/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2017, IBM Corporation. All rights reserved. * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * NVMe over PCIe transport */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/likely.h" #include "spdk/string.h" #include "nvme_internal.h" #include "nvme_pcie_internal.h" struct nvme_pcie_enum_ctx { struct spdk_nvme_probe_ctx *probe_ctx; struct spdk_pci_addr pci_addr; bool has_pci_addr; }; static uint16_t g_signal_lock; static bool g_sigset = false; static spdk_nvme_pcie_hotplug_filter_cb g_hotplug_filter_cb; static void nvme_sigbus_fault_sighandler(const void *failure_addr, void *ctx) { void *map_address; uint16_t flag = 0; if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { SPDK_DEBUGLOG(nvme, "request g_signal_lock failed\n"); return; } if (g_thread_mmio_ctrlr == NULL) { return; } if (!g_thread_mmio_ctrlr->is_remapped) { map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); if (map_address == MAP_FAILED) { SPDK_ERRLOG("mmap failed\n"); __atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE); return; } memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers)); g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address; g_thread_mmio_ctrlr->is_remapped = true; } __atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE); } static void _nvme_pcie_event_process(struct spdk_pci_event *event, void *cb_ctx) { struct spdk_nvme_transport_id trid; struct spdk_nvme_ctrlr *ctrlr; if (event->action == SPDK_UEVENT_ADD) { if (spdk_process_is_primary()) { if (g_hotplug_filter_cb == NULL || g_hotplug_filter_cb(&event->traddr)) { /* The enumerate interface implement the add operation */ spdk_pci_device_allow(&event->traddr); } } } else if (event->action == SPDK_UEVENT_REMOVE) { memset(&trid, 0, sizeof(trid)); spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE); if (spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &event->traddr) < 0) { SPDK_ERRLOG("Failed to format pci address\n"); return; } ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid); if (ctrlr == NULL) { return; } SPDK_DEBUGLOG(nvme, "remove nvme address: %s\n", trid.traddr); nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); nvme_ctrlr_fail(ctrlr, true); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); /* get the user app to clean up and stop I/O */ if (ctrlr->remove_cb) { nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); } } } static int _nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx) { struct spdk_nvme_ctrlr *ctrlr, *tmp; struct spdk_pci_event event; if (g_spdk_nvme_driver->hotplug_fd < 0) { return 0; } while (spdk_pci_get_event(g_spdk_nvme_driver->hotplug_fd, &event) > 0) { _nvme_pcie_event_process(&event, probe_ctx->cb_ctx); } /* Initiate removal of physically hotremoved PCI controllers. Even after * they're hotremoved from the system, SPDK might still report them via RPC. */ TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) { bool do_remove = false; struct nvme_pcie_ctrlr *pctrlr; if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { continue; } pctrlr = nvme_pcie_ctrlr(ctrlr); if (spdk_pci_device_is_removed(pctrlr->devhandle)) { do_remove = true; } if (do_remove) { nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); nvme_ctrlr_fail(ctrlr, true); nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); if (ctrlr->remove_cb) { nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); } } } return 0; } static volatile void * nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); return (volatile void *)((uintptr_t)pctrlr->regs + offset); } static int nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 4); g_thread_mmio_ctrlr = pctrlr; spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value); g_thread_mmio_ctrlr = NULL; return 0; } static int nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 8); g_thread_mmio_ctrlr = pctrlr; spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value); g_thread_mmio_ctrlr = NULL; return 0; } static int nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 4); assert(value != NULL); g_thread_mmio_ctrlr = pctrlr; *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset)); g_thread_mmio_ctrlr = NULL; if (~(*value) == 0) { return -1; } return 0; } static int nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); assert(offset <= sizeof(struct spdk_nvme_registers) - 8); assert(value != NULL); g_thread_mmio_ctrlr = pctrlr; *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset)); g_thread_mmio_ctrlr = NULL; if (~(*value) == 0) { return -1; } return 0; } static int nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) { return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq), value); } static int nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) { return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq), value); } static int nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa) { return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw), aqa->raw); } static int nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw), &cmbloc->raw); } static int nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), &cmbsz->raw); } static int nvme_pcie_ctrlr_get_pmrcap(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrcap_register *pmrcap) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw), &pmrcap->raw); } static int nvme_pcie_ctrlr_set_pmrctl(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrctl_register *pmrctl) { return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrctl.raw), pmrctl->raw); } static int nvme_pcie_ctrlr_get_pmrctl(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrctl_register *pmrctl) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrctl.raw), &pmrctl->raw); } static int nvme_pcie_ctrlr_get_pmrsts(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrsts_register *pmrsts) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrsts.raw), &pmrsts->raw); } static int nvme_pcie_ctrlr_set_pmrmscl(struct nvme_pcie_ctrlr *pctrlr, uint32_t value) { return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrmscl.raw), value); } static int nvme_pcie_ctrlr_set_pmrmscu(struct nvme_pcie_ctrlr *pctrlr, uint32_t value) { return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrmscu), value); } static uint32_t nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { /* * For commands requiring more than 2 PRP entries, one PRP will be * embedded in the command (prp1), and the rest of the PRP entries * will be in a list pointed to by the command (prp2). The number * of PRP entries in the list is defined by * NVME_MAX_PRP_LIST_ENTRIES. * * Note that the max xfer size is not (MAX_ENTRIES + 1) * page_size * because the first PRP entry may not be aligned on a 4KiB * boundary. */ return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size; } static uint16_t nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { return NVME_MAX_SGL_DESCRIPTORS; } static void nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr = NULL; uint32_t bir; union spdk_nvme_cmbsz_register cmbsz; union spdk_nvme_cmbloc_register cmbloc; uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0; if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_ERRLOG("get registers failed\n"); goto exit; } if (!cmbsz.bits.sz) { goto exit; } bir = cmbloc.bits.bir; /* Values 0 2 3 4 5 are valid for BAR */ if (bir > 5 || bir == 1) { goto exit; } /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */ unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu); /* controller memory buffer size in Bytes */ size = unit_size * cmbsz.bits.sz; /* controller memory buffer offset from BAR in Bytes */ offset = unit_size * cmbloc.bits.ofst; rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, &bar_phys_addr, &bar_size); if ((rc != 0) || addr == NULL) { goto exit; } if (offset > bar_size) { goto exit; } if (size > bar_size - offset) { goto exit; } pctrlr->cmb.bar_va = addr; pctrlr->cmb.bar_pa = bar_phys_addr; pctrlr->cmb.size = size; pctrlr->cmb.current_offset = offset; if (!cmbsz.bits.sqs) { pctrlr->ctrlr.opts.use_cmb_sqs = false; } return; exit: pctrlr->ctrlr.opts.use_cmb_sqs = false; return; } static int nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; union spdk_nvme_cmbloc_register cmbloc; void *addr = pctrlr->cmb.bar_va; if (addr) { if (pctrlr->cmb.mem_register_addr) { spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size); } if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_ERRLOG("get_cmbloc() failed\n"); return -EIO; } rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr); } return rc; } static int nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); if (pctrlr->cmb.bar_va == NULL) { SPDK_DEBUGLOG(nvme, "CMB not available\n"); return -ENOTSUP; } if (ctrlr->opts.use_cmb_sqs) { SPDK_ERRLOG("CMB is already in use for submission queues.\n"); return -ENOTSUP; } return 0; } static void * nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); union spdk_nvme_cmbsz_register cmbsz; union spdk_nvme_cmbloc_register cmbloc; uint64_t mem_register_start, mem_register_end; int rc; if (pctrlr->cmb.mem_register_addr != NULL) { *size = pctrlr->cmb.mem_register_size; return pctrlr->cmb.mem_register_addr; } *size = 0; if (pctrlr->cmb.bar_va == NULL) { SPDK_DEBUGLOG(nvme, "CMB not available\n"); return NULL; } if (ctrlr->opts.use_cmb_sqs) { SPDK_ERRLOG("CMB is already in use for submission queues.\n"); return NULL; } if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_ERRLOG("get registers failed\n"); return NULL; } /* If only SQS is supported */ if (!(cmbsz.bits.wds || cmbsz.bits.rds)) { return NULL; } /* If CMB is less than 4MiB in size then abort CMB mapping */ if (pctrlr->cmb.size < (1ULL << 22)) { return NULL; } mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset + VALUE_2MB - 1); mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset + pctrlr->cmb.size); rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start); if (rc) { SPDK_ERRLOG("spdk_mem_register() failed\n"); return NULL; } pctrlr->cmb.mem_register_addr = (void *)mem_register_start; pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start; *size = pctrlr->cmb.mem_register_size; return pctrlr->cmb.mem_register_addr; } static int nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); int rc; if (pctrlr->cmb.mem_register_addr == NULL) { return 0; } rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size); if (rc == 0) { pctrlr->cmb.mem_register_addr = NULL; pctrlr->cmb.mem_register_size = 0; } return rc; } static void nvme_pcie_ctrlr_map_pmr(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr = NULL; uint32_t bir; union spdk_nvme_pmrcap_register pmrcap; uint64_t bar_size = 0, bar_phys_addr = 0; if (!pctrlr->regs->cap.bits.pmrs) { return; } if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) { SPDK_ERRLOG("get registers failed\n"); return; } bir = pmrcap.bits.bir; /* Values 2 3 4 5 are valid for BAR */ if (bir > 5 || bir < 2) { SPDK_ERRLOG("invalid base indicator register value\n"); return; } rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, &bar_phys_addr, &bar_size); if ((rc != 0) || addr == NULL) { SPDK_ERRLOG("could not map the bar %d\n", bir); return; } if (pmrcap.bits.cmss) { uint32_t pmrmscl, pmrmscu, cmse = 1; union spdk_nvme_pmrsts_register pmrsts; /* Enable Controller Memory Space */ pmrmscl = (uint32_t)((bar_phys_addr & 0xFFFFF000ULL) | (cmse << 1)); pmrmscu = (uint32_t)((bar_phys_addr >> 32ULL) & 0xFFFFFFFFULL); if (nvme_pcie_ctrlr_set_pmrmscu(pctrlr, pmrmscu)) { SPDK_ERRLOG("set_pmrmscu() failed\n"); spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr); return; } if (nvme_pcie_ctrlr_set_pmrmscl(pctrlr, pmrmscl)) { SPDK_ERRLOG("set_pmrmscl() failed\n"); spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr); return; } if (nvme_pcie_ctrlr_get_pmrsts(pctrlr, &pmrsts)) { SPDK_ERRLOG("get pmrsts failed\n"); spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr); return; } if (pmrsts.bits.cbai) { SPDK_ERRLOG("Controller Memory Space Enable Failure\n"); SPDK_ERRLOG("CBA Invalid - Host Addresses cannot reference PMR\n"); } else { SPDK_DEBUGLOG(nvme, "Controller Memory Space Enable Success\n"); SPDK_DEBUGLOG(nvme, "Host Addresses can reference PMR\n"); } } pctrlr->pmr.bar_va = addr; pctrlr->pmr.bar_pa = bar_phys_addr; pctrlr->pmr.size = pctrlr->ctrlr.pmr_size = bar_size; } static int nvme_pcie_ctrlr_unmap_pmr(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; union spdk_nvme_pmrcap_register pmrcap; void *addr = pctrlr->pmr.bar_va; if (addr == NULL) { return rc; } if (pctrlr->pmr.mem_register_addr) { spdk_mem_unregister(pctrlr->pmr.mem_register_addr, pctrlr->pmr.mem_register_size); } if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) { SPDK_ERRLOG("get_pmrcap() failed\n"); return -EIO; } if (pmrcap.bits.cmss) { if (nvme_pcie_ctrlr_set_pmrmscu(pctrlr, 0)) { SPDK_ERRLOG("set_pmrmscu() failed\n"); } if (nvme_pcie_ctrlr_set_pmrmscl(pctrlr, 0)) { SPDK_ERRLOG("set_pmrmscl() failed\n"); } } rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, pmrcap.bits.bir, addr); return rc; } static int nvme_pcie_ctrlr_config_pmr(struct spdk_nvme_ctrlr *ctrlr, bool enable) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); union spdk_nvme_pmrcap_register pmrcap; union spdk_nvme_pmrctl_register pmrctl; union spdk_nvme_pmrsts_register pmrsts; uint8_t pmrto, pmrtu; uint64_t timeout_in_ms, ticks_per_ms, timeout_in_ticks, now_ticks; if (!pctrlr->regs->cap.bits.pmrs) { SPDK_ERRLOG("PMR is not supported by the controller\n"); return -ENOTSUP; } if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) { SPDK_ERRLOG("get registers failed\n"); return -EIO; } pmrto = pmrcap.bits.pmrto; pmrtu = pmrcap.bits.pmrtu; if (pmrtu > 1) { SPDK_ERRLOG("PMR Time Units Invalid\n"); return -EINVAL; } ticks_per_ms = spdk_get_ticks_hz() / 1000; timeout_in_ms = pmrto * (pmrtu ? (60 * 1000) : 500); timeout_in_ticks = timeout_in_ms * ticks_per_ms; if (nvme_pcie_ctrlr_get_pmrctl(pctrlr, &pmrctl)) { SPDK_ERRLOG("get pmrctl failed\n"); return -EIO; } if (enable && pmrctl.bits.en != 0) { SPDK_ERRLOG("PMR is already enabled\n"); return -EINVAL; } else if (!enable && pmrctl.bits.en != 1) { SPDK_ERRLOG("PMR is already disabled\n"); return -EINVAL; } pmrctl.bits.en = enable; if (nvme_pcie_ctrlr_set_pmrctl(pctrlr, &pmrctl)) { SPDK_ERRLOG("set pmrctl failed\n"); return -EIO; } now_ticks = spdk_get_ticks(); do { if (nvme_pcie_ctrlr_get_pmrsts(pctrlr, &pmrsts)) { SPDK_ERRLOG("get pmrsts failed\n"); return -EIO; } if (pmrsts.bits.nrdy == enable && spdk_get_ticks() > now_ticks + timeout_in_ticks) { SPDK_ERRLOG("PMR Enable - Timed Out\n"); return -ETIMEDOUT; } } while (pmrsts.bits.nrdy == enable); SPDK_DEBUGLOG(nvme, "PMR %s\n", enable ? "Enabled" : "Disabled"); return 0; } static int nvme_pcie_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr) { return nvme_pcie_ctrlr_config_pmr(ctrlr, true); } static int nvme_pcie_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr) { return nvme_pcie_ctrlr_config_pmr(ctrlr, false); } static void * nvme_pcie_ctrlr_map_io_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); union spdk_nvme_pmrcap_register pmrcap; uint64_t mem_register_start, mem_register_end; int rc; if (!pctrlr->regs->cap.bits.pmrs) { SPDK_ERRLOG("PMR is not supported by the controller\n"); return NULL; } if (pctrlr->pmr.mem_register_addr != NULL) { *size = pctrlr->pmr.mem_register_size; return pctrlr->pmr.mem_register_addr; } *size = 0; if (pctrlr->pmr.bar_va == NULL) { SPDK_DEBUGLOG(nvme, "PMR not available\n"); return NULL; } if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) { SPDK_ERRLOG("get registers failed\n"); return NULL; } /* Check if WDS / RDS is supported */ if (!(pmrcap.bits.wds || pmrcap.bits.rds)) { return NULL; } /* If PMR is less than 4MiB in size then abort PMR mapping */ if (pctrlr->pmr.size < (1ULL << 22)) { return NULL; } mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->pmr.bar_va + VALUE_2MB - 1); mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->pmr.bar_va + pctrlr->pmr.size); rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start); if (rc) { SPDK_ERRLOG("spdk_mem_register() failed\n"); return NULL; } pctrlr->pmr.mem_register_addr = (void *)mem_register_start; pctrlr->pmr.mem_register_size = mem_register_end - mem_register_start; *size = pctrlr->pmr.mem_register_size; return pctrlr->pmr.mem_register_addr; } static int nvme_pcie_ctrlr_unmap_io_pmr(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); int rc; if (pctrlr->pmr.mem_register_addr == NULL) { return -ENXIO; } rc = spdk_mem_unregister(pctrlr->pmr.mem_register_addr, pctrlr->pmr.mem_register_size); if (rc == 0) { pctrlr->pmr.mem_register_addr = NULL; pctrlr->pmr.mem_register_size = 0; } return rc; } static int nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr = NULL; uint64_t phys_addr = 0, size = 0; rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr, &phys_addr, &size); if ((addr == NULL) || (rc != 0)) { SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n", rc, addr); return -1; } pctrlr->regs = (volatile struct spdk_nvme_registers *)addr; pctrlr->regs_size = size; pctrlr->doorbell_base = (volatile uint32_t *)&pctrlr->regs->doorbell[0].sq_tdbl; nvme_pcie_ctrlr_map_cmb(pctrlr); nvme_pcie_ctrlr_map_pmr(pctrlr); return 0; } static int nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; void *addr = (void *)pctrlr->regs; if (pctrlr->ctrlr.is_removed) { return rc; } rc = nvme_pcie_ctrlr_unmap_pmr(pctrlr); if (rc != 0) { SPDK_ERRLOG("nvme_ctrlr_unmap_pmr failed with error code %d\n", rc); return -1; } rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr); if (rc != 0) { SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc); return -1; } if (addr) { /* NOTE: addr may have been remapped here. We're relying on DPDK to call * munmap internally. */ rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr); } return rc; } /* This function must only be called while holding g_spdk_nvme_driver->lock */ static int pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev) { struct spdk_nvme_transport_id trid = {}; struct nvme_pcie_enum_ctx *enum_ctx = ctx; struct spdk_nvme_ctrlr *ctrlr; struct spdk_pci_addr pci_addr; pci_addr = spdk_pci_device_get_addr(pci_dev); spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE); spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr); ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid); if (!spdk_process_is_primary()) { if (!ctrlr) { SPDK_ERRLOG("Controller must be constructed in the primary process first.\n"); return -1; } return nvme_ctrlr_add_process(ctrlr, pci_dev); } /* check whether user passes the pci_addr */ if (enum_ctx->has_pci_addr && (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) { return 1; } return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev); } static int nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect) { struct nvme_pcie_enum_ctx enum_ctx = {}; enum_ctx.probe_ctx = probe_ctx; if (strlen(probe_ctx->trid.traddr) != 0) { if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) { return -1; } enum_ctx.has_pci_addr = true; } /* Only the primary process can monitor hotplug. */ if (spdk_process_is_primary()) { _nvme_pcie_hotplug_monitor(probe_ctx); } if (enum_ctx.has_pci_addr == false) { return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx); } else { return spdk_pci_device_attach(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr); } } static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { struct spdk_pci_device *pci_dev = devhandle; struct nvme_pcie_ctrlr *pctrlr; union spdk_nvme_cap_register cap; uint16_t cmd_reg; int rc; struct spdk_pci_id pci_id; rc = spdk_pci_device_claim(pci_dev); if (rc < 0) { SPDK_ERRLOG("could not claim device %s (%s)\n", trid->traddr, spdk_strerror(-rc)); return NULL; } pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); if (pctrlr == NULL) { spdk_pci_device_unclaim(pci_dev); SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } pctrlr->is_remapped = false; pctrlr->ctrlr.is_removed = false; pctrlr->devhandle = devhandle; pctrlr->ctrlr.opts = *opts; pctrlr->ctrlr.trid = *trid; rc = nvme_ctrlr_construct(&pctrlr->ctrlr); if (rc != 0) { spdk_pci_device_unclaim(pci_dev); spdk_free(pctrlr); return NULL; } rc = nvme_pcie_ctrlr_allocate_bars(pctrlr); if (rc != 0) { spdk_pci_device_unclaim(pci_dev); spdk_free(pctrlr); return NULL; } /* Enable PCI busmaster and disable INTx */ spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4); cmd_reg |= 0x404; spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4); if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) { SPDK_ERRLOG("get_cap() failed\n"); spdk_pci_device_unclaim(pci_dev); spdk_free(pctrlr); return NULL; } /* Doorbell stride is 2 ^ (dstrd + 2), * but we want multiples of 4, so drop the + 2 */ pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd; pci_id = spdk_pci_device_get_id(pci_dev); pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id); rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } /* Construct the primary process properties */ rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } if (g_sigset != true) { spdk_pci_register_error_handler(nvme_sigbus_fault_sighandler, NULL); g_sigset = true; } return &pctrlr->ctrlr; } static int nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq); union spdk_nvme_aqa_register aqa; if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) { SPDK_ERRLOG("set_asq() failed\n"); return -EIO; } if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) { SPDK_ERRLOG("set_acq() failed\n"); return -EIO; } aqa.raw = 0; /* acqs and asqs are 0-based. */ aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1; if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) { SPDK_ERRLOG("set_aqa() failed\n"); return -EIO; } return 0; } static int nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr); if (ctrlr->adminq) { nvme_pcie_qpair_destroy(ctrlr->adminq); } nvme_ctrlr_destruct_finish(ctrlr); nvme_ctrlr_free_processes(ctrlr); nvme_pcie_ctrlr_free_bars(pctrlr); if (devhandle) { spdk_pci_device_unclaim(devhandle); spdk_pci_device_detach(devhandle); } spdk_free(pctrlr); return 0; } static int nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, int (*iter_fn)(struct nvme_request *req, void *arg), void *arg) { struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair); struct nvme_tracker *tr, *tmp; int rc; assert(iter_fn != NULL); TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) { assert(tr->req != NULL); rc = iter_fn(tr->req, arg); if (rc != 0) { return rc; } } return 0; } void spdk_nvme_pcie_set_hotplug_filter(spdk_nvme_pcie_hotplug_filter_cb filter_cb) { g_hotplug_filter_cb = filter_cb; } static int nvme_pcie_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_transport_poll_group_stat **_stats) { struct nvme_pcie_poll_group *group; struct spdk_nvme_transport_poll_group_stat *stats; if (tgroup == NULL || _stats == NULL) { SPDK_ERRLOG("Invalid stats or group pointer\n"); return -EINVAL; } group = SPDK_CONTAINEROF(tgroup, struct nvme_pcie_poll_group, group); stats = calloc(1, sizeof(*stats)); if (!stats) { SPDK_ERRLOG("Can't allocate memory for RDMA stats\n"); return -ENOMEM; } stats->trtype = SPDK_NVME_TRANSPORT_PCIE; memcpy(&stats->pcie, &group->stats, sizeof(group->stats)); *_stats = stats; return 0; } static void nvme_pcie_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_transport_poll_group_stat *stats) { free(stats); } static struct spdk_pci_id nvme_pci_driver_id[] = { { .class_id = SPDK_PCI_CLASS_NVME, .vendor_id = SPDK_PCI_ANY_ID, .device_id = SPDK_PCI_ANY_ID, .subvendor_id = SPDK_PCI_ANY_ID, .subdevice_id = SPDK_PCI_ANY_ID, }, { .vendor_id = 0, /* sentinel */ }, }; SPDK_PCI_DRIVER_REGISTER(nvme, nvme_pci_driver_id, SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE); const struct spdk_nvme_transport_ops pcie_ops = { .name = "PCIE", .type = SPDK_NVME_TRANSPORT_PCIE, .ctrlr_construct = nvme_pcie_ctrlr_construct, .ctrlr_scan = nvme_pcie_ctrlr_scan, .ctrlr_destruct = nvme_pcie_ctrlr_destruct, .ctrlr_enable = nvme_pcie_ctrlr_enable, .ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4, .ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8, .ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4, .ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8, .ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size, .ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges, .ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb, .ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb, .ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb, .ctrlr_enable_pmr = nvme_pcie_ctrlr_enable_pmr, .ctrlr_disable_pmr = nvme_pcie_ctrlr_disable_pmr, .ctrlr_map_pmr = nvme_pcie_ctrlr_map_io_pmr, .ctrlr_unmap_pmr = nvme_pcie_ctrlr_unmap_io_pmr, .ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair, .ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair, .ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair, .ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair, .qpair_abort_reqs = nvme_pcie_qpair_abort_reqs, .qpair_reset = nvme_pcie_qpair_reset, .qpair_submit_request = nvme_pcie_qpair_submit_request, .qpair_process_completions = nvme_pcie_qpair_process_completions, .qpair_iterate_requests = nvme_pcie_qpair_iterate_requests, .admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers, .poll_group_create = nvme_pcie_poll_group_create, .poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair, .poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair, .poll_group_add = nvme_pcie_poll_group_add, .poll_group_remove = nvme_pcie_poll_group_remove, .poll_group_process_completions = nvme_pcie_poll_group_process_completions, .poll_group_destroy = nvme_pcie_poll_group_destroy, .poll_group_get_stats = nvme_pcie_poll_group_get_stats, .poll_group_free_stats = nvme_pcie_poll_group_free_stats }; SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);