/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * NVMe over PCIe transport */ #include "nvme_internal.h" /* PCIe transport extensions for spdk_nvme_ctrlr */ struct nvme_pcie_ctrlr { struct spdk_nvme_ctrlr ctrlr; /** NVMe MMIO register space */ volatile struct spdk_nvme_registers *regs; /* BAR mapping address which contains controller memory buffer */ void *cmb_bar_virt_addr; /* BAR physical address which contains controller memory buffer */ uint64_t cmb_bar_phys_addr; /* Controller memory buffer size in Bytes */ uint64_t cmb_size; /* Current offset of controller memory buffer */ uint64_t cmb_current_offset; /** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */ uint32_t doorbell_stride_u32; }; static inline struct nvme_pcie_ctrlr * nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { assert(ctrlr->transport == &spdk_nvme_transport_pcie); return (struct nvme_pcie_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_pcie_ctrlr, ctrlr)); } static int nvme_pcie_ctrlr_get_pci_id(struct spdk_nvme_ctrlr *ctrlr, struct pci_id *pci_id) { struct spdk_pci_device *pci_dev; assert(ctrlr != NULL); assert(pci_id != NULL); pci_dev = ctrlr->devhandle; assert(pci_dev != NULL); pci_id->vendor_id = spdk_pci_device_get_vendor_id(pci_dev); pci_id->dev_id = spdk_pci_device_get_device_id(pci_dev); pci_id->sub_vendor_id = spdk_pci_device_get_subvendor_id(pci_dev); pci_id->sub_dev_id = spdk_pci_device_get_subdevice_id(pci_dev); return 0; } static volatile void * nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); return (volatile void *)((uintptr_t)pctrlr->regs + offset); } static int nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { assert(offset <= sizeof(struct spdk_nvme_registers) - 4); spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value); return 0; } static int nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { assert(offset <= sizeof(struct spdk_nvme_registers) - 8); spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value); return 0; } static int nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { assert(offset <= sizeof(struct spdk_nvme_registers) - 4); assert(value != NULL); *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset)); return 0; } static int nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { assert(offset <= sizeof(struct spdk_nvme_registers) - 8); assert(value != NULL); *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset)); return 0; } static int nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) { return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq), value); } static int nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value) { return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq), value); } static int nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa) { return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw), aqa->raw); } static int nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw), &cmbloc->raw); } static int nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz) { return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), &cmbsz->raw); } static void nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr; uint32_t bir; union spdk_nvme_cmbsz_register cmbsz; union spdk_nvme_cmbloc_register cmbloc; uint64_t size, unit_size, offset, bar_size, bar_phys_addr; if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) || nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_TRACELOG(SPDK_TRACE_NVME, "get registers failed\n"); goto exit; } if (!cmbsz.bits.sz) goto exit; bir = cmbloc.bits.bir; /* Values 0 2 3 4 5 are valid for BAR */ if (bir > 5 || bir == 1) goto exit; /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */ unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu); /* controller memory buffer size in Bytes */ size = unit_size * cmbsz.bits.sz; /* controller memory buffer offset from BAR in Bytes */ offset = unit_size * cmbloc.bits.ofst; rc = spdk_pci_device_map_bar(pctrlr->ctrlr.devhandle, bir, &addr, &bar_phys_addr, &bar_size); if ((rc != 0) || addr == NULL) { goto exit; } if (offset > bar_size) { goto exit; } if (size > bar_size - offset) { goto exit; } pctrlr->cmb_bar_virt_addr = addr; pctrlr->cmb_bar_phys_addr = bar_phys_addr; pctrlr->cmb_size = size; pctrlr->cmb_current_offset = offset; if (!cmbsz.bits.sqs) { pctrlr->ctrlr.opts.use_cmb_sqs = false; } return; exit: pctrlr->cmb_bar_virt_addr = NULL; pctrlr->ctrlr.opts.use_cmb_sqs = false; return; } static int nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; union spdk_nvme_cmbloc_register cmbloc; void *addr = pctrlr->cmb_bar_virt_addr; if (addr) { if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) { SPDK_TRACELOG(SPDK_TRACE_NVME, "get_cmbloc() failed\n"); return -EIO; } rc = spdk_pci_device_unmap_bar(pctrlr->ctrlr.devhandle, cmbloc.bits.bir, addr); } return rc; } static int nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned, uint64_t *offset) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); uint64_t round_offset; round_offset = pctrlr->cmb_current_offset; round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1); if (round_offset + length > pctrlr->cmb_size) return -1; *offset = round_offset; pctrlr->cmb_current_offset = round_offset + length; return 0; } static int nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr) { int rc; void *addr; uint64_t phys_addr, size; rc = spdk_pci_device_map_bar(pctrlr->ctrlr.devhandle, 0, &addr, &phys_addr, &size); pctrlr->regs = (volatile struct spdk_nvme_registers *)addr; if ((pctrlr->regs == NULL) || (rc != 0)) { SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n", rc, pctrlr->regs); return -1; } nvme_pcie_ctrlr_map_cmb(pctrlr); return 0; } static int nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr) { int rc = 0; void *addr = (void *)pctrlr->regs; rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr); if (rc != 0) { SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc); return -1; } if (addr) { rc = spdk_pci_device_unmap_bar(pctrlr->ctrlr.devhandle, 0, addr); } return rc; } static int nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr) { ctrlr->adminq = spdk_zmalloc(sizeof(struct spdk_nvme_qpair), 64, NULL); if (ctrlr->adminq == NULL) { return -ENOMEM; } return nvme_qpair_construct(ctrlr->adminq, 0, /* qpair ID */ NVME_ADMIN_ENTRIES, ctrlr); } static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(void *devhandle) { struct spdk_pci_device *pci_dev = devhandle; struct nvme_pcie_ctrlr *pctrlr; union spdk_nvme_cap_register cap; uint32_t cmd_reg; int rc; pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL); if (pctrlr == NULL) { SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } pctrlr->ctrlr.transport = &spdk_nvme_transport_pcie; pctrlr->ctrlr.devhandle = devhandle; rc = nvme_pcie_ctrlr_allocate_bars(pctrlr); if (rc != 0) { spdk_free(pctrlr); return NULL; } /* Enable PCI busmaster and disable INTx */ spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4); cmd_reg |= 0x404; spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4); if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) { SPDK_TRACELOG(SPDK_TRACE_NVME, "get_cap() failed\n"); spdk_free(pctrlr); return NULL; } pctrlr->ctrlr.cap = cap; /* Doorbell stride is 2 ^ (dstrd + 2), * but we want multiples of 4, so drop the + 2 */ pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd; /* Save the PCI address */ pctrlr->ctrlr.pci_addr.domain = spdk_pci_device_get_domain(pci_dev); pctrlr->ctrlr.pci_addr.bus = spdk_pci_device_get_bus(pci_dev); pctrlr->ctrlr.pci_addr.dev = spdk_pci_device_get_dev(pci_dev); pctrlr->ctrlr.pci_addr.func = spdk_pci_device_get_func(pci_dev); rc = nvme_ctrlr_construct(&pctrlr->ctrlr); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr); if (rc != 0) { nvme_ctrlr_destruct(&pctrlr->ctrlr); return NULL; } return &pctrlr->ctrlr; } static int nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); union spdk_nvme_aqa_register aqa; if (nvme_pcie_ctrlr_set_asq(pctrlr, ctrlr->adminq->cmd_bus_addr)) { SPDK_TRACELOG(SPDK_TRACE_NVME, "set_asq() failed\n"); return -EIO; } if (nvme_pcie_ctrlr_set_acq(pctrlr, ctrlr->adminq->cpl_bus_addr)) { SPDK_TRACELOG(SPDK_TRACE_NVME, "set_acq() failed\n"); return -EIO; } aqa.raw = 0; /* acqs and asqs are 0-based. */ aqa.bits.acqs = ctrlr->adminq->num_entries - 1; aqa.bits.asqs = ctrlr->adminq->num_entries - 1; if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) { SPDK_TRACELOG(SPDK_TRACE_NVME, "set_aqa() failed\n"); return -EIO; } return 0; } static void nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); if (ctrlr->adminq) { nvme_qpair_destroy(ctrlr->adminq); spdk_free(ctrlr->adminq); } nvme_pcie_ctrlr_free_bars(pctrlr); spdk_free(pctrlr); } static void nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr) { tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp); tr->cid = cid; tr->active = false; } static void nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair) { qpair->sq_tail = qpair->cq_head = 0; /* * First time through the completion queue, HW will set phase * bit on completions to 1. So set this to 1 here, indicating * we're looking for a 1 to know which entries have completed. * we'll toggle the bit each time when the completion queue * rolls over. */ qpair->phase = 1; memset(qpair->cmd, 0, qpair->num_entries * sizeof(struct spdk_nvme_cmd)); memset(qpair->cpl, 0, qpair->num_entries * sizeof(struct spdk_nvme_cpl)); } static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair) { struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr); struct nvme_tracker *tr; uint16_t i; volatile uint32_t *doorbell_base; uint64_t phys_addr = 0; uint64_t offset; uint16_t num_trackers; if (qpair->id == 0) { num_trackers = NVME_ADMIN_TRACKERS; } else { /* * No need to have more trackers than entries in the submit queue. * Note also that for a queue size of N, we can only have (N-1) * commands outstanding, hence the "-1" here. */ num_trackers = nvme_min(NVME_IO_TRACKERS, qpair->num_entries - 1); } assert(num_trackers != 0); qpair->sq_in_cmb = false; /* cmd and cpl rings must be aligned on 4KB boundaries. */ if (ctrlr->opts.use_cmb_sqs) { if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, qpair->num_entries * sizeof(struct spdk_nvme_cmd), 0x1000, &offset) == 0) { qpair->cmd = pctrlr->cmb_bar_virt_addr + offset; qpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset; qpair->sq_in_cmb = true; } } if (qpair->sq_in_cmb == false) { qpair->cmd = spdk_zmalloc(qpair->num_entries * sizeof(struct spdk_nvme_cmd), 0x1000, &qpair->cmd_bus_addr); if (qpair->cmd == NULL) { SPDK_ERRLOG("alloc qpair_cmd failed\n"); return -ENOMEM; } } qpair->cpl = spdk_zmalloc(qpair->num_entries * sizeof(struct spdk_nvme_cpl), 0x1000, &qpair->cpl_bus_addr); if (qpair->cpl == NULL) { SPDK_ERRLOG("alloc qpair_cpl failed\n"); return -ENOMEM; } doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl; qpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32; qpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32; /* * Reserve space for all of the trackers in a single allocation. * struct nvme_tracker must be padded so that its size is already a power of 2. * This ensures the PRP list embedded in the nvme_tracker object will not span a * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing. */ qpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), &phys_addr); if (qpair->tr == NULL) { SPDK_ERRLOG("nvme_tr failed\n"); return -ENOMEM; } for (i = 0; i < num_trackers; i++) { tr = &qpair->tr[i]; nvme_qpair_construct_tracker(tr, i, phys_addr); LIST_INSERT_HEAD(&qpair->free_tr, tr, list); phys_addr += sizeof(struct nvme_tracker); } nvme_pcie_qpair_reset(qpair); return 0; } static inline void nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src) { /* dst and src are known to be non-overlapping and 64-byte aligned. */ #if defined(__AVX__) __m256i *d256 = (__m256i *)dst; const __m256i *s256 = (const __m256i *)src; _mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0])); _mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1])); #elif defined(__SSE2__) __m128i *d128 = (__m128i *)dst; const __m128i *s128 = (const __m128i *)src; _mm_store_si128(&d128[0], _mm_load_si128(&s128[0])); _mm_store_si128(&d128[1], _mm_load_si128(&s128[1])); _mm_store_si128(&d128[2], _mm_load_si128(&s128[2])); _mm_store_si128(&d128[3], _mm_load_si128(&s128[3])); #else *dst = *src; #endif } static void nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) { struct nvme_request *req; req = tr->req; qpair->tr[tr->cid].active = true; /* Copy the command from the tracker to the submission queue. */ nvme_pcie_copy_command(&qpair->cmd[qpair->sq_tail], &req->cmd); if (++qpair->sq_tail == qpair->num_entries) { qpair->sq_tail = 0; } spdk_wmb(); spdk_mmio_write_4(qpair->sq_tdbl, qpair->sq_tail); } static void nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, struct spdk_nvme_cpl *cpl, bool print_on_error) { struct nvme_request *req; bool retry, error, was_active; req = tr->req; assert(req != NULL); error = spdk_nvme_cpl_is_error(cpl); retry = error && nvme_completion_is_retry(cpl) && req->retries < spdk_nvme_retry_count; if (error && print_on_error) { nvme_qpair_print_command(qpair, &req->cmd); nvme_qpair_print_completion(qpair, cpl); } was_active = qpair->tr[cpl->cid].active; qpair->tr[cpl->cid].active = false; assert(cpl->cid == req->cmd.cid); if (retry) { req->retries++; nvme_pcie_qpair_submit_tracker(qpair, tr); } else { if (was_active && req->cb_fn) { req->cb_fn(req->cb_arg, cpl); } nvme_free_request(req); tr->req = NULL; LIST_REMOVE(tr, list); LIST_INSERT_HEAD(&qpair->free_tr, tr, list); /* * If the controller is in the middle of resetting, don't * try to submit queued requests here - let the reset logic * handle that instead. */ if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); nvme_qpair_submit_request(qpair, req); } } } static void nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, bool print_on_error) { struct spdk_nvme_cpl cpl; memset(&cpl, 0, sizeof(cpl)); cpl.sqid = qpair->id; cpl.cid = tr->cid; cpl.status.sct = sct; cpl.status.sc = sc; cpl.status.dnr = dnr; nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); } static void nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { struct nvme_tracker *tr; tr = LIST_FIRST(&qpair->outstanding_tr); while (tr != NULL) { assert(tr->req != NULL); if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0, false); tr = LIST_FIRST(&qpair->outstanding_tr); } else { tr = LIST_NEXT(tr, list); } } } static void nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair) { nvme_pcie_admin_qpair_abort_aers(qpair); } static void nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair) { if (nvme_qpair_is_admin_queue(qpair)) { nvme_pcie_admin_qpair_destroy(qpair); } if (qpair->cmd && !qpair->sq_in_cmb) { spdk_free(qpair->cmd); qpair->cmd = NULL; } if (qpair->cpl) { spdk_free(qpair->cpl); qpair->cpl = NULL; } if (qpair->tr) { spdk_free(qpair->tr); qpair->tr = NULL; } } static void nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair) { struct nvme_tracker *tr, *temp; /* * Manually abort each outstanding admin command. Do not retry * admin commands found here, since they will be left over from * a controller reset and its likely the context in which the * command was issued no longer applies. */ LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, temp) { SPDK_ERRLOG("aborting outstanding admin command\n"); nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true); } } static void nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair) { struct nvme_tracker *tr, *temp; /* Manually abort each outstanding I/O. */ LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, temp) { SPDK_ERRLOG("aborting outstanding i/o\n"); nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST, 0, true); } } static void nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair) { if (nvme_qpair_is_io_queue(qpair)) { nvme_pcie_io_qpair_enable(qpair); } else { nvme_pcie_admin_qpair_enable(qpair); } } static void nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair) { nvme_pcie_admin_qpair_abort_aers(qpair); } static void nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair) { } static void nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair) { qpair->is_enabled = false; if (nvme_qpair_is_io_queue(qpair)) { nvme_pcie_io_qpair_disable(qpair); } else { nvme_pcie_admin_qpair_disable(qpair); } } static void nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair) { struct nvme_tracker *tr; /* Manually abort each outstanding I/O. */ while (!LIST_EMPTY(&qpair->outstanding_tr)) { tr = LIST_FIRST(&qpair->outstanding_tr); /* * Do not remove the tracker. The abort_tracker path will * do that for us. */ SPDK_ERRLOG("failing outstanding i/o\n"); nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true); } } static int nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ; /* * TODO: create a create io completion queue command data * structure. */ cmd->cdw10 = ((io_que->num_entries - 1) << 16) | io_que->id; /* * 0x2 = interrupts enabled * 0x1 = physically contiguous */ cmd->cdw11 = 0x1; cmd->dptr.prp.prp1 = io_que->cpl_bus_addr; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ; /* * TODO: create a create io submission queue command data * structure. */ cmd->cdw10 = ((io_que->num_entries - 1) << 16) | io_que->id; /* 0x1 = physically contiguous */ cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1; cmd->dptr.prp.prp1 = io_que->cmd_bus_addr; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ; cmd->cdw10 = qpair->id; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; struct spdk_nvme_cmd *cmd; req = nvme_allocate_request_null(cb_fn, cb_arg); if (req == NULL) { return -ENOMEM; } cmd = &req->cmd; cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ; cmd->cdw10 = qpair->id; return nvme_ctrlr_submit_admin_request(ctrlr, req); } static int _nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint16_t qid) { struct nvme_completion_poll_status status; int rc; status.done = false; rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_create_io_cq failed!\n"); return -1; } status.done = false; rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { SPDK_ERRLOG("nvme_create_io_sq failed!\n"); /* Attempt to delete the completion queue */ status.done = false; rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return -1; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } return -1; } nvme_pcie_qpair_reset(qpair); return 0; } static struct spdk_nvme_qpair * nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, enum spdk_nvme_qprio qprio) { struct spdk_nvme_qpair *qpair; uint32_t num_entries; int rc; assert(ctrlr != NULL); qpair = calloc(1, sizeof(*qpair)); if (qpair == NULL) { return NULL; } qpair->id = qid; qpair->qprio = qprio; /* * NVMe spec sets a hard limit of 64K max entries, but * devices may specify a smaller limit, so we need to check * the MQES field in the capabilities register. */ num_entries = nvme_min(NVME_IO_ENTRIES, ctrlr->cap.bits.mqes + 1); rc = nvme_qpair_construct(qpair, qid, num_entries, ctrlr); if (rc != 0) { free(qpair); return NULL; } rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid); if (rc != 0) { SPDK_TRACELOG(SPDK_TRACE_NVME, "I/O queue creation failed\n"); free(qpair); return NULL; } return qpair; } static int nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id); } static int nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_completion_poll_status status; int rc; assert(ctrlr != NULL); assert(qpair != NULL); /* Delete the I/O submission queue and then the completion queue */ status.done = false; rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { return -1; } status.done = false; rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); if (rc != 0) { return rc; } while (status.done == false) { spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); } if (spdk_nvme_cpl_is_error(&status.cpl)) { return -1; } free(qpair); return 0; } static void nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr) { /* * Bad vtophys translation, so abort this request and return * immediately. */ nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_FIELD, 1 /* do not retry */, true); } /** * Build PRP list describing physically contiguous payload buffer. */ static int nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct nvme_tracker *tr) { uint64_t phys_addr; void *seg_addr; uint32_t nseg, cur_nseg, modulo, unaligned; void *md_payload; void *payload = req->payload.u.contig + req->payload_offset; phys_addr = spdk_vtophys(payload); if (phys_addr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } nseg = req->payload_size >> nvme_u32log2(PAGE_SIZE); modulo = req->payload_size & (PAGE_SIZE - 1); unaligned = phys_addr & (PAGE_SIZE - 1); if (modulo || unaligned) { nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE)); } if (req->payload.md) { md_payload = req->payload.md + req->md_offset; tr->req->cmd.mptr = spdk_vtophys(md_payload); if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } } tr->req->cmd.psdt = SPDK_NVME_PSDT_PRP; tr->req->cmd.dptr.prp.prp1 = phys_addr; if (nseg == 2) { seg_addr = payload + PAGE_SIZE - unaligned; tr->req->cmd.dptr.prp.prp2 = spdk_vtophys(seg_addr); } else if (nseg > 2) { cur_nseg = 1; tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr; while (cur_nseg < nseg) { seg_addr = payload + cur_nseg * PAGE_SIZE - unaligned; phys_addr = spdk_vtophys(seg_addr); if (phys_addr == SPDK_VTOPHYS_ERROR) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } tr->u.prp[cur_nseg - 1] = phys_addr; cur_nseg++; } } return 0; } /** * Build SGL list describing scattered payload buffer. */ static int nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct nvme_tracker *tr) { int rc; uint64_t phys_addr; uint32_t remaining_transfer_len, length; struct spdk_nvme_sgl_descriptor *sgl; uint32_t nseg = 0; /* * Build scattered payloads. */ assert(req->payload_size != 0); assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.u.sgl.reset_sgl_fn != NULL); assert(req->payload.u.sgl.next_sge_fn != NULL); req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset); sgl = tr->u.sgl; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL; req->cmd.dptr.sgl1.unkeyed.subtype = 0; remaining_transfer_len = req->payload_size; while (remaining_transfer_len > 0) { if (nseg >= NVME_MAX_SGL_DESCRIPTORS) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &phys_addr, &length); if (rc) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } length = nvme_min(remaining_transfer_len, length); remaining_transfer_len -= length; sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; sgl->unkeyed.length = length; sgl->address = phys_addr; sgl->unkeyed.subtype = 0; sgl++; nseg++; } if (nseg == 1) { /* * The whole transfer can be described by a single SGL descriptor. * Use the special case described by the spec where SGL1's type is Data Block. * This means the SGL in the tracker is not used at all, so copy the first (and only) * SGL element into SGL1. */ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.address = tr->u.sgl[0].address; req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length; } else { /* For now we can only support 1 SGL segment in NVMe controller */ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr; req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor); } return 0; } /** * Build PRP list describing scattered payload buffer. */ static int nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, struct nvme_tracker *tr) { int rc; uint64_t phys_addr; uint32_t data_transferred, remaining_transfer_len, length; uint32_t nseg, cur_nseg, total_nseg, last_nseg, modulo, unaligned; uint32_t sge_count = 0; uint64_t prp2 = 0; /* * Build scattered payloads. */ assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.u.sgl.reset_sgl_fn != NULL); req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset); remaining_transfer_len = req->payload_size; total_nseg = 0; last_nseg = 0; while (remaining_transfer_len > 0) { assert(req->payload.u.sgl.next_sge_fn != NULL); rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &phys_addr, &length); if (rc) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } /* Confirm that this sge is prp compatible. */ if (phys_addr & 0x3 || (length < remaining_transfer_len && ((phys_addr + length) & (PAGE_SIZE - 1)))) { nvme_pcie_fail_request_bad_vtophys(qpair, tr); return -1; } data_transferred = nvme_min(remaining_transfer_len, length); nseg = data_transferred >> nvme_u32log2(PAGE_SIZE); modulo = data_transferred & (PAGE_SIZE - 1); unaligned = phys_addr & (PAGE_SIZE - 1); if (modulo || unaligned) { nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE)); } if (total_nseg == 0) { req->cmd.psdt = SPDK_NVME_PSDT_PRP; req->cmd.dptr.prp.prp1 = phys_addr; phys_addr -= unaligned; } total_nseg += nseg; sge_count++; remaining_transfer_len -= data_transferred; if (total_nseg == 2) { if (sge_count == 1) tr->req->cmd.dptr.prp.prp2 = phys_addr + PAGE_SIZE; else if (sge_count == 2) tr->req->cmd.dptr.prp.prp2 = phys_addr; /* save prp2 value */ prp2 = tr->req->cmd.dptr.prp.prp2; } else if (total_nseg > 2) { if (sge_count == 1) cur_nseg = 1; else cur_nseg = 0; tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr; while (cur_nseg < nseg) { if (prp2) { tr->u.prp[0] = prp2; tr->u.prp[last_nseg + 1] = phys_addr + cur_nseg * PAGE_SIZE; } else tr->u.prp[last_nseg] = phys_addr + cur_nseg * PAGE_SIZE; last_nseg++; cur_nseg++; } } } return 0; } static inline bool nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair) { if (!qpair->is_enabled && !qpair->ctrlr->is_resetting) { nvme_qpair_enable(qpair); } return qpair->is_enabled; } static int nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { struct nvme_tracker *tr; int rc; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; nvme_pcie_qpair_check_enabled(qpair); tr = LIST_FIRST(&qpair->free_tr); if (tr == NULL || !qpair->is_enabled) { /* * No tracker is available, or the qpair is disabled due to * an in-progress controller-level reset. * * Put the request on the qpair's request queue to be * processed when a tracker frees up via a command * completion or when the controller reset is * completed. */ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); return 0; } LIST_REMOVE(tr, list); /* remove tr from free_tr */ LIST_INSERT_HEAD(&qpair->outstanding_tr, tr, list); tr->req = req; req->cmd.cid = tr->cid; if (req->payload_size == 0) { /* Null payload - leave PRP fields zeroed */ rc = 0; } else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) { rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr); } else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) { if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) { rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr); } else { rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr); } } else { assert(0); nvme_pcie_fail_request_bad_vtophys(qpair, tr); rc = -EINVAL; } if (rc < 0) { return rc; } nvme_pcie_qpair_submit_tracker(qpair, tr); return 0; } static int32_t nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { struct nvme_tracker *tr; struct spdk_nvme_cpl *cpl; uint32_t num_completions = 0; if (!nvme_pcie_qpair_check_enabled(qpair)) { /* * qpair is not enabled, likely because a controller reset is * is in progress. Ignore the interrupt - any I/O that was * associated with this interrupt will get retried when the * reset is complete. */ return 0; } if (max_completions == 0 || (max_completions > (qpair->num_entries - 1U))) { /* * max_completions == 0 means unlimited, but complete at most one * queue depth batch of I/O at a time so that the completion * queue doorbells don't wrap around. */ max_completions = qpair->num_entries - 1; } while (1) { cpl = &qpair->cpl[qpair->cq_head]; if (cpl->status.p != qpair->phase) break; tr = &qpair->tr[cpl->cid]; if (tr->active) { nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true); } else { SPDK_ERRLOG("cpl does not map to outstanding cmd\n"); nvme_qpair_print_completion(qpair, cpl); assert(0); } if (++qpair->cq_head == qpair->num_entries) { qpair->cq_head = 0; qpair->phase = !qpair->phase; } if (++num_completions == max_completions) { break; } } if (num_completions > 0) { spdk_mmio_write_4(qpair->cq_hdbl, qpair->cq_head); } return num_completions; } const struct spdk_nvme_transport spdk_nvme_transport_pcie = { .ctrlr_construct = nvme_pcie_ctrlr_construct, .ctrlr_destruct = nvme_pcie_ctrlr_destruct, .ctrlr_enable = nvme_pcie_ctrlr_enable, .ctrlr_get_pci_id = nvme_pcie_ctrlr_get_pci_id, .ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4, .ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8, .ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4, .ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8, .ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair, .ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair, .ctrlr_reinit_io_qpair = nvme_pcie_ctrlr_reinit_io_qpair, .qpair_construct = nvme_pcie_qpair_construct, .qpair_destroy = nvme_pcie_qpair_destroy, .qpair_enable = nvme_pcie_qpair_enable, .qpair_disable = nvme_pcie_qpair_disable, .qpair_reset = nvme_pcie_qpair_reset, .qpair_fail = nvme_pcie_qpair_fail, .qpair_submit_request = nvme_pcie_qpair_submit_request, .qpair_process_completions = nvme_pcie_qpair_process_completions, };