/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define FUSE_USE_VERSION 31 #include #include #include #include "nvme_internal.h" #include "nvme_io_msg.h" #include "nvme_cuse.h" struct cuse_device { char dev_name[128]; uint32_t index; int claim_fd; char lock_name[64]; struct spdk_nvme_ctrlr *ctrlr; /**< NVMe controller */ uint32_t nsid; /**< NVMe name space id, or 0 */ pthread_t tid; struct fuse_session *session; struct cuse_device *ctrlr_device; TAILQ_HEAD(, cuse_device) ns_devices; TAILQ_ENTRY(cuse_device) tailq; }; static TAILQ_HEAD(, cuse_device) g_ctrlr_ctx_head = TAILQ_HEAD_INITIALIZER(g_ctrlr_ctx_head); static struct spdk_bit_array *g_ctrlr_started; struct cuse_io_ctx { struct spdk_nvme_cmd nvme_cmd; uint64_t lba; uint32_t lba_count; void *data; int data_len; fuse_req_t req; }; static void cuse_io_ctx_free(struct cuse_io_ctx *ctx) { spdk_free(ctx->data); free(ctx); } #define FUSE_REPLY_CHECK_BUFFER(req, arg, out_bufsz, val) \ if (out_bufsz == 0) { \ struct iovec out_iov; \ out_iov.iov_base = (void *)arg; \ out_iov.iov_len = sizeof(val); \ fuse_reply_ioctl_retry(req, NULL, 0, &out_iov, 1); \ return; \ } static void cuse_nvme_admin_cmd_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct cuse_io_ctx *ctx = arg; struct iovec out_iov[2]; struct spdk_nvme_cpl _cpl; memcpy(&_cpl, cpl, sizeof(struct spdk_nvme_cpl)); out_iov[0].iov_base = &_cpl.cdw0; out_iov[0].iov_len = sizeof(_cpl.cdw0); if (ctx->data_len > 0) { out_iov[1].iov_base = ctx->data; out_iov[1].iov_len = ctx->data_len; fuse_reply_ioctl_iov(ctx->req, 0, out_iov, 2); } else { fuse_reply_ioctl_iov(ctx->req, 0, out_iov, 1); } cuse_io_ctx_free(ctx); } static void cuse_nvme_admin_cmd_execute(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, void *arg) { int rc; struct cuse_io_ctx *ctx = arg; rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &ctx->nvme_cmd, ctx->data, ctx->data_len, cuse_nvme_admin_cmd_cb, (void *)ctx); if (rc < 0) { fuse_reply_err(ctx->req, EINVAL); cuse_io_ctx_free(ctx); } } static void cuse_nvme_admin_cmd(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { struct nvme_admin_cmd *admin_cmd; struct iovec in_iov, out_iov[2]; struct cuse_io_ctx *ctx; int rv; struct cuse_device *cuse_device = fuse_req_userdata(req); in_iov.iov_base = (void *)arg; in_iov.iov_len = sizeof(*admin_cmd); if (in_bufsz == 0) { fuse_reply_ioctl_retry(req, &in_iov, 1, NULL, 0); return; } admin_cmd = (struct nvme_admin_cmd *)in_buf; switch (spdk_nvme_opc_get_data_transfer(admin_cmd->opcode)) { case SPDK_NVME_DATA_NONE: SPDK_ERRLOG("SPDK_NVME_DATA_NONE not implemented\n"); fuse_reply_err(req, EINVAL); return; case SPDK_NVME_DATA_HOST_TO_CONTROLLER: SPDK_ERRLOG("SPDK_NVME_DATA_HOST_TO_CONTROLLER not implemented\n"); fuse_reply_err(req, EINVAL); return; case SPDK_NVME_DATA_CONTROLLER_TO_HOST: if (out_bufsz == 0) { out_iov[0].iov_base = &((struct nvme_admin_cmd *)arg)->result; out_iov[0].iov_len = sizeof(uint32_t); if (admin_cmd->data_len > 0) { out_iov[1].iov_base = (void *)admin_cmd->addr; out_iov[1].iov_len = admin_cmd->data_len; fuse_reply_ioctl_retry(req, &in_iov, 1, out_iov, 2); } else { fuse_reply_ioctl_retry(req, &in_iov, 1, out_iov, 1); } return; } ctx = (struct cuse_io_ctx *)calloc(1, sizeof(struct cuse_io_ctx)); if (!ctx) { SPDK_ERRLOG("Cannot allocate memory for cuse_io_ctx\n"); fuse_reply_err(req, ENOMEM); return; } ctx->req = req; memset(&ctx->nvme_cmd, 0, sizeof(ctx->nvme_cmd)); ctx->nvme_cmd.opc = admin_cmd->opcode; ctx->nvme_cmd.nsid = admin_cmd->nsid; ctx->nvme_cmd.cdw10 = admin_cmd->cdw10; ctx->nvme_cmd.cdw11 = admin_cmd->cdw11; ctx->nvme_cmd.cdw12 = admin_cmd->cdw12; ctx->nvme_cmd.cdw13 = admin_cmd->cdw13; ctx->nvme_cmd.cdw14 = admin_cmd->cdw14; ctx->nvme_cmd.cdw15 = admin_cmd->cdw15; ctx->data_len = admin_cmd->data_len; if (ctx->data_len > 0) { ctx->data = spdk_malloc(ctx->data_len, 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (!ctx->data) { SPDK_ERRLOG("Cannot allocate memory for data\n"); fuse_reply_err(req, ENOMEM); free(ctx); return; } } break; case SPDK_NVME_DATA_BIDIRECTIONAL: fuse_reply_err(req, EINVAL); return; } rv = nvme_io_msg_send(cuse_device->ctrlr, 0, cuse_nvme_admin_cmd_execute, ctx); if (rv) { SPDK_ERRLOG("Cannot send io msg to the controller\n"); fuse_reply_err(req, -rv); cuse_io_ctx_free(ctx); return; } } static void cuse_nvme_reset_execute(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, void *arg) { int rc; fuse_req_t req = arg; rc = spdk_nvme_ctrlr_reset(ctrlr); if (rc) { fuse_reply_err(req, rc); return; } fuse_reply_ioctl_iov(req, 0, NULL, 0); } static void cuse_nvme_reset(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { int rv; struct cuse_device *cuse_device = fuse_req_userdata(req); if (cuse_device->nsid) { SPDK_ERRLOG("Namespace reset not supported\n"); fuse_reply_err(req, EINVAL); return; } rv = nvme_io_msg_send(cuse_device->ctrlr, cuse_device->nsid, cuse_nvme_reset_execute, (void *)req); if (rv) { SPDK_ERRLOG("Cannot send reset\n"); fuse_reply_err(req, EINVAL); } } /***************************************************************************** * Namespace IO requests */ static void cuse_nvme_submit_io_write_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct cuse_io_ctx *ctx = (struct cuse_io_ctx *)ref; fuse_reply_ioctl_iov(ctx->req, 0, NULL, 0); cuse_io_ctx_free(ctx); } static void cuse_nvme_submit_io_write_cb(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, void *arg) { int rc; struct cuse_io_ctx *ctx = arg; struct spdk_nvme_ns *ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); rc = spdk_nvme_ns_cmd_write(ns, ctrlr->external_io_msgs_qpair, ctx->data, ctx->lba, /* LBA start */ ctx->lba_count, /* number of LBAs */ cuse_nvme_submit_io_write_done, ctx, 0); if (rc != 0) { SPDK_ERRLOG("write failed: rc = %d\n", rc); fuse_reply_err(ctx->req, rc); cuse_io_ctx_free(ctx); return; } } static void cuse_nvme_submit_io_write(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { const struct nvme_user_io *user_io = in_buf; struct cuse_io_ctx *ctx; struct spdk_nvme_ns *ns; uint32_t block_size; int rc; struct cuse_device *cuse_device = fuse_req_userdata(req); ctx = (struct cuse_io_ctx *)calloc(1, sizeof(struct cuse_io_ctx)); if (!ctx) { SPDK_ERRLOG("Cannot allocate memory for context\n"); fuse_reply_err(req, ENOMEM); return; } ctx->req = req; ns = spdk_nvme_ctrlr_get_ns(cuse_device->ctrlr, cuse_device->nsid); block_size = spdk_nvme_ns_get_sector_size(ns); ctx->lba = user_io->slba; ctx->lba_count = user_io->nblocks + 1; ctx->data_len = ctx->lba_count * block_size; ctx->data = spdk_nvme_ctrlr_alloc_cmb_io_buffer(cuse_device->ctrlr, ctx->data_len); if (ctx->data == NULL) { ctx->data = spdk_zmalloc(ctx->data_len, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); } if (ctx->data == NULL) { SPDK_ERRLOG("Write buffer allocation failed\n"); fuse_reply_err(ctx->req, ENOMEM); free(ctx); return; } memcpy(ctx->data, in_buf + sizeof(*user_io), ctx->data_len); rc = nvme_io_msg_send(cuse_device->ctrlr, cuse_device->nsid, cuse_nvme_submit_io_write_cb, ctx); if (rc < 0) { SPDK_ERRLOG("Cannot send write io\n"); fuse_reply_err(ctx->req, rc); cuse_io_ctx_free(ctx); } } static void cuse_nvme_submit_io_read_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct cuse_io_ctx *ctx = (struct cuse_io_ctx *)ref; struct iovec iov; iov.iov_base = ctx->data; iov.iov_len = ctx->data_len; fuse_reply_ioctl_iov(ctx->req, 0, &iov, 1); cuse_io_ctx_free(ctx); } static void cuse_nvme_submit_io_read_cb(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, void *arg) { int rc; struct cuse_io_ctx *ctx = arg; struct spdk_nvme_ns *ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); rc = spdk_nvme_ns_cmd_read(ns, ctrlr->external_io_msgs_qpair, ctx->data, ctx->lba, /* LBA start */ ctx->lba_count, /* number of LBAs */ cuse_nvme_submit_io_read_done, ctx, 0); if (rc != 0) { SPDK_ERRLOG("read failed: rc = %d\n", rc); fuse_reply_err(ctx->req, rc); cuse_io_ctx_free(ctx); return; } } static void cuse_nvme_submit_io_read(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { int rc; struct cuse_io_ctx *ctx; const struct nvme_user_io *user_io = in_buf; struct cuse_device *cuse_device = fuse_req_userdata(req); struct spdk_nvme_ns *ns; uint32_t block_size; ctx = (struct cuse_io_ctx *)calloc(1, sizeof(struct cuse_io_ctx)); if (!ctx) { SPDK_ERRLOG("Cannot allocate memory for context\n"); fuse_reply_err(req, ENOMEM); return; } ctx->req = req; ctx->lba = user_io->slba; ctx->lba_count = user_io->nblocks; ns = spdk_nvme_ctrlr_get_ns(cuse_device->ctrlr, cuse_device->nsid); block_size = spdk_nvme_ns_get_sector_size(ns); ctx->data_len = ctx->lba_count * block_size; ctx->data = spdk_nvme_ctrlr_alloc_cmb_io_buffer(cuse_device->ctrlr, ctx->data_len); if (ctx->data == NULL) { ctx->data = spdk_zmalloc(ctx->data_len, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); } if (ctx->data == NULL) { SPDK_ERRLOG("Read buffer allocation failed\n"); fuse_reply_err(ctx->req, ENOMEM); free(ctx); return; } rc = nvme_io_msg_send(cuse_device->ctrlr, cuse_device->nsid, cuse_nvme_submit_io_read_cb, ctx); if (rc < 0) { SPDK_ERRLOG("Cannot send read io\n"); fuse_reply_err(ctx->req, rc); cuse_io_ctx_free(ctx); } } static void cuse_nvme_submit_io(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { const struct nvme_user_io *user_io; struct iovec in_iov[2], out_iov; in_iov[0].iov_base = (void *)arg; in_iov[0].iov_len = sizeof(*user_io); if (in_bufsz == 0) { fuse_reply_ioctl_retry(req, in_iov, 1, NULL, 0); return; } user_io = in_buf; switch (user_io->opcode) { case SPDK_NVME_OPC_READ: out_iov.iov_base = (void *)user_io->addr; out_iov.iov_len = (user_io->nblocks + 1) * 512; if (out_bufsz == 0) { fuse_reply_ioctl_retry(req, in_iov, 1, &out_iov, 1); return; } cuse_nvme_submit_io_read(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case SPDK_NVME_OPC_WRITE: in_iov[1].iov_base = (void *)user_io->addr; in_iov[1].iov_len = (user_io->nblocks + 1) * 512; if (in_bufsz == sizeof(*user_io)) { fuse_reply_ioctl_retry(req, in_iov, 2, NULL, 0); return; } cuse_nvme_submit_io_write(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; default: SPDK_ERRLOG("SUBMIT_IO: opc:%d not valid\n", user_io->opcode); fuse_reply_err(req, EINVAL); return; } } /***************************************************************************** * Other namespace IOCTLs */ static void cuse_blkgetsize64(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { uint64_t size; struct spdk_nvme_ns *ns; struct cuse_device *cuse_device = fuse_req_userdata(req); FUSE_REPLY_CHECK_BUFFER(req, arg, out_bufsz, size); ns = spdk_nvme_ctrlr_get_ns(cuse_device->ctrlr, cuse_device->nsid); size = spdk_nvme_ns_get_num_sectors(ns); fuse_reply_ioctl(req, 0, &size, sizeof(size)); } static void cuse_blkpbszget(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { int pbsz; struct spdk_nvme_ns *ns; struct cuse_device *cuse_device = fuse_req_userdata(req); FUSE_REPLY_CHECK_BUFFER(req, arg, out_bufsz, pbsz); ns = spdk_nvme_ctrlr_get_ns(cuse_device->ctrlr, cuse_device->nsid); pbsz = spdk_nvme_ns_get_sector_size(ns); fuse_reply_ioctl(req, 0, &pbsz, sizeof(pbsz)); } static void cuse_blkgetsize(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { long size; struct spdk_nvme_ns *ns; struct cuse_device *cuse_device = fuse_req_userdata(req); FUSE_REPLY_CHECK_BUFFER(req, arg, out_bufsz, size); ns = spdk_nvme_ctrlr_get_ns(cuse_device->ctrlr, cuse_device->nsid); /* return size in 512 bytes blocks */ size = spdk_nvme_ns_get_num_sectors(ns) * 512 / spdk_nvme_ns_get_sector_size(ns); fuse_reply_ioctl(req, 0, &size, sizeof(size)); } static void cuse_getid(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { struct cuse_device *cuse_device = fuse_req_userdata(req); fuse_reply_ioctl(req, cuse_device->nsid, NULL, 0); } static void cuse_ctrlr_ioctl(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { if (flags & FUSE_IOCTL_COMPAT) { fuse_reply_err(req, ENOSYS); return; } switch (cmd) { case NVME_IOCTL_ADMIN_CMD: cuse_nvme_admin_cmd(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case NVME_IOCTL_RESET: cuse_nvme_reset(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; default: SPDK_ERRLOG("Unsupported IOCTL 0x%X.\n", cmd); fuse_reply_err(req, EINVAL); } } static void cuse_ns_ioctl(fuse_req_t req, int cmd, void *arg, struct fuse_file_info *fi, unsigned flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { if (flags & FUSE_IOCTL_COMPAT) { fuse_reply_err(req, ENOSYS); return; } switch (cmd) { case NVME_IOCTL_ADMIN_CMD: cuse_nvme_admin_cmd(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case NVME_IOCTL_SUBMIT_IO: cuse_nvme_submit_io(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case NVME_IOCTL_ID: cuse_getid(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case BLKPBSZGET: cuse_blkpbszget(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case BLKGETSIZE: /* Returns the device size as a number of 512-byte blocks (returns pointer to long) */ cuse_blkgetsize(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; case BLKGETSIZE64: /* Returns the device size in sectors (returns pointer to uint64_t) */ cuse_blkgetsize64(req, cmd, arg, fi, flags, in_buf, in_bufsz, out_bufsz); break; default: SPDK_ERRLOG("Unsupported IOCTL 0x%X.\n", cmd); fuse_reply_err(req, EINVAL); } } /***************************************************************************** * CUSE threads initialization. */ static void cuse_open(fuse_req_t req, struct fuse_file_info *fi) { fuse_reply_open(req, fi); } static const struct cuse_lowlevel_ops cuse_ctrlr_clop = { .open = cuse_open, .ioctl = cuse_ctrlr_ioctl, }; static const struct cuse_lowlevel_ops cuse_ns_clop = { .open = cuse_open, .ioctl = cuse_ns_ioctl, }; static void * cuse_thread(void *arg) { struct cuse_device *cuse_device = arg; char *cuse_argv[] = { "cuse", "-f" }; int cuse_argc = SPDK_COUNTOF(cuse_argv); char devname_arg[128 + 8]; const char *dev_info_argv[] = { devname_arg }; struct cuse_info ci; int multithreaded; int rc; struct fuse_buf buf = { .mem = NULL }; struct pollfd fds; int timeout_msecs = 500; spdk_unaffinitize_thread(); snprintf(devname_arg, sizeof(devname_arg), "DEVNAME=%s", cuse_device->dev_name); memset(&ci, 0, sizeof(ci)); ci.dev_info_argc = 1; ci.dev_info_argv = dev_info_argv; ci.flags = CUSE_UNRESTRICTED_IOCTL; if (cuse_device->nsid) { cuse_device->session = cuse_lowlevel_setup(cuse_argc, cuse_argv, &ci, &cuse_ns_clop, &multithreaded, cuse_device); } else { cuse_device->session = cuse_lowlevel_setup(cuse_argc, cuse_argv, &ci, &cuse_ctrlr_clop, &multithreaded, cuse_device); } if (!cuse_device->session) { SPDK_ERRLOG("Cannot create cuse session\n"); goto end; } SPDK_NOTICELOG("fuse session for device %s created\n", cuse_device->dev_name); /* Receive and process fuse requests */ fds.fd = fuse_session_fd(cuse_device->session); fds.events = POLLIN; while (!fuse_session_exited(cuse_device->session)) { rc = poll(&fds, 1, timeout_msecs); if (rc <= 0) { continue; } rc = fuse_session_receive_buf(cuse_device->session, &buf); if (rc > 0) { fuse_session_process_buf(cuse_device->session, &buf); } } free(buf.mem); fuse_session_reset(cuse_device->session); end: cuse_lowlevel_teardown(cuse_device->session); pthread_exit(NULL); } /***************************************************************************** * CUSE devices management */ static int cuse_nvme_ns_start(struct cuse_device *ctrlr_device, uint32_t nsid, const char *dev_path) { struct cuse_device *ns_device; int rv; ns_device = (struct cuse_device *)calloc(1, sizeof(struct cuse_device)); if (!ns_device) { SPDK_ERRLOG("Cannot allocate momeory for ns_device."); return -ENOMEM; } ns_device->ctrlr = ctrlr_device->ctrlr; ns_device->ctrlr_device = ctrlr_device; ns_device->nsid = nsid; rv = snprintf(ns_device->dev_name, sizeof(ns_device->dev_name), "%sn%d", dev_path, ns_device->nsid); if (rv < 0) { SPDK_ERRLOG("Device name too long.\n"); free(ns_device); return -1; } if (pthread_create(&ns_device->tid, NULL, cuse_thread, ns_device)) { SPDK_ERRLOG("pthread_create failed\n"); free(ns_device); return -1; } TAILQ_INSERT_TAIL(&ctrlr_device->ns_devices, ns_device, tailq); return 0; } static int nvme_cuse_claim(struct cuse_device *ctrlr_device, uint32_t index) { int dev_fd; int pid; void *dev_map; struct flock cusedev_lock = { .l_type = F_WRLCK, .l_whence = SEEK_SET, .l_start = 0, .l_len = 0, }; snprintf(ctrlr_device->lock_name, sizeof(ctrlr_device->lock_name), "/tmp/spdk_nvme_cuse_lock_%" PRIu32, index); dev_fd = open(ctrlr_device->lock_name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR); if (dev_fd == -1) { fprintf(stderr, "could not open %s\n", ctrlr_device->lock_name); return -errno; } if (ftruncate(dev_fd, sizeof(int)) != 0) { fprintf(stderr, "could not truncate %s\n", ctrlr_device->lock_name); close(dev_fd); return -errno; } dev_map = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, dev_fd, 0); if (dev_map == MAP_FAILED) { fprintf(stderr, "could not mmap dev %s (%d)\n", ctrlr_device->lock_name, errno); close(dev_fd); return -errno; } if (fcntl(dev_fd, F_SETLK, &cusedev_lock) != 0) { pid = *(int *)dev_map; fprintf(stderr, "Cannot create lock on device %s, probably" " process %d has claimed it\n", ctrlr_device->lock_name, pid); munmap(dev_map, sizeof(int)); close(dev_fd); /* F_SETLK returns unspecified errnos, normalize them */ return -EACCES; } *(int *)dev_map = (int)getpid(); munmap(dev_map, sizeof(int)); ctrlr_device->claim_fd = dev_fd; ctrlr_device->index = index; /* Keep dev_fd open to maintain the lock. */ return 0; } static void nvme_cuse_unclaim(struct cuse_device *ctrlr_device) { close(ctrlr_device->claim_fd); ctrlr_device->claim_fd = -1; unlink(ctrlr_device->lock_name); } static void cuse_nvme_ctrlr_stop(struct cuse_device *ctrlr_device) { struct cuse_device *ns_device, *tmp; TAILQ_FOREACH_SAFE(ns_device, &ctrlr_device->ns_devices, tailq, tmp) { fuse_session_exit(ns_device->session); pthread_join(ns_device->tid, NULL); TAILQ_REMOVE(&ctrlr_device->ns_devices, ns_device, tailq); free(ns_device); } fuse_session_exit(ctrlr_device->session); pthread_join(ctrlr_device->tid, NULL); TAILQ_REMOVE(&g_ctrlr_ctx_head, ctrlr_device, tailq); spdk_bit_array_clear(g_ctrlr_started, ctrlr_device->index); if (spdk_bit_array_count_set(g_ctrlr_started) == 0) { spdk_bit_array_free(&g_ctrlr_started); } nvme_cuse_unclaim(ctrlr_device); free(ctrlr_device); } static int nvme_cuse_start(struct spdk_nvme_ctrlr *ctrlr) { uint32_t i, nsid; int rv = 0; struct cuse_device *ctrlr_device; SPDK_NOTICELOG("Creating cuse device for controller\n"); if (g_ctrlr_started == NULL) { g_ctrlr_started = spdk_bit_array_create(128); if (g_ctrlr_started == NULL) { SPDK_ERRLOG("Cannot create bit array\n"); return -1; } } ctrlr_device = (struct cuse_device *)calloc(1, sizeof(struct cuse_device)); if (!ctrlr_device) { SPDK_ERRLOG("Cannot allocate memory for ctrlr_device."); rv = -ENOMEM; goto err2; } TAILQ_INIT(&ctrlr_device->ns_devices); ctrlr_device->ctrlr = ctrlr; /* Check if device already exists, if not increment index until success */ ctrlr_device->index = 0; while (1) { ctrlr_device->index = spdk_bit_array_find_first_clear(g_ctrlr_started, ctrlr_device->index); if (ctrlr_device->index == UINT32_MAX) { SPDK_ERRLOG("Too many registered controllers\n"); goto err2; } if (nvme_cuse_claim(ctrlr_device, ctrlr_device->index) == 0) { break; } ctrlr_device->index++; } spdk_bit_array_set(g_ctrlr_started, ctrlr_device->index); snprintf(ctrlr_device->dev_name, sizeof(ctrlr_device->dev_name), "spdk/nvme%d", ctrlr_device->index); if (pthread_create(&ctrlr_device->tid, NULL, cuse_thread, ctrlr_device)) { SPDK_ERRLOG("pthread_create failed\n"); rv = -1; goto err3; } TAILQ_INSERT_TAIL(&g_ctrlr_ctx_head, ctrlr_device, tailq); /* Start all active namespaces */ for (i = 0; i < spdk_nvme_ctrlr_get_num_ns(ctrlr); i++) { nsid = i + 1; if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid)) { continue; } if (cuse_nvme_ns_start(ctrlr_device, nsid, ctrlr_device->dev_name) < 0) { SPDK_ERRLOG("Cannot start CUSE namespace device."); cuse_nvme_ctrlr_stop(ctrlr_device); rv = -1; goto err3; } } return 0; err3: spdk_bit_array_clear(g_ctrlr_started, ctrlr_device->index); err2: free(ctrlr_device); if (spdk_bit_array_count_set(g_ctrlr_started) == 0) { spdk_bit_array_free(&g_ctrlr_started); } return rv; } static void nvme_cuse_stop(struct spdk_nvme_ctrlr *ctrlr) { struct cuse_device *ctrlr_device; TAILQ_FOREACH(ctrlr_device, &g_ctrlr_ctx_head, tailq) { if (ctrlr_device->ctrlr == ctrlr) { break; } } if (!ctrlr_device) { SPDK_ERRLOG("Cannot find associated CUSE device\n"); return; } cuse_nvme_ctrlr_stop(ctrlr_device); } static struct nvme_io_msg_producer cuse_nvme_io_msg_producer = { .name = "cuse", .stop = nvme_cuse_stop, }; int spdk_nvme_cuse_register(struct spdk_nvme_ctrlr *ctrlr) { int rc; rc = nvme_io_msg_ctrlr_register(ctrlr, &cuse_nvme_io_msg_producer); if (rc) { return rc; } rc = nvme_cuse_start(ctrlr); if (rc) { nvme_io_msg_ctrlr_unregister(ctrlr, &cuse_nvme_io_msg_producer); } return rc; } void spdk_nvme_cuse_unregister(struct spdk_nvme_ctrlr *ctrlr) { nvme_cuse_stop(ctrlr); nvme_io_msg_ctrlr_unregister(ctrlr, &cuse_nvme_io_msg_producer); } char * spdk_nvme_cuse_get_ctrlr_name(struct spdk_nvme_ctrlr *ctrlr) { struct cuse_device *ctrlr_device; if (TAILQ_EMPTY(&g_ctrlr_ctx_head)) { return NULL; } TAILQ_FOREACH(ctrlr_device, &g_ctrlr_ctx_head, tailq) { if (ctrlr_device->ctrlr == ctrlr) { break; } } if (!ctrlr_device) { return NULL; } return ctrlr_device->dev_name; } char * spdk_nvme_cuse_get_ns_name(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { struct cuse_device *ns_device; struct cuse_device *ctrlr_device; if (TAILQ_EMPTY(&g_ctrlr_ctx_head)) { return NULL; } TAILQ_FOREACH(ctrlr_device, &g_ctrlr_ctx_head, tailq) { if (ctrlr_device->ctrlr == ctrlr) { break; } } if (!ctrlr_device) { return NULL; } TAILQ_FOREACH(ns_device, &ctrlr_device->ns_devices, tailq) { if (ns_device->nsid == nsid) { break; } } if (!ns_device) { return NULL; } return ns_device->dev_name; }