULL; if (~(*value) == 0) { return -1; } return 0; } static int nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) { return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq), value); } static int nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) { return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq), value); } static int nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa) { return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw), aqa->raw); } static int nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw), &cmbloc->raw); } static int nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), &cmbsz->raw); } uint32_t nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { return NVME_MAX_XFER_SIZE; } uint32_t nvme_pcie_ctrlr_get_max_io_queue_size(struct spdk_nvme_ctrlr *ctrlr) { return NVME_IO_ENTRIES; } static void nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr; uint32_t bir; union spdk_nvme_cmbsz_register cmbsz; union spdk_nvme_cmbloc_register cmbloc; uint64_t size, unit_size, offset, bar_size, bar_phys_addr; if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_ERRLOG("get registers failed\n"); goto exit; } if (!cmbsz.bits.sz) goto exit; bir = cmbloc.bits.bir; /* Values 0 2 3 4 5 are valid for BAR */ if (bir > 5 || bir == 1) goto exit; /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */ unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu); /* controller memory buffer size in Bytes */ size = unit_size * cmbsz.bits.sz; /* controller memory buffer offset from BAR in Bytes */ offset = unit_size * cmbloc.bits.ofst; rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, &bar_phys_addr, &bar_size); if ((rc != 0) || addr == NULL) { goto exit; } if (offset > bar_size) { goto exit; } if (size > bar_size - offset) { goto exit; } pctrlr->cmb_bar_virt_addr = addr; pctrlr->cmb_bar_phys_addr = bar_phys_addr; pctrlr->cmb_size = size; pctrlr->cmb_current_offset = offset; if (!cmbsz.bits.sqs) { pctrlr->ctrlr.opts.use_cmb_sqs = false; } return; exit: pctrlr->cmb_bar_virt_addr = NULL; pctrlr->ctrlr.opts.use_cmb_sqs = false; return; } static int nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; union spdk_nvme_cmbloc_register cmbloc; void *addr = pctrlr->cmb_bar_virt_addr; if (addr) { if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_ERRLOG("get_cmbloc() failed\n"); return -EIO; } rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr); } return rc; } static int nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned, uint64_t *offset) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); uint64_t round_offset; round_offset = pctrlr->cmb_current_offset; round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1); if (round_offset + length > pctrlr->cmb_size) return -1; *offset = round_offset; pctrlr->cmb_current_offset = round_offset + length; return 0; } static int nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr; uint64_t phys_addr, size; rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr, &phys_addr, &size); pctrlr->regs = (volatile struct spdk_nvme_registers *)addr; if ((pctrlr->regs == NULL) || (rc != 0)) { SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n", rc, pctrlr->regs); return -1; } pctrlr->regs_size = size; nvme_pcie_ctrlr_map_cmb(pctrlr); return 0; } static int nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; void *addr = (void *)pctrlr->regs; if (pctrlr->ctrlr.is_removed) { return rc; } rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr); if (rc != 0) { SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc); return -1; } if (addr) { /* NOTE: addr may have been remapped here. We're relying on DPDK to call * munmap internally. */ rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr); } return rc; } static int nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_qpair *pqpair; int rc; pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL); if (pqpair == NULL) { return -ENOMEM; } pqpair->num_entries = NVME_ADMIN_ENTRIES; ctrlr->adminq = &pqpair->qpair; rc = nvme_qpair_init(ctrlr->adminq, 0, /* qpair ID */ ctrlr, SPDK_NVME_QPRIO_URGENT, NVME_ADMIN_ENTRIES); if (rc != 0) { return rc; } return nvme_pcie_qpair_construct(ctrlr->adminq); } /* This function must only be called while holding g_spdk_nvme_driver->lock */ static int pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev) { struct spdk_nvme_transport_id trid = {}; struct nvme_pcie_enum_ctx *enum_ctx = ctx; struct spdk_nvme_ctrlr *ctrlr; int rc = 0; struct spdk_pci_addr pci_addr; pci_addr = spdk_pci_device_get_addr(pci_dev); trid.trtype = SPDK_NVME_TRANSPORT_PCIE; spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr); /* Verify that this controller is not already attached */ TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) { /* NOTE: In the case like multi-process environment where the device handle is * different per each process, we compare by BDF to determine whether it is the * same controller. */ if (strcmp(trid.traddr, ctrlr->trid.traddr) == 0) { if (!spdk_process_is_primary()) { rc = nvme_ctrlr_add_process(ctrlr, pci_dev); } return rc; } } /* check whether user passes the pci_addr */ if (enum_ctx->has_pci_addr && (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) { return 1; } return nvme_ctrlr_probe(&trid, pci_dev, enum_ctx->probe_cb, enum_ctx->cb_ctx); } int nvme_pcie_ctrlr_scan(const struct spdk_nvme_transport_id *trid, void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_remove_cb remove_cb) { struct nvme_pcie_enum_ctx enum_ctx = {}; enum_ctx.probe_cb = probe_cb; enum_ctx.cb_ctx = cb_ctx; if (strlen(trid->traddr) != 0) { if (spdk_pci_addr_parse(&enum_ctx.pci_addr, trid->traddr)) { return -1; } enum_ctx.has_pci_addr = true; } if (hotplug_fd < 0) { hotplug_fd = spdk_uevent_connect(); if (hotplug_fd < 0) { SPDK_TRACELOG(SPDK_TRACE_NVME, "Failed to open uevent netlink socket\n"); } } else { _nvme_pcie_hotplug_monitor(cb_ctx, probe_cb, remove_cb); } if (enum_ctx.has_pci_addr == false) { return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx); } else { return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr); } } static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr) { struct nvme_pcie_enum_ctx enum_ctx; enum_ctx.probe_cb = probe_cb; enum_ctx.cb_ctx = cb_ctx; return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, pci_addr); } struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { struct spdk_pci_device *pci_dev = devhandle; struct nvme_pcie_ctrlr *pctrlr; union spdk_nvme_cap_register cap; uint32_t cmd_reg; int rc; struct spdk_pci_id pci_id; pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL); if (pctrlr == NULL) { SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } pctrlr->is_remapped = false; pctrlr->ctrlr.is_removed = false; pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; pctrlr->devhandle = devhandle; pctrlr->ctrlr.opts = *opts; memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid)); rc = nvme_pcie_ctrlr_allocate_bars(pctrlr); if (rc != 0) { spdk_free(pctrlr); return NULL; } /* Enable PCI busmaster and disable INTx */ spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4); cmd_reg |= 0x404; spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4); if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) { SPDK_ERRLOG("get_cap() failed\n"); spdk_free(pctrlr); return NULL; } nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap); /* Doorbell stride is 2 ^ (dstrd + 2), * but we want multiples of 4, so drop the + 2 */ pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd; rc = nvme_ctrlr_construct(&pctrlr->ctrlr); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } pci_id = spdk_pci_device_get_id(pci_dev); pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id); rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } /* Construct the primary process properties */ rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } if (g_sigset != true) { nvme_pcie_ctrlr_setup_signal(); g_sigset = true; } return &pctrlr->ctrlr; } int nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq); union spdk_nvme_aqa_register aqa; if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) { SPDK_ERRLOG("set_asq() failed\n"); return -EIO; } if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) { SPDK_ERRLOG("set_acq() failed\n"); return -EIO; } aqa.raw = 0; /* acqs and asqs are 0-based. */ aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) { SPDK_ERRLOG("set_aqa() failed\n"); return -EIO; } return 0; } int nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr); if (ctrlr->adminq) { nvme_pcie_qpair_destroy(ctrlr->adminq); } nvme_ctrlr_free_processes(ctrlr); nvme_pcie_ctrlr_free_bars(pctrlr); if (devhandle) { spdk_pci_device_detach(devhandle); } spdk_free(pctrlr); return 0; } static void nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr) { tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp); tr->cid = cid; tr->active = false; } int nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); pqpair->sq_tail = pqpair->cq_head = 0; /* * First time through the completion queue, HW will set phase * bit on completions to 1. So set this to 1 here, indicating * we're looking for a 1 to know which entries have completed. * we'll toggle the bit each time when the completion queue * rolls over. */ pqpair->phase = 1; memset(pqpair->cmd, 0, pqpair->num_entries * sizeof(struct spdk_nvme_cmd)); memset(pqpair->cpl, 0, pqpair->num_entries * sizeof(struct spdk_nvme_cpl)); return 0; } static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_tracker *tr; uint16_t i; volatile uint32_t *doorbell_base; uint64_t phys_addr = 0; uint64_t offset; uint16_t num_trackers; if (qpair->id == 0) { num_trackers = NVME_ADMIN_TRACKERS; } else { /* * Note that for a queue size of N, we can only have (N-1) * commands outstanding, hence the "-1" here. */ num_trackers = pqpair->num_entries - 1; } assert(num_trackers != 0); pqpair->sq_in_cmb = false; /* cmd and cpl rings must be aligned on 4KB boundaries. */ if (ctrlr->opts.use_cmb_sqs) { if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd), 0x1000, &offset) == 0) { pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset; pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset; pqpair->sq_in_cmb = true; } } if (pqpair->sq_in_cmb == false) { pqpair->cmd = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd), 0x1000, &pqpair->cmd_bus_addr); if (pqpair->cmd == NULL) { SPDK_ERRLOG("alloc qpair_cmd failed\n"); return -ENOMEM; } } pqpair->cpl = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl), 0x1000, &pqpair->cpl_bus_addr); if (pqpair->cpl == NULL) { SPDK_ERRLOG("alloc qpair_cpl failed\n"); return -ENOMEM; } doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl; pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; /* * Reserve space for all of the trackers in a single allocation. * struct nvme_tracker must be padded so that its size is already a power of 2. * This ensures the PRP list embedded in the nvme_tracker object will not span a * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing. */ pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), &phys_addr); if (pqpair->tr == NULL) { SPDK_ERRLOG("nvme_tr failed\n"); return -ENOMEM; } TAILQ_INIT(&pqpair->free_tr); TAILQ_INIT(&pqpair->outstanding_tr); for (i = 0; i < num_trackers; i++) { tr = &pqpair->tr[i]; nvme_qpair_construct_tracker(tr, i, phys_addr); TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); phys_addr += sizeof(struct nvme_tracker); } nvme_pcie_qpair_reset(qpair); return 0; } static inline void nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) { /* dst and src are known to be non-overlapping and 64-byte aligned. */ #if defined(__AVX__) __m256i *d256 = (__m256i *)dst; const __m256i *s256 = (const __m256i *)src; _mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0])); _mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1])); #elif defined(__SSE2__) __m128i *d128 = (__m128i *)dst; const __m128i *s128 = (const __m128i *)src; _mm_store_si128(&d128[0], _mm_load_si128(&s128[0])); _mm_store_si128(&d128[1], _mm_load_si128(&s128[1])); _mm_store_si128(&d128[2], _mm_load_si128(&s128[2])); _mm_store_si128(&d128[3], _mm_load_si128(&s128[3])); #else *dst = *src; #endif } /** * Note: the ctrlr_lock must be held when calling this function. */ static void nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct spdk_nvme_cpl *cpl) { struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct nvme_request *active_req = req; struct spdk_nvme_ctrlr_process *active_proc; bool pending_on_proc = false; /* * The admin request is from another process. Move to the per * process list for that process to handle it later. */ assert(nvme_qpair_is_admin_queue(qpair)); assert(active_req->pid != getpid()); TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { if (active_proc->pid == active_req->pid) { /* Saved the original completion information */ memcpy(&active_req->cpl, cpl, sizeof(*cpl)); STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq); pending_on_proc = true; break; } } if (pending_on_proc == false) { SPDK_ERRLOG("The owning process (pid %d) is not found. Drop the request.\n", active_req->pid); nvme_free_request(active_req); } } /** * Note: the ctrlr_lock must be held when calling this function. */ static void nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct nvme_request *req, *tmp_req; bool proc_found = false; pid_t pid = getpid(); struct spdk_nvme_ctrlr_process *proc; /* * Check whether there is any pending admin request from * other active processes. */ assert(nvme_qpair_is_admin_queue(qpair)); TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) { if (proc->pid == pid) { proc_found = true; break; } } if (proc_found == false) { SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid); assert(proc_found); } STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); assert(req->pid == pid); if (req->cb_fn) { req->cb_fn(req->cb_arg, &req->cpl); } nvme_free_request(req); } } static void nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) { struct nvme_request *req; struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr); tr->timed_out = 0; if (spdk_unlikely(qpair->ctrlr->timeout_cb_fn != NULL)) { tr->submit_tick = spdk_get_ticks(); } req = tr->req; pqpair->tr[tr->cid].active = true; /* Copy the command from the tracker to the submission queue. */ nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd); if (++pqpair->sq_tail == pqpair->num_entries) { pqpair->sq_tail = 0; } spdk_wmb(); g_thread_mmio_ctrlr = pctrlr; spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail); g_thread_mmio_ctrlr = NULL; } static void nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, struct spdk_nvme_cpl *cpl, bool print_on_error) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_request *req; bool retry, error, was_active; bool req_from_current_proc = true; req = tr->req; assert(req != NULL); error = spdk_nvme_cpl_is_error(cpl); retry = error && nvme_completion_is_retry(cpl) && req->retries < spdk_nvme_retry_count; if (error && print_on_error) { nvme_qpair_print_command(qpair, &req->cmd); nvme_qpair_print_completion(qpair, cpl); } was_active = pqpair->tr[cpl->cid].active; pqpair->tr[cpl->cid].active = false; assert(cpl->cid == req->cmd.cid); if (retry) { req->retries++; nvme_pcie_qpair_submit_tracker(qpair, tr); } else { if (was_active) { /* Only check admin requests from different processes. */ if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) { req_from_current_proc = false; nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl); } else { if (req->cb_fn) { req->cb_fn(req->cb_arg, cpl); } } } if (req_from_current_proc == true) { nvme_free_request(req); } tr->req = NULL; TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list); TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list); /* * If the controller is in the middle of resetting, don't * try to submit queued requests here - let the reset logic * handle that instead. */ if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); nvme_qpair_submit_request(qpair, req); } } } static void nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, bool print_on_error) { struct spdk_nvme_cpl cpl; memset(&cpl, 0, sizeof(cpl)); cpl.sqid = qpair->id; cpl.cid = tr->cid; cpl.status.sct = sct; cpl.status.sc = sc; cpl.status.dnr = dnr; nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); } static void nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_tracker *tr, *temp; TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) { SPDK_ERRLOG("aborting outstanding command\n"); nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true); } } static void nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_tracker *tr; tr = TAILQ_FIRST(&pqpair->outstanding_tr); while (tr != NULL) { assert(tr->req != NULL); if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0, false); tr = TAILQ_FIRST(&pqpair->outstanding_tr); } else { tr = TAILQ_NEXT(tr, tq_list); } } } static void nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair) { nvme_pcie_admin_qpair_abort_aers(qpair); } static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); if (nvme_qpair_is_admin_queue(qpair)) { nvme_pcie_admin_qpair_destroy(qpair); } if (pqpair->cmd && !pqpair->sq_in_cmb) { spdk_free(pqpair->cmd); } if (pqpair->cpl) { spdk_free(pqpair->cpl); } if (pqpair->tr) { spdk_free(pqpair->tr); } spdk_free(pqpair); return 0; } static void nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair) { /* * Manually abort each outstanding admin command. Do not retry * admin commands found here, since they will be left over from * a controller reset and its likely the context in which the * command was issued no longer applies. */ nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */); } static void nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair) { /* Manually abort each outstanding I/O. */ nvme_pcie_qpair_abort_trackers(qpair, 0); } int nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); pqpair->is_enabled = true; if (nvme_qpair_is_io_queue(qpair)) { nvme_pcie_io_qpair_enable(qpair); } else { nvme_pcie_admin_qpair_enable(qpair); } return 0; } static void nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair) { nvme_pcie_admin_qpair_abort_aers(qpair); } static void nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair) { } int nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); pqpair->is_enabled = false; if (nvme_qpair_is_io_queue(qpair)) { nvme_pcie_io_qpair_disable(qpair); } else { nvme_pcie_admin_qpair_disable(qpair); } return 0; } int nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair) { nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */); return 0; } static int nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ; /* * TODO: create a create io completion queue command data * structure. */ cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id; /* * 0x2 = interrupts enabled * 0x1 = physically contiguous */ cmd->cdw11 = 0x1; cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que); struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ; /* * TODO: create a create io submission queue command data * structure. */ cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id; /* 0x1 = physically contiguous */ cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1; cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ; cmd->cdw10 = qpair->id; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ; cmd->cdw10 = qpair->id; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint16_t qid) { struct nvme_completion_poll_status status; int rc; status.done = false; rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_create_io_cq failed!\n"); return -1; } status.done = false; rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_create_io_sq failed!\n"); /* Attempt to delete the completion queue */ status.done = false; rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return -1; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } return -1; } nvme_pcie_qpair_reset(qpair); return 0; } struct spdk_nvme_qpair * nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, enum spdk_nvme_qprio qprio) { struct nvme_pcie_qpair *pqpair; struct spdk_nvme_qpair *qpair; int rc; assert(ctrlr != NULL); pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL); if (pqpair == NULL) { return NULL; } pqpair->num_entries = ctrlr->opts.io_queue_size; qpair = &pqpair->qpair; rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, ctrlr->opts.io_queue_requests); if (rc != 0) { nvme_pcie_qpair_destroy(qpair); return NULL; } rc = nvme_pcie_qpair_construct(qpair); if (rc != 0) { nvme_pcie_qpair_destroy(qpair); return NULL; } rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid); if (rc != 0) { SPDK_ERRLOG("I/O queue creation failed\n"); nvme_pcie_qpair_destroy(qpair); return NULL; } return qpair; } int nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id); } int nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_completion_poll_status status; int rc; assert(ctrlr != NULL); if (ctrlr->is_removed) { goto free; } /* Delete the I/O submission queue and then the completion queue */ status.done = false; rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { return -1; } status.done = false; rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { return -1; } free: nvme_pcie_qpair_destroy(qpair); return 0; } static void nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) { /* * Bad vtophys translation, so abort this request and return * immediately. */ nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_FIELD, 1 /* do not retry */, true); } /** * Build PRP list describing physically contiguous payload buffer. */ static int nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct nvme_tracker *tr) { uint64_t phys_addr; void *seg_addr; uint32_t nseg, cur_nseg, modulo, unaligned; void *md_payload; void *payload = req->payload.u.contig + req->payload_offset; phys_addr = spdk_vtophys(payload); if (phys_addr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } nseg = req->payload_size >> spdk_u32log2(PAGE_SIZE); modulo = req->payload_size & (PAGE_SIZE - 1); unaligned = phys_addr & (PAGE_SIZE - 1); if (modulo || unaligned) { nseg += 1 + ((modulo + unaligned - 1) >> spdk_u32log2(PAGE_SIZE)); } if (req->payload.md) { md_payload = req->payload.md + req->md_offset; tr->req->cmd.mptr = spdk_vtophys(md_payload); if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } } tr->req->cmd.psdt = SPDK_NVME_PSDT_PRP; tr->req->cmd.dptr.prp.prp1 = phys_addr; if (nseg == 2) { seg_addr = payload + PAGE_SIZE - unaligned; tr->req->cmd.dptr.prp.prp2 = spdk_vtophys(seg_addr); } else if (nseg > 2) { cur_nseg = 1; tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr; while (cur_nseg < nseg) { seg_addr = payload + cur_nseg * PAGE_SIZE - unaligned; phys_addr = spdk_vtophys(seg_addr); if (phys_addr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } tr->u.prp[cur_nseg - 1] = phys_addr; cur_nseg++; } } return 0; } /** * Build SGL list describing scattered payload buffer. */ static int nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct nvme_tracker *tr) { int rc; void *virt_addr; uint64_t phys_addr; uint32_t remaining_transfer_len, length; struct spdk_nvme_sgl_descriptor *sgl; uint32_t nseg = 0; /* * Build scattered payloads. */ assert(req->payload_size != 0); assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.u.sgl.reset_sgl_fn != NULL); assert(req->payload.u.sgl.next_sge_fn != NULL); req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset); sgl = tr->u.sgl; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL; req->cmd.dptr.sgl1.unkeyed.subtype = 0; remaining_transfer_len = req->payload_size; while (remaining_transfer_len > 0) { if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length); if (rc) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } phys_addr = spdk_vtophys(virt_addr); if (phys_addr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } length = spdk_min(remaining_transfer_len, length); remaining_transfer_len -= length; sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; sgl->unkeyed.length = length; sgl->address = phys_addr; sgl->unkeyed.subtype = 0; sgl++; nseg++; } if (nseg == 1) { /* * The whole transfer can be described by a single SGL descriptor. * Use the special case described by the spec where SGL1's type is Data Block. * This means the SGL in the tracker is not used at all, so copy the first (and only) * SGL element into SGL1. */ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; } else { /* For now we can only support 1 SGL segment in NVMe controller */ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); } return 0; } /** * Build PRP list describing scattered payload buffer. */ static int nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct nvme_tracker *tr) { int rc; void *virt_addr; uint64_t phys_addr; uint32_t data_transferred, remaining_transfer_len, length; uint32_t nseg, cur_nseg, total_nseg, last_nseg, modulo, unaligned; uint32_t sge_count = 0; uint64_t prp2 = 0; /* * Build scattered payloads. */ assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.u.sgl.reset_sgl_fn != NULL); req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset); remaining_transfer_len = req->payload_size; total_nseg = 0; last_nseg = 0; while (remaining_transfer_len > 0) { assert(req->payload.u.sgl.next_sge_fn != NULL); rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length); if (rc) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } phys_addr = spdk_vtophys(virt_addr); if (phys_addr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } /* * Any incompatible sges should have been handled up in the splitting routine, * but assert here as an additional check. */ assert((phys_addr & 0x3) == 0); /* Address must be dword aligned. */ /* All SGEs except last must end on a page boundary. */ assert((length >= remaining_transfer_len) || _is_page_aligned(phys_addr + length)); /* All SGe except first must start on a page boundary. */ assert((sge_count == 0) || _is_page_aligned(phys_addr)); data_transferred = spdk_min(remaining_transfer_len, length); nseg = data_transferred >> spdk_u32log2(PAGE_SIZE); modulo = data_transferred & (PAGE_SIZE - 1); unaligned = phys_addr & (PAGE_SIZE - 1); if (modulo || unaligned) { nseg += 1 + ((modulo + unaligned - 1) >> spdk_u32log2(PAGE_SIZE)); } if (total_nseg == 0) { req->cmd.psdt = SPDK_NVME_PSDT_PRP; req->cmd.dptr.prp.prp1 = phys_addr; phys_addr -= unaligned; } total_nseg += nseg; sge_count++; remaining_transfer_len -= data_transferred; if (total_nseg == 2) { if (sge_count == 1) tr->req->cmd.dptr.prp.prp2 = phys_addr + PAGE_SIZE; else if (sge_count == 2) tr->req->cmd.dptr.prp.prp2 = phys_addr; /* save prp2 value */ prp2 = tr->req->cmd.dptr.prp.prp2; } else if (total_nseg > 2) { if (sge_count == 1) cur_nseg = 1; else cur_nseg = 0; tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr; while (cur_nseg < nseg) { if (prp2) { tr->u.prp[0] = prp2; tr->u.prp[last_nseg + 1] = phys_addr + cur_nseg * PAGE_SIZE; } else tr->u.prp[last_nseg] = phys_addr + cur_nseg * PAGE_SIZE; last_nseg++; cur_nseg++; } } } return 0; } static inline bool nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); if (!pqpair->is_enabled && !qpair->ctrlr->is_resetting) { nvme_qpair_enable(qpair); } return pqpair->is_enabled; } int nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { struct nvme_tracker *tr; int rc = 0; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); nvme_pcie_qpair_check_enabled(qpair); if (nvme_qpair_is_admin_queue(qpair)) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); } tr = TAILQ_FIRST(&pqpair->free_tr); if (tr == NULL || !pqpair->is_enabled) { /* * No tracker is available, or the qpair is disabled due to * an in-progress controller-level reset. * * Put the request on the qpair's request queue to be * processed when a tracker frees up via a command * completion or when the controller reset is * completed. */ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); goto exit; } TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */ TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list); tr->req = req; req->cmd.cid = tr->cid; if (req->payload_size == 0) { /* Null payload - leave PRP fields zeroed */ rc = 0; } else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) { rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr); } else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) { if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) { rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr); } else { rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr); } } else { assert(0); nvme_pcie_fail_request_bad_vtophys(qpair, tr); rc = -EINVAL; } if (rc < 0) { goto exit; } nvme_pcie_qpair_submit_tracker(qpair, tr); exit: if (nvme_qpair_is_admin_queue(qpair)) { nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } return rc; } static void nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair) { uint64_t t02; struct nvme_tracker *tr, *tmp; struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; /* We don't want to expose the admin queue to the user, * so when we're timing out admin commands set the * qpair to NULL. */ if (qpair == ctrlr->adminq) { qpair = NULL; } t02 = spdk_get_ticks(); TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { if (tr->timed_out) { continue; } if (qpair == NULL && tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { continue; } if (tr->submit_tick + ctrlr->timeout_ticks > t02) { /* The trackers are in order, so as soon as one has not timed out, * stop iterating. */ break; } tr->timed_out = 1; ctrlr->timeout_cb_fn(ctrlr->timeout_cb_arg, ctrlr, qpair, tr->cid); } } int32_t nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr); struct nvme_tracker *tr; struct spdk_nvme_cpl *cpl; uint32_t num_completions = 0; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; if (spdk_unlikely(!nvme_pcie_qpair_check_enabled(qpair))) { /* * qpair is not enabled, likely because a controller reset is * is in progress. Ignore the interrupt - any I/O that was * associated with this interrupt will get retried when the * reset is complete. */ return 0; } if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); } if (max_completions == 0 || (max_completions > (pqpair->num_entries - 1U))) { /* * max_completions == 0 means unlimited, but complete at most one * queue depth batch of I/O at a time so that the completion * queue doorbells don't wrap around. */ max_completions = pqpair->num_entries - 1; } while (1) { cpl = &pqpair->cpl[pqpair->cq_head]; if (cpl->status.p != pqpair->phase) break; tr = &pqpair->tr[cpl->cid]; if (tr->active) { nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true); } else { SPDK_ERRLOG("cpl does not map to outstanding cmd\n"); nvme_qpair_print_completion(qpair, cpl); assert(0); } if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) { pqpair->cq_head = 0; pqpair->phase = !pqpair->phase; } if (++num_completions == max_completions) { break; } } if (num_completions > 0) { g_thread_mmio_ctrlr = pctrlr; spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head); g_thread_mmio_ctrlr = NULL; } if (spdk_unlikely(qpair->ctrlr->timeout_cb_fn != NULL) && qpair->ctrlr->state == NVME_CTRLR_STATE_READY) { /* * User registered for timeout callback */ nvme_pcie_qpair_check_timeout(qpair); } /* Before returning, complete any pending admin request. */ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) { nvme_pcie_qpair_complete_pending_admin_request(qpair); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); } return num_completions; }