/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "nvme_internal.h" static struct nvme_request *_nvme_ns_cmd_rw(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag, bool check_sgl); static void nvme_cb_complete_child(void *child_arg, const struct spdk_nvme_cpl *cpl) { struct nvme_request *child = child_arg; struct nvme_request *parent = child->parent; nvme_request_remove_child(parent, child); if (spdk_nvme_cpl_is_error(cpl)) { memcpy(&parent->parent_status, cpl, sizeof(*cpl)); } if (parent->num_children == 0) { if (parent->cb_fn) { parent->cb_fn(parent->cb_arg, &parent->parent_status); } nvme_free_request(parent); } } static void nvme_request_add_child(struct nvme_request *parent, struct nvme_request *child) { if (parent->num_children == 0) { /* * Defer initialization of the children TAILQ since it falls * on a separate cacheline. This ensures we do not touch this * cacheline except on request splitting cases, which are * relatively rare. */ TAILQ_INIT(&parent->children); parent->parent = NULL; memset(&parent->parent_status, 0, sizeof(struct spdk_nvme_cpl)); } parent->num_children++; TAILQ_INSERT_TAIL(&parent->children, child, child_tailq); child->parent = parent; child->cb_fn = nvme_cb_complete_child; child->cb_arg = child; } void nvme_request_remove_child(struct nvme_request *parent, struct nvme_request *child) { assert(parent != NULL); assert(child != NULL); assert(child->parent == parent); assert(parent->num_children != 0); parent->num_children--; TAILQ_REMOVE(&parent->children, child, child_tailq); } static void nvme_request_free_children(struct nvme_request *req) { struct nvme_request *child, *tmp; if (req->num_children == 0) { return; } /* free all child nvme_request */ TAILQ_FOREACH_SAFE(child, &req->children, child_tailq, tmp) { nvme_request_remove_child(req, child); nvme_request_free_children(child); nvme_free_request(child); } } static struct nvme_request * _nvme_add_child_request(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag, struct nvme_request *parent, bool check_sgl) { struct nvme_request *child; child = _nvme_ns_cmd_rw(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn, cb_arg, opc, io_flags, apptag_mask, apptag, check_sgl); if (child == NULL) { nvme_request_free_children(parent); nvme_free_request(parent); return NULL; } nvme_request_add_child(parent, child); return child; } static struct nvme_request * _nvme_ns_cmd_split_request(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc, uint32_t io_flags, struct nvme_request *req, uint32_t sectors_per_max_io, uint32_t sector_mask, uint16_t apptag_mask, uint16_t apptag) { uint32_t sector_size; uint32_t md_size = ns->md_size; uint32_t remaining_lba_count = lba_count; struct nvme_request *child; sector_size = ns->extended_lba_size; if ((io_flags & SPDK_NVME_IO_FLAGS_PRACT) && (ns->flags & SPDK_NVME_NS_EXTENDED_LBA_SUPPORTED) && (ns->flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) && (md_size == 8)) { sector_size -= 8; } while (remaining_lba_count > 0) { lba_count = sectors_per_max_io - (lba & sector_mask); lba_count = spdk_min(remaining_lba_count, lba_count); child = _nvme_add_child_request(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn, cb_arg, opc, io_flags, apptag_mask, apptag, req, true); if (child == NULL) { return NULL; } remaining_lba_count -= lba_count; lba += lba_count; payload_offset += lba_count * sector_size; md_offset += lba_count * md_size; } return req; } static void _nvme_ns_cmd_setup_request(struct spdk_nvme_ns *ns, struct nvme_request *req, uint32_t opc, uint64_t lba, uint32_t lba_count, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag) { struct spdk_nvme_cmd *cmd; cmd = &req->cmd; cmd->opc = opc; cmd->nsid = ns->id; *(uint64_t *)&cmd->cdw10 = lba; if (ns->flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) { switch (ns->pi_type) { case SPDK_NVME_FMT_NVM_PROTECTION_TYPE1: case SPDK_NVME_FMT_NVM_PROTECTION_TYPE2: cmd->cdw14 = (uint32_t)lba; break; } } cmd->cdw12 = lba_count - 1; cmd->cdw12 |= io_flags; cmd->cdw15 = apptag_mask; cmd->cdw15 = (cmd->cdw15 << 16 | apptag); } static struct nvme_request * _nvme_ns_cmd_split_request_prp(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc, uint32_t io_flags, struct nvme_request *req, uint16_t apptag_mask, uint16_t apptag) { struct nvme_sgl_args *args; bool start_valid, end_valid, last_sge, child_equals_parent; uint64_t child_lba = lba; uint32_t req_current_length = 0; uint32_t child_length = 0; uint32_t sge_length; uint32_t page_size = qpair->ctrlr->page_size; uintptr_t address; args = &req->payload.u.sgl; args->reset_sgl_fn(args->cb_arg, payload_offset); args->next_sge_fn(args->cb_arg, (void **)&address, &sge_length); while (req_current_length < req->payload_size) { if (sge_length == 0) { continue; } else if (req_current_length + sge_length > req->payload_size) { sge_length = req->payload_size - req_current_length; } /* * The start of the SGE is invalid if the start address is not page aligned, * unless it is the first SGE in the child request. */ start_valid = child_length == 0 || _is_page_aligned(address, page_size); /* Boolean for whether this is the last SGE in the parent request. */ last_sge = (req_current_length + sge_length == req->payload_size); /* * The end of the SGE is invalid if the end address is not page aligned, * unless it is the last SGE in the parent request. */ end_valid = last_sge || _is_page_aligned(address + sge_length, page_size); /* * This child request equals the parent request, meaning that no splitting * was required for the parent request (the one passed into this function). * In this case, we do not create a child request at all - we just send * the original request as a single request at the end of this function. */ child_equals_parent = (child_length + sge_length == req->payload_size); if (start_valid) { /* * The start of the SGE is valid, so advance the length parameters, * to include this SGE with previous SGEs for this child request * (if any). If it is not valid, we do not advance the length * parameters nor get the next SGE, because we must send what has * been collected before this SGE as a child request. */ child_length += sge_length; req_current_length += sge_length; if (req_current_length < req->payload_size) { args->next_sge_fn(args->cb_arg, (void **)&address, &sge_length); } /* * If the next SGE is not page aligned, we will need to create a child * request for what we have so far, and then start a new child request for * the next SGE. */ start_valid = _is_page_aligned(address, page_size); } if (start_valid && end_valid && !last_sge) { continue; } /* * We need to create a split here. Send what we have accumulated so far as a child * request. Checking if child_equals_parent allows us to *not* create a child request * when no splitting is required - in that case we will fall-through and just create * a single request with no children for the entire I/O. */ if (!child_equals_parent) { struct nvme_request *child; uint32_t child_lba_count; if ((child_length % ns->extended_lba_size) != 0) { SPDK_ERRLOG("child_length %u not even multiple of lba_size %u\n", child_length, ns->extended_lba_size); return NULL; } child_lba_count = child_length / ns->extended_lba_size; /* * Note the last parameter is set to "false" - this tells the recursive * call to _nvme_ns_cmd_rw() to not bother with checking for SGL splitting * since we have already verified it here. */ child = _nvme_add_child_request(ns, qpair, payload, payload_offset, md_offset, child_lba, child_lba_count, cb_fn, cb_arg, opc, io_flags, apptag_mask, apptag, req, false); if (child == NULL) { return NULL; } payload_offset += child_length; md_offset += child_lba_count * ns->md_size; child_lba += child_lba_count; child_length = 0; } } if (child_length == req->payload_size) { /* No splitting was required, so setup the whole payload as one request. */ _nvme_ns_cmd_setup_request(ns, req, opc, lba, lba_count, io_flags, apptag_mask, apptag); } return req; } static struct nvme_request * _nvme_ns_cmd_split_request_sgl(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc, uint32_t io_flags, struct nvme_request *req, uint16_t apptag_mask, uint16_t apptag) { struct nvme_sgl_args *args; uint64_t child_lba = lba; uint32_t req_current_length = 0; uint32_t child_length = 0; uint32_t sge_length; uint16_t max_sges, num_sges; uintptr_t address; args = &req->payload.u.sgl; max_sges = ns->ctrlr->max_sges; args->reset_sgl_fn(args->cb_arg, payload_offset); num_sges = 0; while (req_current_length < req->payload_size) { args->next_sge_fn(args->cb_arg, (void **)&address, &sge_length); if (req_current_length + sge_length > req->payload_size) { sge_length = req->payload_size - req_current_length; } child_length += sge_length; req_current_length += sge_length; num_sges++; if (num_sges < max_sges) { continue; } /* * We need to create a split here. Send what we have accumulated so far as a child * request. Checking if the child equals the full payload allows us to *not* * create a child request when no splitting is required - in that case we will * fall-through and just create a single request with no children for the entire I/O. */ if (child_length != req->payload_size) { struct nvme_request *child; uint32_t child_lba_count; if ((child_length % ns->extended_lba_size) != 0) { SPDK_ERRLOG("child_length %u not even multiple of lba_size %u\n", child_length, ns->extended_lba_size); return NULL; } child_lba_count = child_length / ns->extended_lba_size; /* * Note the last parameter is set to "false" - this tells the recursive * call to _nvme_ns_cmd_rw() to not bother with checking for SGL splitting * since we have already verified it here. */ child = _nvme_add_child_request(ns, qpair, payload, payload_offset, md_offset, child_lba, child_lba_count, cb_fn, cb_arg, opc, io_flags, apptag_mask, apptag, req, false); if (child == NULL) { return NULL; } payload_offset += child_length; md_offset += child_lba_count * ns->md_size; child_lba += child_lba_count; child_length = 0; num_sges = 0; } } if (child_length == req->payload_size) { /* No splitting was required, so setup the whole payload as one request. */ _nvme_ns_cmd_setup_request(ns, req, opc, lba, lba_count, io_flags, apptag_mask, apptag); } return req; } static struct nvme_request * _nvme_ns_cmd_rw(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag, bool check_sgl) { struct nvme_request *req; uint32_t sector_size; uint32_t sectors_per_max_io; uint32_t sectors_per_stripe; if (io_flags & 0xFFFF) { /* The bottom 16 bits must be empty */ return NULL; } sector_size = ns->extended_lba_size; sectors_per_max_io = ns->sectors_per_max_io; sectors_per_stripe = ns->sectors_per_stripe; if ((io_flags & SPDK_NVME_IO_FLAGS_PRACT) && (ns->flags & SPDK_NVME_NS_EXTENDED_LBA_SUPPORTED) && (ns->flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) && (ns->md_size == 8)) { sector_size -= 8; } req = nvme_allocate_request(qpair, payload, lba_count * sector_size, cb_fn, cb_arg); if (req == NULL) { return NULL; } req->payload_offset = payload_offset; req->md_offset = md_offset; /* * Intel DC P3*00 NVMe controllers benefit from driver-assisted striping. * If this controller defines a stripe boundary and this I/O spans a stripe * boundary, split the request into multiple requests and submit each * separately to hardware. */ if (sectors_per_stripe > 0 && (((lba & (sectors_per_stripe - 1)) + lba_count) > sectors_per_stripe)) { return _nvme_ns_cmd_split_request(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn, cb_arg, opc, io_flags, req, sectors_per_stripe, sectors_per_stripe - 1, apptag_mask, apptag); } else if (lba_count > sectors_per_max_io) { return _nvme_ns_cmd_split_request(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn, cb_arg, opc, io_flags, req, sectors_per_max_io, 0, apptag_mask, apptag); } else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL && check_sgl) { if (ns->ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) { return _nvme_ns_cmd_split_request_sgl(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn, cb_arg, opc, io_flags, req, apptag_mask, apptag); } else { return _nvme_ns_cmd_split_request_prp(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn, cb_arg, opc, io_flags, req, apptag_mask, apptag); } } _nvme_ns_cmd_setup_request(ns, req, opc, lba, lba_count, io_flags, apptag_mask, apptag); return req; } int spdk_nvme_ns_cmd_compare(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags) { struct nvme_request *req; struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = NULL; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_COMPARE, io_flags, 0, 0, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_compare_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer, void *metadata, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag) { struct nvme_request *req; struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = metadata; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_COMPARE, io_flags, apptag_mask, apptag, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags, spdk_nvme_req_reset_sgl_cb reset_sgl_fn, spdk_nvme_req_next_sge_cb next_sge_fn) { struct nvme_request *req; struct nvme_payload payload; if (reset_sgl_fn == NULL || next_sge_fn == NULL) { return -EINVAL; } payload.type = NVME_PAYLOAD_TYPE_SGL; payload.md = NULL; payload.u.sgl.reset_sgl_fn = reset_sgl_fn; payload.u.sgl.next_sge_fn = next_sge_fn; payload.u.sgl.cb_arg = cb_arg; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_COMPARE, io_flags, 0, 0, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_read(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags) { struct nvme_request *req; struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = NULL; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ, io_flags, 0, 0, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_read_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer, void *metadata, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag) { struct nvme_request *req; struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = metadata; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ, io_flags, apptag_mask, apptag, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags, spdk_nvme_req_reset_sgl_cb reset_sgl_fn, spdk_nvme_req_next_sge_cb next_sge_fn) { struct nvme_request *req; struct nvme_payload payload; if (reset_sgl_fn == NULL || next_sge_fn == NULL) { return -EINVAL; } payload.type = NVME_PAYLOAD_TYPE_SGL; payload.md = NULL; payload.u.sgl.reset_sgl_fn = reset_sgl_fn; payload.u.sgl.next_sge_fn = next_sge_fn; payload.u.sgl.cb_arg = cb_arg; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ, io_flags, 0, 0, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_write(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags) { struct nvme_request *req; struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = NULL; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE, io_flags, 0, 0, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_write_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer, void *metadata, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag) { struct nvme_request *req; struct nvme_payload payload; payload.type = NVME_PAYLOAD_TYPE_CONTIG; payload.u.contig = buffer; payload.md = metadata; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE, io_flags, apptag_mask, apptag, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags, spdk_nvme_req_reset_sgl_cb reset_sgl_fn, spdk_nvme_req_next_sge_cb next_sge_fn) { struct nvme_request *req; struct nvme_payload payload; if (reset_sgl_fn == NULL || next_sge_fn == NULL) { return -EINVAL; } payload.type = NVME_PAYLOAD_TYPE_SGL; payload.md = NULL; payload.u.sgl.reset_sgl_fn = reset_sgl_fn; payload.u.sgl.next_sge_fn = next_sge_fn; payload.u.sgl.cb_arg = cb_arg; req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE, io_flags, 0, 0, true); if (req != NULL) { return nvme_qpair_submit_request(qpair, req); } else { return -ENOMEM; } } int spdk_nvme_ns_cmd_write_zeroes(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; uint64_t *tmp_lba; if (lba_count == 0 || lba_count > UINT16_MAX + 1) { return -EINVAL; } req = nvme_allocate_request_null(qpair, cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_WRITE_ZEROES; cmd->nsid = ns->id; tmp_lba = (uint64_t *)&cmd->cdw10; *tmp_lba = lba; cmd->cdw12 = lba_count - 1; cmd->cdw12 |= io_flags; return nvme_qpair_submit_request(qpair, req); } int spdk_nvme_ns_cmd_dataset_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, uint32_t type, const struct spdk_nvme_dsm_range *ranges, uint16_t num_ranges, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; if (num_ranges == 0 || num_ranges > SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES) { return -EINVAL; } if (ranges == NULL) { return -EINVAL; } req = nvme_allocate_request_user_copy(qpair, (void *)ranges, num_ranges * sizeof(struct spdk_nvme_dsm_range), cb_fn, cb_arg, true); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_DATASET_MANAGEMENT; cmd->nsid = ns->id; cmd->cdw10 = num_ranges - 1; cmd->cdw11 = type; return nvme_qpair_submit_request(qpair, req); } int spdk_nvme_ns_cmd_flush(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(qpair, cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_FLUSH; cmd->nsid = ns->id; return nvme_qpair_submit_request(qpair, req); } int spdk_nvme_ns_cmd_reservation_register(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct spdk_nvme_reservation_register_data *payload, bool ignore_key, enum spdk_nvme_reservation_register_action action, enum spdk_nvme_reservation_register_cptpl cptpl, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_user_copy(qpair, payload, sizeof(struct spdk_nvme_reservation_register_data), cb_fn, cb_arg, true); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_RESERVATION_REGISTER; cmd->nsid = ns->id; /* Bits 0-2 */ cmd->cdw10 = action; /* Bit 3 */ cmd->cdw10 |= ignore_key ? 1 << 3 : 0; /* Bits 30-31 */ cmd->cdw10 |= (uint32_t)cptpl << 30; return nvme_qpair_submit_request(qpair, req); } int spdk_nvme_ns_cmd_reservation_release(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct spdk_nvme_reservation_key_data *payload, bool ignore_key, enum spdk_nvme_reservation_release_action action, enum spdk_nvme_reservation_type type, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_user_copy(qpair, payload, sizeof(struct spdk_nvme_reservation_key_data), cb_fn, cb_arg, true); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_RESERVATION_RELEASE; cmd->nsid = ns->id; /* Bits 0-2 */ cmd->cdw10 = action; /* Bit 3 */ cmd->cdw10 |= ignore_key ? 1 << 3 : 0; /* Bits 8-15 */ cmd->cdw10 |= (uint32_t)type << 8; return nvme_qpair_submit_request(qpair, req); } int spdk_nvme_ns_cmd_reservation_acquire(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, struct spdk_nvme_reservation_acquire_data *payload, bool ignore_key, enum spdk_nvme_reservation_acquire_action action, enum spdk_nvme_reservation_type type, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_user_copy(qpair, payload, sizeof(struct spdk_nvme_reservation_acquire_data), cb_fn, cb_arg, true); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_RESERVATION_ACQUIRE; cmd->nsid = ns->id; /* Bits 0-2 */ cmd->cdw10 = action; /* Bit 3 */ cmd->cdw10 |= ignore_key ? 1 << 3 : 0; /* Bits 8-15 */ cmd->cdw10 |= (uint32_t)type << 8; return nvme_qpair_submit_request(qpair, req); } int spdk_nvme_ns_cmd_reservation_report(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *payload, uint32_t len, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { uint32_t num_dwords; struct nvme_request *req; struct spdk_nvme_cmd *cmd; if (len % 4) { return -EINVAL; } num_dwords = len / 4; req = nvme_allocate_request_user_copy(qpair, payload, len, cb_fn, cb_arg, false); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_RESERVATION_REPORT; cmd->nsid = ns->id; cmd->cdw10 = num_dwords; return nvme_qpair_submit_request(qpair, req); }