numam-spdk/examples/ioat/verify/verify.c
Nick Connolly bb19c18f6a examples: Use PRId64 for portability
POSIX defines PRId64/PRIu64/PRIx64 for printing 64-bit values in a
portable way. Replace a few references to %ld to remove the assumption
about the size of a long.

Where the value being printed is an unsigned 64-bit value, use PRIu64
instead of %ld.

Signed-off-by: Nick Connolly <nick.connolly@mayadata.io>
Change-Id: Ifa558522437f4922b922abf17712173cb5ca1184
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/5134
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2020-11-20 11:01:11 +00:00

523 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/ioat.h"
#include "spdk/env.h"
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/util.h"
#define SRC_BUFFER_SIZE (512*1024)
enum ioat_task_type {
IOAT_COPY_TYPE,
IOAT_FILL_TYPE,
};
struct user_config {
int queue_depth;
int time_in_sec;
char *core_mask;
};
struct ioat_device {
struct spdk_ioat_chan *ioat;
TAILQ_ENTRY(ioat_device) tailq;
};
static TAILQ_HEAD(, ioat_device) g_devices = TAILQ_HEAD_INITIALIZER(g_devices);
static struct ioat_device *g_next_device;
static struct user_config g_user_config;
struct thread_entry {
struct spdk_ioat_chan *chan;
uint64_t xfer_completed;
uint64_t xfer_failed;
uint64_t fill_completed;
uint64_t fill_failed;
uint64_t current_queue_depth;
unsigned lcore_id;
bool is_draining;
bool init_failed;
struct spdk_mempool *data_pool;
struct spdk_mempool *task_pool;
};
struct ioat_task {
enum ioat_task_type type;
struct thread_entry *thread_entry;
void *buffer;
int len;
uint64_t fill_pattern;
void *src;
void *dst;
};
static __thread unsigned int seed = 0;
static unsigned char *g_src;
static void submit_single_xfer(struct ioat_task *ioat_task);
static void
construct_user_config(struct user_config *self)
{
self->queue_depth = 32;
self->time_in_sec = 10;
self->core_mask = "0x1";
}
static void
dump_user_config(struct user_config *self)
{
printf("User configuration:\n");
printf("Run time: %u seconds\n", self->time_in_sec);
printf("Core mask: %s\n", self->core_mask);
printf("Queue depth: %u\n", self->queue_depth);
}
static void
ioat_exit(void)
{
struct ioat_device *dev;
while (!TAILQ_EMPTY(&g_devices)) {
dev = TAILQ_FIRST(&g_devices);
TAILQ_REMOVE(&g_devices, dev, tailq);
if (dev->ioat) {
spdk_ioat_detach(dev->ioat);
}
free(dev);
}
}
static void prepare_ioat_task(struct thread_entry *thread_entry, struct ioat_task *ioat_task)
{
int len;
uintptr_t src_offset;
uintptr_t dst_offset;
uint64_t fill_pattern;
if (ioat_task->type == IOAT_FILL_TYPE) {
fill_pattern = rand_r(&seed);
fill_pattern = fill_pattern << 32 | rand_r(&seed);
/* Ensure that the length of memset block is 8 Bytes aligned.
* In case the buffer crosses hugepage boundary and must be split,
* we also need to ensure 8 byte address alignment. We do it
* unconditionally to keep things simple.
*/
len = 8 + ((rand_r(&seed) % (SRC_BUFFER_SIZE - 16)) & ~0x7);
dst_offset = 8 + rand_r(&seed) % (SRC_BUFFER_SIZE - 8 - len);
ioat_task->fill_pattern = fill_pattern;
ioat_task->dst = (void *)(((uintptr_t)ioat_task->buffer + dst_offset) & ~0x7);
} else {
src_offset = rand_r(&seed) % SRC_BUFFER_SIZE;
len = rand_r(&seed) % (SRC_BUFFER_SIZE - src_offset);
dst_offset = rand_r(&seed) % (SRC_BUFFER_SIZE - len);
memset(ioat_task->buffer, 0, SRC_BUFFER_SIZE);
ioat_task->src = (void *)((uintptr_t)g_src + src_offset);
ioat_task->dst = (void *)((uintptr_t)ioat_task->buffer + dst_offset);
}
ioat_task->len = len;
ioat_task->thread_entry = thread_entry;
}
static void
ioat_done(void *cb_arg)
{
char *value;
int i, failed = 0;
struct ioat_task *ioat_task = (struct ioat_task *)cb_arg;
struct thread_entry *thread_entry = ioat_task->thread_entry;
if (ioat_task->type == IOAT_FILL_TYPE) {
value = ioat_task->dst;
for (i = 0; i < ioat_task->len / 8; i++) {
if (memcmp(value, &ioat_task->fill_pattern, 8) != 0) {
thread_entry->fill_failed++;
failed = 1;
break;
}
value += 8;
}
if (!failed) {
thread_entry->fill_completed++;
}
} else {
if (memcmp(ioat_task->src, ioat_task->dst, ioat_task->len)) {
thread_entry->xfer_failed++;
} else {
thread_entry->xfer_completed++;
}
}
thread_entry->current_queue_depth--;
if (thread_entry->is_draining) {
spdk_mempool_put(thread_entry->data_pool, ioat_task->buffer);
spdk_mempool_put(thread_entry->task_pool, ioat_task);
} else {
prepare_ioat_task(thread_entry, ioat_task);
submit_single_xfer(ioat_task);
}
}
static bool
probe_cb(void *cb_ctx, struct spdk_pci_device *pci_dev)
{
printf(" Found matching device at %04x:%02x:%02x.%x "
"vendor:0x%04x device:0x%04x\n",
spdk_pci_device_get_domain(pci_dev),
spdk_pci_device_get_bus(pci_dev), spdk_pci_device_get_dev(pci_dev),
spdk_pci_device_get_func(pci_dev),
spdk_pci_device_get_vendor_id(pci_dev), spdk_pci_device_get_device_id(pci_dev));
return true;
}
static void
attach_cb(void *cb_ctx, struct spdk_pci_device *pci_dev, struct spdk_ioat_chan *ioat)
{
struct ioat_device *dev;
dev = malloc(sizeof(*dev));
if (dev == NULL) {
printf("Failed to allocate device struct\n");
return;
}
memset(dev, 0, sizeof(*dev));
dev->ioat = ioat;
TAILQ_INSERT_TAIL(&g_devices, dev, tailq);
}
static int
ioat_init(void)
{
if (spdk_ioat_probe(NULL, probe_cb, attach_cb) != 0) {
fprintf(stderr, "ioat_probe() failed\n");
return 1;
}
return 0;
}
static void
usage(char *program_name)
{
printf("%s options\n", program_name);
printf("\t[-h help message]\n");
printf("\t[-c core mask for distributing I/O submission/completion work]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-q queue depth]\n");
}
static int
parse_args(int argc, char **argv)
{
int op;
construct_user_config(&g_user_config);
while ((op = getopt(argc, argv, "c:ht:q:")) != -1) {
switch (op) {
case 't':
g_user_config.time_in_sec = spdk_strtol(optarg, 10);
break;
case 'c':
g_user_config.core_mask = optarg;
break;
case 'q':
g_user_config.queue_depth = spdk_strtol(optarg, 10);
break;
case 'h':
usage(argv[0]);
exit(0);
default:
usage(argv[0]);
return 1;
}
}
if (g_user_config.time_in_sec <= 0 || !g_user_config.core_mask ||
g_user_config.queue_depth <= 0) {
usage(argv[0]);
return 1;
}
return 0;
}
static void
drain_xfers(struct thread_entry *thread_entry)
{
while (thread_entry->current_queue_depth > 0) {
spdk_ioat_process_events(thread_entry->chan);
}
}
static void
submit_single_xfer(struct ioat_task *ioat_task)
{
if (ioat_task->type == IOAT_FILL_TYPE)
spdk_ioat_submit_fill(ioat_task->thread_entry->chan, ioat_task, ioat_done,
ioat_task->dst, ioat_task->fill_pattern, ioat_task->len);
else
spdk_ioat_submit_copy(ioat_task->thread_entry->chan, ioat_task, ioat_done,
ioat_task->dst, ioat_task->src, ioat_task->len);
ioat_task->thread_entry->current_queue_depth++;
}
static void
submit_xfers(struct thread_entry *thread_entry, uint64_t queue_depth)
{
while (queue_depth-- > 0) {
struct ioat_task *ioat_task = NULL;
ioat_task = spdk_mempool_get(thread_entry->task_pool);
assert(ioat_task != NULL);
ioat_task->buffer = spdk_mempool_get(thread_entry->data_pool);
assert(ioat_task->buffer != NULL);
ioat_task->type = IOAT_COPY_TYPE;
if (spdk_ioat_get_dma_capabilities(thread_entry->chan) & SPDK_IOAT_ENGINE_FILL_SUPPORTED) {
if (queue_depth % 2) {
ioat_task->type = IOAT_FILL_TYPE;
}
}
prepare_ioat_task(thread_entry, ioat_task);
submit_single_xfer(ioat_task);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
char buf_pool_name[20], task_pool_name[20];
struct thread_entry *t = (struct thread_entry *)arg;
if (!t->chan) {
return 1;
}
t->lcore_id = spdk_env_get_current_core();
snprintf(buf_pool_name, sizeof(buf_pool_name), "buf_pool_%u", t->lcore_id);
snprintf(task_pool_name, sizeof(task_pool_name), "task_pool_%u", t->lcore_id);
t->data_pool = spdk_mempool_create(buf_pool_name, g_user_config.queue_depth, SRC_BUFFER_SIZE,
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
t->task_pool = spdk_mempool_create(task_pool_name, g_user_config.queue_depth,
sizeof(struct ioat_task),
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!t->data_pool || !t->task_pool) {
fprintf(stderr, "Could not allocate buffer pool.\n");
t->init_failed = true;
return 1;
}
tsc_end = spdk_get_ticks() + g_user_config.time_in_sec * spdk_get_ticks_hz();
submit_xfers(t, g_user_config.queue_depth);
while (spdk_get_ticks() < tsc_end) {
spdk_ioat_process_events(t->chan);
}
t->is_draining = true;
drain_xfers(t);
return 0;
}
static int
init_src_buffer(void)
{
int i;
g_src = spdk_dma_zmalloc(SRC_BUFFER_SIZE, 512, NULL);
if (g_src == NULL) {
fprintf(stderr, "Allocate src buffer failed\n");
return 1;
}
for (i = 0; i < SRC_BUFFER_SIZE / 4; i++) {
memset((g_src + (4 * i)), i, 4);
}
return 0;
}
static int
init(void)
{
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
opts.name = "verify";
opts.core_mask = g_user_config.core_mask;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
if (init_src_buffer() != 0) {
fprintf(stderr, "Could not init src buffer\n");
return 1;
}
if (ioat_init() != 0) {
fprintf(stderr, "Could not init ioat\n");
return 1;
}
return 0;
}
static int
dump_result(struct thread_entry *threads, uint32_t num_threads)
{
uint32_t i;
uint64_t total_completed = 0;
uint64_t total_failed = 0;
for (i = 0; i < num_threads; i++) {
struct thread_entry *t = &threads[i];
if (!t->chan) {
continue;
}
if (t->init_failed) {
total_failed++;
continue;
}
total_completed += t->xfer_completed;
total_completed += t->fill_completed;
total_failed += t->xfer_failed;
total_failed += t->fill_failed;
if (total_completed || total_failed)
printf("lcore = %d, copy success = %" PRIu64 ", copy failed = %" PRIu64 ", fill success = %" PRIu64
", fill failed = %" PRIu64 "\n",
t->lcore_id, t->xfer_completed, t->xfer_failed, t->fill_completed, t->fill_failed);
}
return total_failed ? 1 : 0;
}
static struct spdk_ioat_chan *
get_next_chan(void)
{
struct spdk_ioat_chan *chan;
if (g_next_device == NULL) {
fprintf(stderr, "Not enough ioat channels found. Check that ioat channels are bound\n");
fprintf(stderr, "to uio_pci_generic or vfio-pci. scripts/setup.sh can help with this.\n");
return NULL;
}
chan = g_next_device->ioat;
g_next_device = TAILQ_NEXT(g_next_device, tailq);
return chan;
}
static uint32_t
get_max_core(void)
{
uint32_t i;
uint32_t max_core = 0;
SPDK_ENV_FOREACH_CORE(i) {
if (i > max_core) {
max_core = i;
}
}
return max_core;
}
int
main(int argc, char **argv)
{
uint32_t i, current_core;
struct thread_entry *threads;
uint32_t num_threads;
int rc;
if (parse_args(argc, argv) != 0) {
return 1;
}
if (init() != 0) {
return 1;
}
dump_user_config(&g_user_config);
g_next_device = TAILQ_FIRST(&g_devices);
num_threads = get_max_core() + 1;
threads = calloc(num_threads, sizeof(*threads));
if (!threads) {
fprintf(stderr, "Thread memory allocation failed\n");
rc = 1;
goto cleanup;
}
current_core = spdk_env_get_current_core();
SPDK_ENV_FOREACH_CORE(i) {
if (i != current_core) {
threads[i].chan = get_next_chan();
spdk_env_thread_launch_pinned(i, work_fn, &threads[i]);
}
}
threads[current_core].chan = get_next_chan();
if (work_fn(&threads[current_core]) != 0) {
rc = 1;
goto cleanup;
}
spdk_env_thread_wait_all();
rc = dump_result(threads, num_threads);
cleanup:
spdk_dma_free(g_src);
ioat_exit();
free(threads);
return rc;
}