numam-spdk/examples/nvme/abort/abort.c
yidong0635 13cd7c597a example/abort: Fix missing optarg.
Optargs are  missed about -G and -T
which are used to trace and debug.

Signed-off-by: yidong0635 <dongx.yi@intel.com>
Change-Id: I3624b80f52c1b603acf1bc96126b73d1042f1b34
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/7109
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Community-CI: Mellanox Build Bot
2021-03-31 08:49:37 +00:00

1114 lines
27 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/log.h"
#include "spdk/nvme.h"
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/likely.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
enum spdk_nvme_transport_type trtype;
TAILQ_ENTRY(ctrlr_entry) link;
char name[1024];
};
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
TAILQ_ENTRY(ns_entry) link;
uint32_t io_size_blocks;
uint32_t num_io_requests;
uint64_t size_in_ios;
uint32_t block_size;
char name[1024];
};
struct ctrlr_worker_ctx {
pthread_mutex_t mutex;
struct ctrlr_entry *entry;
uint64_t abort_submitted;
uint64_t abort_submit_failed;
uint64_t successful_abort;
uint64_t unsuccessful_abort;
uint64_t abort_failed;
uint64_t current_queue_depth;
struct spdk_nvme_ctrlr *ctrlr;
TAILQ_ENTRY(ctrlr_worker_ctx) link;
};
struct ns_worker_ctx {
struct ns_entry *entry;
uint64_t io_submitted;
uint64_t io_completed;
uint64_t io_aborted;
uint64_t io_failed;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
struct spdk_nvme_qpair *qpair;
struct ctrlr_worker_ctx *ctrlr_ctx;
TAILQ_ENTRY(ns_worker_ctx) link;
};
struct perf_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
};
struct worker_thread {
TAILQ_HEAD(, ns_worker_ctx) ns_ctx;
TAILQ_HEAD(, ctrlr_worker_ctx) ctrlr_ctx;
TAILQ_ENTRY(worker_thread) link;
unsigned lcore;
};
static const char *g_workload_type = "read";
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
static int g_num_namespaces;
static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers);
static int g_num_workers = 0;
static uint32_t g_main_core;
static int g_abort_interval = 1;
static uint64_t g_tsc_rate;
static uint32_t g_io_size_bytes = 131072;
static uint32_t g_max_io_size_blocks;
static int g_rw_percentage = -1;
static int g_is_random;
static int g_queue_depth = 128;
static int g_time_in_sec = 3;
static int g_dpdk_mem;
static int g_shm_id = -1;
static bool g_no_pci;
static bool g_warn;
static bool g_mix_specified;
static const char *g_core_mask;
struct trid_entry {
struct spdk_nvme_transport_id trid;
uint16_t nsid;
TAILQ_ENTRY(trid_entry) tailq;
};
static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
static int
build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr)
{
const struct spdk_nvme_transport_id *trid;
int res = 0;
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
switch (trid->trtype) {
case SPDK_NVME_TRANSPORT_PCIE:
res = snprintf(name, length, "PCIE (%s)", trid->traddr);
break;
case SPDK_NVME_TRANSPORT_RDMA:
res = snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
break;
case SPDK_NVME_TRANSPORT_TCP:
res = snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
break;
case SPDK_NVME_TRANSPORT_CUSTOM:
res = snprintf(name, length, "CUSTOM (%s)", trid->traddr);
break;
default:
fprintf(stderr, "Unknown transport type %d\n", trid->trtype);
break;
}
return res;
}
static void
build_nvme_ns_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
{
int res = 0;
res = build_nvme_name(name, length, ctrlr);
if (res > 0) {
snprintf(name + res, length - res, " NSID %u", nsid);
}
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t max_xfer_size, entries, sector_size;
uint64_t ns_size;
struct spdk_nvme_io_qpair_opts opts;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
g_warn = true;
return;
}
ns_size = spdk_nvme_ns_get_size(ns);
sector_size = spdk_nvme_ns_get_sector_size(ns);
if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
g_warn = true;
return;
}
max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
/* NVMe driver may add additional entries based on
* stripe size and maximum transfer size, we assume
* 1 more entry be used for stripe.
*/
entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
if ((g_queue_depth * entries) > opts.io_queue_size) {
printf("controller IO queue size %u less than required\n",
opts.io_queue_size);
printf("Consider using lower queue depth or small IO size because "
"IO requests may be queued at the NVMe driver.\n");
}
/* For requests which have children requests, parent request itself
* will also occupy 1 entry.
*/
entries += 1;
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
entry->num_io_requests = g_queue_depth * entries;
entry->size_in_ios = ns_size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / sector_size;
entry->block_size = spdk_nvme_ns_get_sector_size(ns);
if (g_max_io_size_blocks < entry->io_size_blocks) {
g_max_io_size_blocks = entry->io_size_blocks;
}
build_nvme_ns_name(entry->name, sizeof(entry->name), ctrlr, spdk_nvme_ns_get_id(ns));
g_num_namespaces++;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
}
static void
unregister_namespaces(void)
{
struct ns_entry *entry, *tmp;
TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) {
TAILQ_REMOVE(&g_namespaces, entry, link);
free(entry);
}
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
{
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
uint32_t nsid;
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
entry->ctrlr = ctrlr;
entry->trtype = trid_entry->trid.trtype;
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
if (trid_entry->nsid == 0) {
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
} else {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid);
if (!ns) {
perror("Namespace does not exist.");
exit(1);
}
register_ns(ctrlr, ns);
}
}
static void
abort_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct ctrlr_worker_ctx *ctrlr_ctx = ctx;
ctrlr_ctx->current_queue_depth--;
if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) {
ctrlr_ctx->abort_failed++;
} else if ((cpl->cdw0 & 0x1) == 0) {
ctrlr_ctx->successful_abort++;
} else {
ctrlr_ctx->unsuccessful_abort++;
}
}
static void
abort_task(struct perf_task *task)
{
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
struct ctrlr_worker_ctx *ctrlr_ctx = ns_ctx->ctrlr_ctx;
int rc;
/* Hold mutex to guard ctrlr_ctx->current_queue_depth. */
pthread_mutex_lock(&ctrlr_ctx->mutex);
rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ctx->ctrlr, ns_ctx->qpair, task, abort_complete,
ctrlr_ctx);
if (spdk_unlikely(rc != 0)) {
ctrlr_ctx->abort_submit_failed++;
} else {
ctrlr_ctx->current_queue_depth++;
ctrlr_ctx->abort_submitted++;
}
pthread_mutex_unlock(&ctrlr_ctx->mutex);
}
static __thread unsigned int seed = 0;
static inline void
submit_single_io(struct perf_task *task)
{
uint64_t offset_in_ios, lba;
int rc;
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
struct ns_entry *entry = ns_ctx->entry;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
lba = offset_in_ios * entry->io_size_blocks;
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && (rand_r(&seed) % 100) < g_rw_percentage)) {
rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf,
lba, entry->io_size_blocks, io_complete, task, 0);
} else {
rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf,
lba, entry->io_size_blocks, io_complete, task, 0);
}
if (spdk_unlikely(rc != 0)) {
fprintf(stderr, "I/O submission failed\n");
} else {
ns_ctx->current_queue_depth++;
ns_ctx->io_submitted++;
if ((ns_ctx->io_submitted % g_abort_interval) == 0) {
abort_task(task);
}
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct perf_task *task = ctx;
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) {
ns_ctx->io_failed++;
} else {
ns_ctx->io_completed++;
}
/* is_draining indicates when time has expired for the test run and we are
* just waiting for the previously submitted I/O to complete. In this case,
* do not submit a new I/O to replace the one just completed.
*/
if (spdk_unlikely(ns_ctx->is_draining)) {
spdk_dma_free(task->buf);
free(task);
} else {
submit_single_io(task);
}
}
static struct perf_task *
allocate_task(struct ns_worker_ctx *ns_ctx)
{
struct perf_task *task;
task = calloc(1, sizeof(*task));
if (task == NULL) {
fprintf(stderr, "Failed to allocate task\n");
exit(1);
}
task->buf = spdk_dma_zmalloc(g_io_size_bytes, 0x200, NULL);
if (task->buf == NULL) {
free(task);
fprintf(stderr, "Failed to allocate task->buf\n");
exit(1);
}
task->ns_ctx = ns_ctx;
return task;
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
while (queue_depth-- > 0) {
task = allocate_task(ns_ctx);
submit_single_io(task);
}
}
static int
work_fn(void *arg)
{
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx;
struct ctrlr_worker_ctx *ctrlr_ctx;
struct ns_entry *ns_entry;
struct spdk_nvme_io_qpair_opts opts;
uint64_t tsc_end;
uint32_t unfinished_ctx;
/* Allocate queue pair for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
ns_entry = ns_ctx->entry;
spdk_nvme_ctrlr_get_default_io_qpair_opts(ns_entry->ctrlr, &opts, sizeof(opts));
if (opts.io_queue_requests < ns_entry->num_io_requests) {
opts.io_queue_requests = ns_entry->num_io_requests;
}
ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, &opts, sizeof(opts));
if (ns_ctx->qpair == NULL) {
fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return 1;
}
}
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
/* Submit initial I/O for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
submit_io(ns_ctx, g_queue_depth);
}
while (1) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0);
}
if (worker->lcore == g_main_core) {
TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) {
/* Hold mutex to guard ctrlr_ctx->current_queue_depth. */
pthread_mutex_lock(&ctrlr_ctx->mutex);
spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr);
pthread_mutex_unlock(&ctrlr_ctx->mutex);
}
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
do {
unfinished_ctx = 0;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (!ns_ctx->is_draining) {
ns_ctx->is_draining = true;
}
if (ns_ctx->current_queue_depth > 0) {
spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0);
if (ns_ctx->current_queue_depth == 0) {
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair);
} else {
unfinished_ctx++;
}
}
}
} while (unfinished_ctx > 0);
if (worker->lcore == g_main_core) {
do {
unfinished_ctx = 0;
TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) {
pthread_mutex_lock(&ctrlr_ctx->mutex);
if (ctrlr_ctx->current_queue_depth > 0) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr);
if (ctrlr_ctx->current_queue_depth > 0) {
unfinished_ctx++;
}
}
pthread_mutex_unlock(&ctrlr_ctx->mutex);
}
} while (unfinished_ctx > 0);
}
return 0;
}
static void
usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-o io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-c core mask for I/O submission/completion.]\n");
printf("\t\t(default: 1)\n");
printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n");
printf("\t Format: 'key:value [key:value] ...'\n");
printf("\t Keys:\n");
printf("\t trtype Transport type (e.g. PCIe, RDMA)\n");
printf("\t adrfam Address family (e.g. IPv4, IPv6)\n");
printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n");
printf("\t trsvcid Transport service identifier (e.g. 4420)\n");
printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n");
printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
printf("\t[-s DPDK huge memory size in MB.]\n");
printf("\t[-i shared memory group ID]\n");
printf("\t[-a abort interval.]\n");
printf("\t");
spdk_log_usage(stdout, "-T");
#ifdef DEBUG
printf("\t[-G enable debug logging]\n");
#else
printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)\n");
#endif
}
static void
unregister_trids(void)
{
struct trid_entry *trid_entry, *tmp;
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
free(trid_entry);
}
}
static int
add_trid(const char *trid_str)
{
struct trid_entry *trid_entry;
struct spdk_nvme_transport_id *trid;
char *ns;
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
return -1;
}
trid = &trid_entry->trid;
trid->trtype = SPDK_NVME_TRANSPORT_PCIE;
snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
free(trid_entry);
return 1;
}
spdk_nvme_transport_id_populate_trstring(trid,
spdk_nvme_transport_id_trtype_str(trid->trtype));
ns = strcasestr(trid_str, "ns:");
if (ns) {
char nsid_str[6]; /* 5 digits maximum in an nsid */
int len;
int nsid;
ns += 3;
len = strcspn(ns, " \t\n");
if (len > 5) {
fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n");
free(trid_entry);
return 1;
}
memcpy(nsid_str, ns, len);
nsid_str[len] = '\0';
nsid = spdk_strtol(nsid_str, 10);
if (nsid <= 0 || nsid > 65535) {
fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n");
free(trid_entry);
return 1;
}
trid_entry->nsid = (uint16_t)nsid;
}
TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
return 0;
}
static int
parse_args(int argc, char **argv)
{
int op;
long int val;
int rc;
while ((op = getopt(argc, argv, "a:c:i:o:q:r:s:t:w:GM:T:")) != -1) {
switch (op) {
case 'a':
case 'i':
case 'o':
case 'q':
case 's':
case 't':
case 'M':
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Converting a string to integer failed\n");
return val;
}
switch (op) {
case 'a':
g_abort_interval = val;
break;
case 'i':
g_shm_id = val;
break;
case 'o':
g_io_size_bytes = val;
break;
case 'q':
g_queue_depth = val;
break;
case 's':
g_dpdk_mem = val;
break;
case 't':
g_time_in_sec = val;
break;
case 'M':
g_rw_percentage = val;
g_mix_specified = true;
break;
}
break;
case 'c':
g_core_mask = optarg;
break;
case 'r':
if (add_trid(optarg)) {
usage(argv[0]);
return 1;
}
break;
case 'w':
g_workload_type = optarg;
break;
case 'G':
#ifndef DEBUG
fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n",
argv[0]);
usage(argv[0]);
return 1;
#else
spdk_log_set_flag("nvme");
spdk_log_set_print_level(SPDK_LOG_DEBUG);
break;
#endif
case 'T':
rc = spdk_log_set_flag(optarg);
if (rc < 0) {
fprintf(stderr, "unknown flag\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
#ifdef DEBUG
spdk_log_set_print_level(SPDK_LOG_DEBUG);
#endif
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_queue_depth) {
fprintf(stderr, "missing -q (queue size) operand\n");
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
fprintf(stderr, "missing -o (block size) operand\n");
usage(argv[0]);
return 1;
}
if (!g_workload_type) {
fprintf(stderr, "missing -t (test time in seconds) operand\n");
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strncmp(g_workload_type, "rand", 4) == 0) {
g_is_random = 1;
g_workload_type = &g_workload_type[4];
}
if (strcmp(g_workload_type, "read") == 0 || strcmp(g_workload_type, "write") == 0) {
g_rw_percentage = strcmp(g_workload_type, "read") == 0 ? 100 : 0;
if (g_mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
} else if (strcmp(g_workload_type, "rw") == 0) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
} else {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (TAILQ_EMPTY(&g_trid_list)) {
/* If no transport IDs specified, default to enumerating all local PCIe devices */
add_trid("trtype:PCIe");
} else {
struct trid_entry *trid_entry, *trid_entry_tmp;
g_no_pci = true;
/* check whether there is local PCIe type */
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
g_no_pci = false;
break;
}
}
}
return 0;
}
static int
register_workers(void)
{
uint32_t i;
struct worker_thread *worker;
SPDK_ENV_FOREACH_CORE(i) {
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return -1;
}
TAILQ_INIT(&worker->ns_ctx);
TAILQ_INIT(&worker->ctrlr_ctx);
worker->lcore = i;
TAILQ_INSERT_TAIL(&g_workers, worker, link);
g_num_workers++;
}
return 0;
}
static void
unregister_workers(void)
{
struct worker_thread *worker, *tmp_worker;
struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx;
struct ctrlr_worker_ctx *ctrlr_ctx, *tmp_ctrlr_ctx;
/* Free namespace context and worker thread */
TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) {
TAILQ_REMOVE(&g_workers, worker, link);
TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) {
TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link);
printf("NS: %s I/O completed: %" PRIu64 ", failed: %" PRIu64 "\n",
ns_ctx->entry->name, ns_ctx->io_completed, ns_ctx->io_failed);
free(ns_ctx);
}
TAILQ_FOREACH_SAFE(ctrlr_ctx, &worker->ctrlr_ctx, link, tmp_ctrlr_ctx) {
TAILQ_REMOVE(&worker->ctrlr_ctx, ctrlr_ctx, link);
printf("CTRLR: %s abort submitted %" PRIu64 ", failed to submit %" PRIu64 "\n",
ctrlr_ctx->entry->name, ctrlr_ctx->abort_submitted,
ctrlr_ctx->abort_submit_failed);
printf("\t success %" PRIu64 ", unsuccess %" PRIu64 ", failed %" PRIu64 "\n",
ctrlr_ctx->successful_abort, ctrlr_ctx->unsuccessful_abort,
ctrlr_ctx->abort_failed);
free(ctrlr_ctx);
}
free(worker);
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct trid_entry *trid_entry = cb_ctx;
struct spdk_pci_addr pci_addr;
struct spdk_pci_device *pci_dev;
struct spdk_pci_id pci_id;
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid,
trid->subnqn);
} else {
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
return;
}
pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
if (!pci_dev) {
return;
}
pci_id = spdk_pci_device_get_id(pci_dev);
printf("Attached to NVMe Controller at %s [%04x:%04x]\n",
trid->traddr,
pci_id.vendor_id, pci_id.device_id);
}
register_ctrlr(ctrlr, trid_entry);
}
static int
register_controllers(void)
{
struct trid_entry *trid_entry;
printf("Initializing NVMe Controllers\n");
TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
trid_entry->trid.traddr);
return -1;
}
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry, *tmp;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) {
TAILQ_REMOVE(&g_controllers, entry, link);
spdk_nvme_detach_async(entry->ctrlr, &detach_ctx);
free(entry);
}
while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
;
}
}
static int
associate_main_worker_with_ctrlr(void)
{
struct ctrlr_entry *entry;
struct worker_thread *worker;
struct ctrlr_worker_ctx *ctrlr_ctx;
TAILQ_FOREACH(worker, &g_workers, link) {
if (worker->lcore == g_main_core) {
break;
}
}
if (!worker) {
return -1;
}
TAILQ_FOREACH(entry, &g_controllers, link) {
ctrlr_ctx = calloc(1, sizeof(struct ctrlr_worker_ctx));
if (!ctrlr_ctx) {
return -1;
}
pthread_mutex_init(&ctrlr_ctx->mutex, NULL);
ctrlr_ctx->entry = entry;
ctrlr_ctx->ctrlr = entry->ctrlr;
TAILQ_INSERT_TAIL(&worker->ctrlr_ctx, ctrlr_ctx, link);
}
return 0;
}
static struct ctrlr_worker_ctx *
get_ctrlr_worker_ctx(struct spdk_nvme_ctrlr *ctrlr)
{
struct worker_thread *worker;
struct ctrlr_worker_ctx *ctrlr_ctx;
TAILQ_FOREACH(worker, &g_workers, link) {
if (worker->lcore == g_main_core) {
break;
}
}
if (!worker) {
return NULL;
}
TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) {
if (ctrlr_ctx->ctrlr == ctrlr) {
return ctrlr_ctx;
}
}
return NULL;
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = TAILQ_FIRST(&g_namespaces);
struct worker_thread *worker = TAILQ_FIRST(&g_workers);
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
ns_ctx->ctrlr_ctx = get_ctrlr_worker_ctx(entry->ctrlr);
if (!ns_ctx->ctrlr_ctx) {
free(ns_ctx);
return -1;
}
TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link);
worker = TAILQ_NEXT(worker, link);
if (worker == NULL) {
worker = TAILQ_FIRST(&g_workers);
}
entry = TAILQ_NEXT(entry, link);
if (entry == NULL) {
entry = TAILQ_FIRST(&g_namespaces);
}
}
return 0;
}
int main(int argc, char **argv)
{
int rc;
struct worker_thread *worker, *main_worker;
struct spdk_env_opts opts;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "abort";
opts.shm_id = g_shm_id;
if (g_core_mask) {
opts.core_mask = g_core_mask;
}
if (g_dpdk_mem) {
opts.mem_size = g_dpdk_mem;
}
if (g_no_pci) {
opts.no_pci = g_no_pci;
}
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
rc = -1;
goto cleanup;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
rc = -1;
goto cleanup;
}
if (register_controllers() != 0) {
rc = -1;
goto cleanup;
}
if (g_warn) {
printf("WARNING: Some requested NVMe devices were skipped\n");
}
if (g_num_namespaces == 0) {
fprintf(stderr, "No valid NVMe controllers found\n");
goto cleanup;
}
if (associate_main_worker_with_ctrlr() != 0) {
rc = -1;
goto cleanup;
}
if (associate_workers_with_ns() != 0) {
rc = -1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
/* Launch all of the secondary workers */
g_main_core = spdk_env_get_current_core();
main_worker = NULL;
TAILQ_FOREACH(worker, &g_workers, link) {
if (worker->lcore != g_main_core) {
spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
} else {
assert(main_worker == NULL);
main_worker = worker;
}
}
assert(main_worker != NULL);
rc = work_fn(main_worker);
spdk_env_thread_wait_all();
cleanup:
unregister_trids();
unregister_workers();
unregister_namespaces();
unregister_controllers();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}