/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/util.h" #include "spdk/memory.h" #include "spdk_internal/log.h" #include "spdk_internal/idxd.h" #include "idxd.h" #define ALIGN_4K 0x1000 pthread_mutex_t g_driver_lock = PTHREAD_MUTEX_INITIALIZER; /* * g_dev_cfg gives us 2 pre-set configurations of DSA to choose from * via RPC. */ struct device_config *g_dev_cfg = NULL; /* * Pre-built configurations. Variations depend on various factors * including how many different types of target latency profiles there * are, how many different QOS requirements there might be, etc. */ struct device_config g_dev_cfg0 = { .config_num = 0, .num_groups = 4, .num_wqs_per_group = 1, .num_engines_per_group = 1, .total_wqs = 4, .total_engines = 4, }; struct device_config g_dev_cfg1 = { .config_num = 1, .num_groups = 2, .num_wqs_per_group = 2, .num_engines_per_group = 2, .total_wqs = 4, .total_engines = 4, }; static uint32_t _idxd_read_4(struct spdk_idxd_device *idxd, uint32_t offset) { return spdk_mmio_read_4((uint32_t *)(idxd->reg_base + offset)); } static void _idxd_write_4(struct spdk_idxd_device *idxd, uint32_t offset, uint32_t value) { spdk_mmio_write_4((uint32_t *)(idxd->reg_base + offset), value); } static uint64_t _idxd_read_8(struct spdk_idxd_device *idxd, uint32_t offset) { return spdk_mmio_read_8((uint64_t *)(idxd->reg_base + offset)); } static void _idxd_write_8(struct spdk_idxd_device *idxd, uint32_t offset, uint64_t value) { spdk_mmio_write_8((uint64_t *)(idxd->reg_base + offset), value); } struct spdk_idxd_io_channel * spdk_idxd_get_channel(struct spdk_idxd_device *idxd) { struct spdk_idxd_io_channel *chan; struct idxd_batch *batch; int i; chan = calloc(1, sizeof(struct spdk_idxd_io_channel)); if (chan == NULL) { SPDK_ERRLOG("Failed to allocate idxd chan\n"); return NULL; } chan->idxd = idxd; TAILQ_INIT(&chan->batches); TAILQ_INIT(&chan->batch_pool); for (i = 0 ; i < NUM_BATCHES ; i++) { batch = calloc(1, sizeof(struct idxd_batch)); if (batch == NULL) { SPDK_ERRLOG("Failed to allocate batch\n"); while ((batch = TAILQ_FIRST(&chan->batch_pool))) { TAILQ_REMOVE(&chan->batch_pool, batch, link); free(batch); } return NULL; } TAILQ_INSERT_TAIL(&chan->batch_pool, batch, link); } return chan; } void spdk_idxd_put_channel(struct spdk_idxd_io_channel *chan) { free(chan); } int spdk_idxd_configure_chan(struct spdk_idxd_io_channel *chan) { uint32_t num_ring_slots; int rc; /* Round robin the WQ selection for the chan on this IDXD device. */ chan->idxd->wq_id++; if (chan->idxd->wq_id == g_dev_cfg->total_wqs) { chan->idxd->wq_id = 0; } num_ring_slots = chan->idxd->queues[chan->idxd->wq_id].wqcfg.wq_size; chan->ring_ctrl.ring_slots = spdk_bit_array_create(num_ring_slots); if (chan->ring_ctrl.ring_slots == NULL) { SPDK_ERRLOG("Failed to allocate bit array for ring\n"); return -ENOMEM; } /* * max ring slots can change as channels come and go but we * start off getting all of the slots for this work queue. */ chan->ring_ctrl.max_ring_slots = num_ring_slots; /* Store the original size of the ring. */ chan->ring_ctrl.ring_size = num_ring_slots; chan->ring_ctrl.desc = spdk_zmalloc(num_ring_slots * sizeof(struct idxd_hw_desc), 0x40, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (chan->ring_ctrl.desc == NULL) { SPDK_ERRLOG("Failed to allocate descriptor memory\n"); rc = -ENOMEM; goto err_desc; } chan->ring_ctrl.completions = spdk_zmalloc(num_ring_slots * sizeof(struct idxd_comp), 0x40, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (chan->ring_ctrl.completions == NULL) { SPDK_ERRLOG("Failed to allocate completion memory\n"); rc = -ENOMEM; goto err_comp; } chan->ring_ctrl.user_desc = spdk_zmalloc(TOTAL_USER_DESC * sizeof(struct idxd_hw_desc), 0x40, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (chan->ring_ctrl.user_desc == NULL) { SPDK_ERRLOG("Failed to allocate batch descriptor memory\n"); rc = -ENOMEM; goto err_user_desc; } /* Each slot on the ring reserves DESC_PER_BATCH elemnts in user_desc. */ chan->ring_ctrl.user_ring_slots = spdk_bit_array_create(NUM_BATCHES); if (chan->ring_ctrl.user_ring_slots == NULL) { SPDK_ERRLOG("Failed to allocate bit array for user ring\n"); rc = -ENOMEM; goto err_user_ring; } chan->ring_ctrl.user_completions = spdk_zmalloc(TOTAL_USER_DESC * sizeof(struct idxd_comp), 0x40, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (chan->ring_ctrl.user_completions == NULL) { SPDK_ERRLOG("Failed to allocate user completion memory\n"); rc = -ENOMEM; goto err_user_comp; } chan->ring_ctrl.portal = (char *)chan->idxd->portals + chan->idxd->wq_id * PORTAL_SIZE; return 0; err_user_comp: spdk_bit_array_free(&chan->ring_ctrl.user_ring_slots); err_user_ring: spdk_free(chan->ring_ctrl.user_desc); err_user_desc: spdk_free(chan->ring_ctrl.completions); err_comp: spdk_free(chan->ring_ctrl.desc); err_desc: spdk_bit_array_free(&chan->ring_ctrl.ring_slots); return rc; } /* Used for control commands, not for descriptor submission. */ static int idxd_wait_cmd(struct spdk_idxd_device *idxd, int _timeout) { uint32_t timeout = _timeout; union idxd_cmdsts_reg cmd_status = {}; cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET); while (cmd_status.active && --timeout) { usleep(1); cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET); } /* Check for timeout */ if (timeout == 0 && cmd_status.active) { SPDK_ERRLOG("Command timeout, waited %u\n", _timeout); return -EBUSY; } /* Check for error */ if (cmd_status.err) { SPDK_ERRLOG("Command status reg reports error 0x%x\n", cmd_status.err); return -EINVAL; } return 0; } static void _idxd_drain(struct spdk_idxd_io_channel *chan) { uint32_t index; int set = 0; do { spdk_idxd_process_events(chan); set = 0; for (index = 0; index < chan->ring_ctrl.max_ring_slots; index++) { set |= spdk_bit_array_get(chan->ring_ctrl.ring_slots, index); } } while (set); } int spdk_idxd_reconfigure_chan(struct spdk_idxd_io_channel *chan, uint32_t num_channels) { uint32_t num_ring_slots; int rc; struct idxd_batch *batch; _idxd_drain(chan); assert(spdk_bit_array_count_set(chan->ring_ctrl.ring_slots) == 0); if (num_channels == 0) { spdk_free(chan->ring_ctrl.completions); spdk_free(chan->ring_ctrl.desc); spdk_bit_array_free(&chan->ring_ctrl.ring_slots); spdk_free(chan->ring_ctrl.user_completions); spdk_free(chan->ring_ctrl.user_desc); spdk_bit_array_free(&chan->ring_ctrl.user_ring_slots); while ((batch = TAILQ_FIRST(&chan->batch_pool))) { TAILQ_REMOVE(&chan->batch_pool, batch, link); free(batch); } return 0; } num_ring_slots = chan->ring_ctrl.ring_size / num_channels; /* re-allocate our descriptor ring for hw flow control. */ rc = spdk_bit_array_resize(&chan->ring_ctrl.ring_slots, num_ring_slots); if (rc < 0) { SPDK_ERRLOG("Unable to resize channel bit array\n"); return -ENOMEM; } chan->ring_ctrl.max_ring_slots = num_ring_slots; /* * Note: The batch descriptor ring does not change with the * number of channels as descriptors on this ring do not * "count" for flow control. */ return rc; } /* Called via RPC to select a pre-defined configuration. */ void spdk_idxd_set_config(uint32_t config_num) { switch (config_num) { case 0: g_dev_cfg = &g_dev_cfg0; break; case 1: g_dev_cfg = &g_dev_cfg1; break; default: g_dev_cfg = &g_dev_cfg0; SPDK_ERRLOG("Invalid config, using default\n"); break; } } static int idxd_unmap_pci_bar(struct spdk_idxd_device *idxd, int bar) { int rc = 0; void *addr = NULL; if (bar == IDXD_MMIO_BAR) { addr = (void *)idxd->reg_base; } else if (bar == IDXD_WQ_BAR) { addr = (void *)idxd->portals; } if (addr) { rc = spdk_pci_device_unmap_bar(idxd->device, 0, addr); } return rc; } static int idxd_map_pci_bars(struct spdk_idxd_device *idxd) { int rc; void *addr; uint64_t phys_addr, size; rc = spdk_pci_device_map_bar(idxd->device, IDXD_MMIO_BAR, &addr, &phys_addr, &size); if (rc != 0 || addr == NULL) { SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc); return -1; } idxd->reg_base = addr; rc = spdk_pci_device_map_bar(idxd->device, IDXD_WQ_BAR, &addr, &phys_addr, &size); if (rc != 0 || addr == NULL) { SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc); rc = idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR); if (rc) { SPDK_ERRLOG("unable to unmap MMIO bar\n"); } return -EINVAL; } idxd->portals = addr; return 0; } static int idxd_reset_dev(struct spdk_idxd_device *idxd) { int rc; _idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_RESET_DEVICE << IDXD_CMD_SHIFT); rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US); if (rc < 0) { SPDK_ERRLOG("Error resetting device %u\n", rc); } return rc; } /* * Build group config based on getting info from the device combined * with the defined configuration. Once built, it is written to the * device. */ static int idxd_group_config(struct spdk_idxd_device *idxd) { int i; uint64_t base_offset; assert(g_dev_cfg->num_groups <= idxd->registers.groupcap.num_groups); idxd->groups = calloc(idxd->registers.groupcap.num_groups, sizeof(struct idxd_group)); if (idxd->groups == NULL) { SPDK_ERRLOG("Failed to allocate group memory\n"); return -ENOMEM; } assert(g_dev_cfg->total_engines <= idxd->registers.enginecap.num_engines); for (i = 0; i < g_dev_cfg->total_engines; i++) { idxd->groups[i % g_dev_cfg->num_groups].grpcfg.engines |= (1 << i); } assert(g_dev_cfg->total_wqs <= idxd->registers.wqcap.num_wqs); for (i = 0; i < g_dev_cfg->total_wqs; i++) { idxd->groups[i % g_dev_cfg->num_groups].grpcfg.wqs[0] |= (1 << i); } for (i = 0; i < g_dev_cfg->num_groups; i++) { idxd->groups[i].idxd = idxd; idxd->groups[i].id = i; /* Divide BW tokens evenly */ idxd->groups[i].grpcfg.flags.tokens_allowed = idxd->registers.groupcap.total_tokens / g_dev_cfg->num_groups; } /* * Now write the group config to the device for all groups. We write * to the max number of groups in order to 0 out the ones we didn't * configure. */ for (i = 0 ; i < idxd->registers.groupcap.num_groups; i++) { base_offset = idxd->grpcfg_offset + i * 64; /* GRPWQCFG, work queues config */ _idxd_write_8(idxd, base_offset, idxd->groups[i].grpcfg.wqs[0]); /* GRPENGCFG, engine config */ _idxd_write_8(idxd, base_offset + CFG_ENGINE_OFFSET, idxd->groups[i].grpcfg.engines); /* GRPFLAGS, flags config */ _idxd_write_8(idxd, base_offset + CFG_FLAG_OFFSET, idxd->groups[i].grpcfg.flags.raw); } return 0; } /* * Build work queue (WQ) config based on getting info from the device combined * with the defined configuration. Once built, it is written to the device. */ static int idxd_wq_config(struct spdk_idxd_device *idxd) { int i, j; struct idxd_wq *queue; u_int32_t wq_size = idxd->registers.wqcap.total_wq_size / g_dev_cfg->total_wqs; SPDK_NOTICELOG("Total ring slots available space 0x%x, so per work queue is 0x%x\n", idxd->registers.wqcap.total_wq_size, wq_size); assert(g_dev_cfg->total_wqs <= IDXD_MAX_QUEUES); assert(g_dev_cfg->total_wqs <= idxd->registers.wqcap.num_wqs); assert(LOG2_WQ_MAX_BATCH <= idxd->registers.gencap.max_batch_shift); assert(LOG2_WQ_MAX_XFER <= idxd->registers.gencap.max_xfer_shift); idxd->queues = calloc(1, idxd->registers.wqcap.num_wqs * sizeof(struct idxd_wq)); if (idxd->queues == NULL) { SPDK_ERRLOG("Failed to allocate queue memory\n"); return -ENOMEM; } for (i = 0; i < g_dev_cfg->total_wqs; i++) { queue = &idxd->queues[i]; queue->wqcfg.wq_size = wq_size; queue->wqcfg.mode = WQ_MODE_DEDICATED; queue->wqcfg.max_batch_shift = LOG2_WQ_MAX_BATCH; queue->wqcfg.max_xfer_shift = LOG2_WQ_MAX_XFER; queue->wqcfg.wq_state = WQ_ENABLED; queue->wqcfg.priority = WQ_PRIORITY_1; /* Not part of the config struct */ queue->idxd = idxd; queue->group = &idxd->groups[i % g_dev_cfg->num_groups]; } /* * Now write the work queue config to the device for all wq space */ for (i = 0 ; i < idxd->registers.wqcap.num_wqs; i++) { queue = &idxd->queues[i]; for (j = 0 ; j < WQCFG_NUM_DWORDS; j++) { _idxd_write_4(idxd, idxd->wqcfg_offset + i * 32 + j * 4, queue->wqcfg.raw[j]); } } return 0; } static int idxd_device_configure(struct spdk_idxd_device *idxd) { int i, rc = 0; union idxd_offsets_register offsets_reg; union idxd_genstatus_register genstatus_reg; /* * Map BAR0 and BAR2 */ rc = idxd_map_pci_bars(idxd); if (rc) { return rc; } /* * Reset the device */ rc = idxd_reset_dev(idxd); if (rc) { goto err_reset; } /* * Read in config registers */ idxd->registers.version = _idxd_read_4(idxd, IDXD_VERSION_OFFSET); idxd->registers.gencap.raw = _idxd_read_8(idxd, IDXD_GENCAP_OFFSET); idxd->registers.wqcap.raw = _idxd_read_8(idxd, IDXD_WQCAP_OFFSET); idxd->registers.groupcap.raw = _idxd_read_8(idxd, IDXD_GRPCAP_OFFSET); idxd->registers.enginecap.raw = _idxd_read_8(idxd, IDXD_ENGCAP_OFFSET); for (i = 0; i < IDXD_OPCAP_WORDS; i++) { idxd->registers.opcap.raw[i] = _idxd_read_8(idxd, i * sizeof(uint64_t) + IDXD_OPCAP_OFFSET); } offsets_reg.raw[0] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET); offsets_reg.raw[1] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET + sizeof(uint64_t)); idxd->grpcfg_offset = offsets_reg.grpcfg * IDXD_TABLE_OFFSET_MULT; idxd->wqcfg_offset = offsets_reg.wqcfg * IDXD_TABLE_OFFSET_MULT; idxd->ims_offset = offsets_reg.ims * IDXD_TABLE_OFFSET_MULT; idxd->msix_perm_offset = offsets_reg.msix_perm * IDXD_TABLE_OFFSET_MULT; idxd->perfmon_offset = offsets_reg.perfmon * IDXD_TABLE_OFFSET_MULT; /* * Configure groups and work queues. */ rc = idxd_group_config(idxd); if (rc) { goto err_group_cfg; } rc = idxd_wq_config(idxd); if (rc) { goto err_wq_cfg; } /* * Enable the device */ genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET); assert(genstatus_reg.state == IDXD_DEVICE_STATE_DISABLED); _idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_ENABLE_DEV << IDXD_CMD_SHIFT); rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US); genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET); if ((rc < 0) || (genstatus_reg.state != IDXD_DEVICE_STATE_ENABLED)) { rc = -EINVAL; SPDK_ERRLOG("Error enabling device %u\n", rc); goto err_device_enable; } genstatus_reg.raw = spdk_mmio_read_4((uint32_t *)(idxd->reg_base + IDXD_GENSTATUS_OFFSET)); assert(genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED); /* * Enable the work queues that we've configured */ for (i = 0; i < g_dev_cfg->total_wqs; i++) { _idxd_write_4(idxd, IDXD_CMD_OFFSET, (IDXD_ENABLE_WQ << IDXD_CMD_SHIFT) | i); rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US); if (rc < 0) { SPDK_ERRLOG("Error enabling work queues 0x%x\n", rc); goto err_wq_enable; } } if ((rc == 0) && (genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED)) { SPDK_NOTICELOG("Device enabled, version 0x%x gencap: 0x%lx\n", idxd->registers.version, idxd->registers.gencap.raw); } return rc; err_wq_enable: err_device_enable: free(idxd->queues); err_wq_cfg: free(idxd->groups); err_group_cfg: err_reset: idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR); idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR); return rc; } static void idxd_device_destruct(struct spdk_idxd_device *idxd) { idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR); idxd_unmap_pci_bar(idxd, IDXD_WQ_BAR); free(idxd->groups); free(idxd->queues); free(idxd); } /* Caller must hold g_driver_lock */ static struct spdk_idxd_device * idxd_attach(struct spdk_pci_device *device) { struct spdk_idxd_device *idxd; uint32_t cmd_reg; int rc; idxd = calloc(1, sizeof(struct spdk_idxd_device)); if (idxd == NULL) { SPDK_ERRLOG("Failed to allocate memory for idxd device.\n"); return NULL; } idxd->device = device; /* Enable PCI busmaster. */ spdk_pci_device_cfg_read32(device, &cmd_reg, 4); cmd_reg |= 0x4; spdk_pci_device_cfg_write32(device, cmd_reg, 4); rc = idxd_device_configure(idxd); if (rc) { goto err; } return idxd; err: idxd_device_destruct(idxd); return NULL; } struct idxd_enum_ctx { spdk_idxd_probe_cb probe_cb; spdk_idxd_attach_cb attach_cb; void *cb_ctx; }; /* This function must only be called while holding g_driver_lock */ static int idxd_enum_cb(void *ctx, struct spdk_pci_device *pci_dev) { struct idxd_enum_ctx *enum_ctx = ctx; struct spdk_idxd_device *idxd; if (enum_ctx->probe_cb(enum_ctx->cb_ctx, pci_dev)) { idxd = idxd_attach(pci_dev); if (idxd == NULL) { SPDK_ERRLOG("idxd_attach() failed\n"); return -EINVAL; } enum_ctx->attach_cb(enum_ctx->cb_ctx, pci_dev, idxd); } return 0; } int spdk_idxd_probe(void *cb_ctx, spdk_idxd_probe_cb probe_cb, spdk_idxd_attach_cb attach_cb) { int rc; struct idxd_enum_ctx enum_ctx; enum_ctx.probe_cb = probe_cb; enum_ctx.attach_cb = attach_cb; enum_ctx.cb_ctx = cb_ctx; pthread_mutex_lock(&g_driver_lock); rc = spdk_pci_enumerate(spdk_pci_idxd_get_driver(), idxd_enum_cb, &enum_ctx); pthread_mutex_unlock(&g_driver_lock); return rc; } void spdk_idxd_detach(struct spdk_idxd_device *idxd) { idxd_device_destruct(idxd); } static struct idxd_hw_desc * _idxd_prep_command(struct spdk_idxd_io_channel *chan, spdk_idxd_req_cb cb_fn, void *cb_arg, struct idxd_batch *batch) { uint32_t index; struct idxd_hw_desc *desc; struct idxd_comp *comp; index = spdk_bit_array_find_first_clear(chan->ring_ctrl.ring_slots, 0); if (index == UINT32_MAX) { /* ran out of ring slots */ return NULL; } spdk_bit_array_set(chan->ring_ctrl.ring_slots, index); desc = &chan->ring_ctrl.desc[index]; comp = &chan->ring_ctrl.completions[index]; desc->flags = IDXD_FLAG_COMPLETION_ADDR_VALID | IDXD_FLAG_REQUEST_COMPLETION; desc->completion_addr = (uintptr_t)&comp->hw; comp->cb_arg = cb_arg; comp->cb_fn = cb_fn; if (batch) { assert(comp->batch == NULL); comp->batch = batch; batch->batch_desc_index = index; } return desc; } int spdk_idxd_submit_copy(struct spdk_idxd_io_channel *chan, void *dst, const void *src, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; /* Common prep. */ desc = _idxd_prep_command(chan, cb_fn, cb_arg, NULL); if (desc == NULL) { return -EBUSY; } /* Command specific. */ desc->opcode = IDXD_OPCODE_MEMMOVE; desc->src_addr = (uintptr_t)src; desc->dst_addr = (uintptr_t)dst; desc->xfer_size = nbytes; /* Submit operation. */ movdir64b(chan->ring_ctrl.portal, desc); return 0; } /* Dual-cast copies the same source to two separate destination buffers. */ int spdk_idxd_submit_dualcast(struct spdk_idxd_io_channel *chan, void *dst1, void *dst2, const void *src, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; if ((uintptr_t)dst1 & (ALIGN_4K - 1) || (uintptr_t)dst2 & (ALIGN_4K - 1)) { SPDK_ERRLOG("Dualcast requires 4K alignment on dst addresses\n"); return -EINVAL; } /* Common prep. */ desc = _idxd_prep_command(chan, cb_fn, cb_arg, NULL); if (desc == NULL) { return -EBUSY; } /* Command specific. */ desc->opcode = IDXD_OPCODE_DUALCAST; desc->src_addr = (uintptr_t)src; desc->dst_addr = (uintptr_t)dst1; desc->dest2 = (uintptr_t)dst2; desc->xfer_size = nbytes; /* Submit operation. */ movdir64b(chan->ring_ctrl.portal, desc); return 0; } int spdk_idxd_submit_compare(struct spdk_idxd_io_channel *chan, void *src1, const void *src2, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; /* Common prep. */ desc = _idxd_prep_command(chan, cb_fn, cb_arg, NULL); if (desc == NULL) { return -EBUSY; } /* Command specific. */ desc->opcode = IDXD_OPCODE_COMPARE; desc->src_addr = (uintptr_t)src1; desc->src2_addr = (uintptr_t)src2; desc->xfer_size = nbytes; /* Submit operation. */ movdir64b(chan->ring_ctrl.portal, desc); return 0; } int spdk_idxd_submit_fill(struct spdk_idxd_io_channel *chan, void *dst, uint64_t fill_pattern, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; /* Common prep. */ desc = _idxd_prep_command(chan, cb_fn, cb_arg, NULL); if (desc == NULL) { return -EBUSY; } /* Command specific. */ desc->opcode = IDXD_OPCODE_MEMFILL; desc->pattern = fill_pattern; desc->dst_addr = (uintptr_t)dst; desc->xfer_size = nbytes; /* Submit operation. */ movdir64b(chan->ring_ctrl.portal, desc); return 0; } int spdk_idxd_submit_crc32c(struct spdk_idxd_io_channel *chan, uint32_t *dst, void *src, uint32_t seed, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; /* Common prep. */ desc = _idxd_prep_command(chan, cb_fn, cb_arg, NULL); if (desc == NULL) { return -EBUSY; } /* Command specific. */ desc->opcode = IDXD_OPCODE_CRC32C_GEN; desc->dst_addr = (uintptr_t)dst; desc->src_addr = (uintptr_t)src; desc->flags &= IDXD_CLEAR_CRC_FLAGS; desc->crc32c.seed = seed; desc->xfer_size = nbytes; /* Submit operation. */ movdir64b(chan->ring_ctrl.portal, desc); return 0; } uint32_t spdk_idxd_batch_get_max(void) { return DESC_PER_BATCH; /* TODO maybe add startup RPC to set this */ } struct idxd_batch * spdk_idxd_batch_create(struct spdk_idxd_io_channel *chan) { struct idxd_batch *batch = NULL; if (!TAILQ_EMPTY(&chan->batch_pool)) { batch = TAILQ_FIRST(&chan->batch_pool); TAILQ_REMOVE(&chan->batch_pool, batch, link); } else { /* The application needs to handle this. */ return NULL; } batch->batch_num = spdk_bit_array_find_first_clear(chan->ring_ctrl.user_ring_slots, 0); if (batch->batch_num == UINT32_MAX) { /* ran out of ring slots, the application needs to handle this. */ TAILQ_INSERT_TAIL(&chan->batch_pool, batch, link); return NULL; } spdk_bit_array_set(chan->ring_ctrl.user_ring_slots, batch->batch_num); /* * Find the first descriptor address for the given batch. The * descriptor ring used for user desctipors is allocated in * units of DESC_PER_BATCH. The actual index is in units of * one descriptor. */ batch->start_index = batch->cur_index = batch->batch_num * DESC_PER_BATCH; TAILQ_INSERT_TAIL(&chan->batches, batch, link); SPDK_DEBUGLOG(SPDK_LOG_IDXD, "New batch %p num %u\n", batch, batch->batch_num); return batch; } static bool _does_batch_exist(struct idxd_batch *batch, struct spdk_idxd_io_channel *chan) { bool found = false; struct idxd_batch *cur_batch; TAILQ_FOREACH(cur_batch, &chan->batches, link) { if (cur_batch == batch) { found = true; break; } } return found; } int spdk_idxd_batch_submit(struct spdk_idxd_io_channel *chan, struct idxd_batch *batch, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; if (_does_batch_exist(batch, chan) == false) { SPDK_ERRLOG("Attempt to submit a batch that doesn't exist\n."); return -EINVAL; } /* Common prep. */ desc = _idxd_prep_command(chan, cb_fn, cb_arg, batch); if (desc == NULL) { SPDK_DEBUGLOG(SPDK_LOG_IDXD, "Can't submit batch %p busy batch num %u\n", batch, batch->batch_num); return -EBUSY; } /* Command specific. */ desc->opcode = IDXD_OPCODE_BATCH; desc->desc_list_addr = (uintptr_t)&chan->ring_ctrl.user_desc[batch->start_index]; desc->desc_count = batch->cur_index - batch->start_index; assert(desc->desc_count <= DESC_PER_BATCH); if (desc->desc_count < MIN_USER_DESC_COUNT) { SPDK_ERRLOG("Attempt to submit a batch without at least %u operations.\n", MIN_USER_DESC_COUNT); return -EINVAL; } /* Total completions for the batch = num desc plus 1 for the batch desc itself. */ batch->remaining = desc->desc_count + 1; /* Submit operation. */ movdir64b(chan->ring_ctrl.portal, desc); return 0; } int spdk_idxd_batch_prep_copy(struct spdk_idxd_io_channel *chan, struct idxd_batch *batch, void *dst, const void *src, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; struct idxd_comp *comp; if (_does_batch_exist(batch, chan) == false) { SPDK_ERRLOG("Attempt to add to a batch that doesn't exist\n."); return -EINVAL; } if ((batch->cur_index - batch->start_index) == DESC_PER_BATCH) { SPDK_ERRLOG("Attempt to add to a batch that is already full\n."); return -ENOMEM; } desc = &chan->ring_ctrl.user_desc[batch->cur_index]; comp = &chan->ring_ctrl.user_completions[batch->cur_index]; SPDK_DEBUGLOG(SPDK_LOG_IDXD, "Prep batch %p index %u\n", batch, batch->cur_index); batch->cur_index++; assert(batch->cur_index > batch->start_index); desc->flags = IDXD_FLAG_COMPLETION_ADDR_VALID | IDXD_FLAG_REQUEST_COMPLETION; desc->opcode = IDXD_OPCODE_MEMMOVE; desc->src_addr = (uintptr_t)src; desc->dst_addr = (uintptr_t)dst; desc->xfer_size = nbytes; desc->completion_addr = (uintptr_t)&comp->hw; comp->cb_arg = cb_arg; comp->cb_fn = cb_fn; comp->batch = batch; return 0; } int spdk_idxd_batch_prep_dualcast(struct spdk_idxd_io_channel *chan, struct idxd_batch *batch, void *dst1, void *dst2, const void *src, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg) { struct idxd_hw_desc *desc; struct idxd_comp *comp; if ((uintptr_t)dst1 & (ALIGN_4K - 1) || (uintptr_t)dst2 & (ALIGN_4K - 1)) { SPDK_ERRLOG("Dualcast requires 4K alignment on dst addresses\n"); return -EINVAL; } if (_does_batch_exist(batch, chan) == false) { SPDK_ERRLOG("Attempt to add to a batch that doesn't exist\n."); return -EINVAL; } if ((batch->cur_index - batch->start_index) == DESC_PER_BATCH) { SPDK_ERRLOG("Attempt to add to a batch that is already full\n."); return -ENOMEM; } desc = &chan->ring_ctrl.user_desc[batch->cur_index]; comp = &chan->ring_ctrl.user_completions[batch->cur_index]; SPDK_DEBUGLOG(SPDK_LOG_IDXD, "Prep batch %p index %u\n", batch, batch->cur_index); batch->cur_index++; assert(batch->cur_index > batch->start_index); desc->flags = IDXD_FLAG_COMPLETION_ADDR_VALID | IDXD_FLAG_REQUEST_COMPLETION; desc->opcode = IDXD_OPCODE_DUALCAST; desc->src_addr = (uintptr_t)src; desc->dst_addr = (uintptr_t)dst1; desc->dest2 = (uintptr_t)dst2; desc->xfer_size = nbytes; desc->completion_addr = (uintptr_t)&comp->hw; comp->cb_arg = cb_arg; comp->cb_fn = cb_fn; comp->batch = batch; return 0; } static void _dump_error_reg(struct spdk_idxd_io_channel *chan) { uint64_t sw_error_0; uint16_t i; sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET); SPDK_NOTICELOG("SW Error bits set:"); for (i = 0; i < CHAR_BIT; i++) { if ((1ULL << i) & sw_error_0) { SPDK_NOTICELOG(" %d\n", i); } } SPDK_NOTICELOG("SW Error error code: %#x\n", (uint8_t)(sw_error_0 >> 8)); SPDK_NOTICELOG("SW Error WQ index: %u\n", (uint8_t)(sw_error_0 >> 16)); SPDK_NOTICELOG("SW Error Operation: %u\n", (uint8_t)(sw_error_0 >> 32)); } static void _free_batch(struct idxd_batch *batch, struct spdk_idxd_io_channel *chan, struct idxd_comp *comp) { TAILQ_REMOVE(&chan->batches, batch, link); TAILQ_INSERT_TAIL(&chan->batch_pool, batch, link); comp->batch = NULL; spdk_bit_array_clear(chan->ring_ctrl.user_ring_slots, batch->batch_num); spdk_bit_array_clear(chan->ring_ctrl.ring_slots, batch->batch_desc_index); } static void _spdk_idxd_process_batch_events(struct spdk_idxd_io_channel *chan) { uint16_t index; struct idxd_comp *comp; uint64_t sw_error_0; int status = 0; struct idxd_batch *batch; /* * We don't check the bit array for user completions as there's only * one bit per per batch. */ for (index = 0; index < TOTAL_USER_DESC; index++) { comp = &chan->ring_ctrl.user_completions[index]; if (comp->hw.status == 1) { struct idxd_hw_desc *desc; sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET); if (sw_error_0 & 0x1) { _dump_error_reg(chan); status = -EINVAL; } desc = &chan->ring_ctrl.user_desc[index]; switch (desc->opcode) { case IDXD_OPCODE_CRC32C_GEN: *(uint32_t *)desc->dst_addr = comp->hw.crc32c_val; *(uint32_t *)desc->dst_addr ^= ~0; break; case IDXD_OPCODE_COMPARE: if (status == 0) { status = comp->hw.result; } break; case IDXD_OPCODE_DUALCAST: case IDXD_OPCODE_MEMMOVE: break; default: assert(false); break; } /* The hw will complete all user desc first before the batch * desc (see spec for configuration exceptions) however * because of the order that we check for comps in the poller * we may "see" them in a different order than they actually * completed in. */ batch = comp->batch; assert(batch->remaining > 0); if (--batch->remaining == 0) { _free_batch(batch, chan, comp); } comp->cb_fn((void *)comp->cb_arg, status); comp->hw.status = status = 0; } } } /* * TODO: Experiment with different methods of reaping completions for performance * once we have real silicon. */ void spdk_idxd_process_events(struct spdk_idxd_io_channel *chan) { uint16_t index; struct idxd_comp *comp; uint64_t sw_error_0; int status = 0; struct idxd_batch *batch; if (!TAILQ_EMPTY(&chan->batches)) { _spdk_idxd_process_batch_events(chan); } for (index = 0; index < chan->ring_ctrl.max_ring_slots; index++) { if (spdk_bit_array_get(chan->ring_ctrl.ring_slots, index)) { comp = &chan->ring_ctrl.completions[index]; if (comp->hw.status == 1) { struct idxd_hw_desc *desc; sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET); if (sw_error_0 & 0x1) { _dump_error_reg(chan); status = -EINVAL; } desc = &chan->ring_ctrl.desc[index]; switch (desc->opcode) { case IDXD_OPCODE_BATCH: /* The hw will complete all user desc first before the batch * desc (see spec for configuration exceptions) however * because of the order that we check for comps in the poller * we may "see" them in a different order than they actually * completed in. */ batch = comp->batch; assert(batch->remaining > 0); if (--batch->remaining == 0) { _free_batch(batch, chan, comp); } break; case IDXD_OPCODE_CRC32C_GEN: *(uint32_t *)desc->dst_addr = comp->hw.crc32c_val; *(uint32_t *)desc->dst_addr ^= ~0; break; case IDXD_OPCODE_COMPARE: if (status == 0) { status = comp->hw.result; } break; } comp->cb_fn(comp->cb_arg, status); comp->hw.status = status = 0; if (desc->opcode != IDXD_OPCODE_BATCH) { spdk_bit_array_clear(chan->ring_ctrl.ring_slots, index); } } } } } SPDK_LOG_REGISTER_COMPONENT("idxd", SPDK_LOG_IDXD)