numam-spdk/lib/bdev/bdev.c
Piotr Pelplinski 092de1460a bdev: set optimal io boundary to size of large buf pool
This is requirement for following patch. Requests that will
reuquest bounce buffer can only allocate limited size buffer.

Signed-off-by: Piotr Pelplinski <piotr.pelplinski@intel.com>
Change-Id: I850b614305d66065733381ceb7bd67d4b1cad6b3

Reviewed-on: https://review.gerrithub.io/430783
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Maciej Szwed <maciej.szwed@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2018-11-05 22:32:58 +00:00

3957 lines
107 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/bdev.h"
#include "spdk/conf.h"
#include "spdk/config.h"
#include "spdk/env.h"
#include "spdk/event.h"
#include "spdk/thread.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/nvme_spec.h"
#include "spdk/scsi_spec.h"
#include "spdk/util.h"
#include "spdk/trace.h"
#include "spdk/bdev_module.h"
#include "spdk_internal/log.h"
#include "spdk/string.h"
#ifdef SPDK_CONFIG_VTUNE
#include "ittnotify.h"
#include "ittnotify_types.h"
int __itt_init_ittlib(const char *, __itt_group_id);
#endif
#define SPDK_BDEV_IO_POOL_SIZE (64 * 1024)
#define SPDK_BDEV_IO_CACHE_SIZE 256
#define BUF_SMALL_POOL_SIZE 8192
#define BUF_LARGE_POOL_SIZE 1024
#define NOMEM_THRESHOLD_COUNT 8
#define ZERO_BUFFER_SIZE 0x100000
#define OWNER_BDEV 0x2
#define OBJECT_BDEV_IO 0x2
#define TRACE_GROUP_BDEV 0x3
#define TRACE_BDEV_IO_START SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x0)
#define TRACE_BDEV_IO_DONE SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x1)
#define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000
#define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1
#define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512
#define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 10000
#define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (10 * 1024 * 1024)
#define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX
static const char *qos_conf_type[] = {"Limit_IOPS", "Limit_BPS"};
static const char *qos_rpc_type[] = {"rw_ios_per_sec", "rw_mbytes_per_sec"};
TAILQ_HEAD(spdk_bdev_list, spdk_bdev);
struct spdk_bdev_mgr {
struct spdk_mempool *bdev_io_pool;
struct spdk_mempool *buf_small_pool;
struct spdk_mempool *buf_large_pool;
void *zero_buffer;
TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules;
struct spdk_bdev_list bdevs;
bool init_complete;
bool module_init_complete;
#ifdef SPDK_CONFIG_VTUNE
__itt_domain *domain;
#endif
};
static struct spdk_bdev_mgr g_bdev_mgr = {
.bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules),
.bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs),
.init_complete = false,
.module_init_complete = false,
};
static struct spdk_bdev_opts g_bdev_opts = {
.bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE,
.bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE,
};
static spdk_bdev_init_cb g_init_cb_fn = NULL;
static void *g_init_cb_arg = NULL;
static spdk_bdev_fini_cb g_fini_cb_fn = NULL;
static void *g_fini_cb_arg = NULL;
static struct spdk_thread *g_fini_thread = NULL;
struct spdk_bdev_qos_limit {
/** IOs or bytes allowed per second (i.e., 1s). */
uint64_t limit;
/** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms).
* For remaining bytes, allowed to run negative if an I/O is submitted when
* some bytes are remaining, but the I/O is bigger than that amount. The
* excess will be deducted from the next timeslice.
*/
int64_t remaining_this_timeslice;
/** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */
uint32_t min_per_timeslice;
/** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */
uint32_t max_per_timeslice;
};
struct spdk_bdev_qos {
/** Types of structure of rate limits. */
struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES];
/** The channel that all I/O are funneled through. */
struct spdk_bdev_channel *ch;
/** The thread on which the poller is running. */
struct spdk_thread *thread;
/** Queue of I/O waiting to be issued. */
bdev_io_tailq_t queued;
/** Size of a timeslice in tsc ticks. */
uint64_t timeslice_size;
/** Timestamp of start of last timeslice. */
uint64_t last_timeslice;
/** Poller that processes queued I/O commands each time slice. */
struct spdk_poller *poller;
};
struct spdk_bdev_mgmt_channel {
bdev_io_stailq_t need_buf_small;
bdev_io_stailq_t need_buf_large;
/*
* Each thread keeps a cache of bdev_io - this allows
* bdev threads which are *not* DPDK threads to still
* benefit from a per-thread bdev_io cache. Without
* this, non-DPDK threads fetching from the mempool
* incur a cmpxchg on get and put.
*/
bdev_io_stailq_t per_thread_cache;
uint32_t per_thread_cache_count;
uint32_t bdev_io_cache_size;
TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources;
TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue;
};
/*
* Per-module (or per-io_device) data. Multiple bdevs built on the same io_device
* will queue here their IO that awaits retry. It makes it possible to retry sending
* IO to one bdev after IO from other bdev completes.
*/
struct spdk_bdev_shared_resource {
/* The bdev management channel */
struct spdk_bdev_mgmt_channel *mgmt_ch;
/*
* Count of I/O submitted to bdev module and waiting for completion.
* Incremented before submit_request() is called on an spdk_bdev_io.
*/
uint64_t io_outstanding;
/*
* Queue of IO awaiting retry because of a previous NOMEM status returned
* on this channel.
*/
bdev_io_tailq_t nomem_io;
/*
* Threshold which io_outstanding must drop to before retrying nomem_io.
*/
uint64_t nomem_threshold;
/* I/O channel allocated by a bdev module */
struct spdk_io_channel *shared_ch;
/* Refcount of bdev channels using this resource */
uint32_t ref;
TAILQ_ENTRY(spdk_bdev_shared_resource) link;
};
#define BDEV_CH_RESET_IN_PROGRESS (1 << 0)
#define BDEV_CH_QOS_ENABLED (1 << 1)
struct spdk_bdev_channel {
struct spdk_bdev *bdev;
/* The channel for the underlying device */
struct spdk_io_channel *channel;
/* Per io_device per thread data */
struct spdk_bdev_shared_resource *shared_resource;
struct spdk_bdev_io_stat stat;
/*
* Count of I/O submitted through this channel and waiting for completion.
* Incremented before submit_request() is called on an spdk_bdev_io.
*/
uint64_t io_outstanding;
bdev_io_tailq_t queued_resets;
uint32_t flags;
#ifdef SPDK_CONFIG_VTUNE
uint64_t start_tsc;
uint64_t interval_tsc;
__itt_string_handle *handle;
struct spdk_bdev_io_stat prev_stat;
#endif
};
struct spdk_bdev_desc {
struct spdk_bdev *bdev;
struct spdk_thread *thread;
spdk_bdev_remove_cb_t remove_cb;
void *remove_ctx;
bool remove_scheduled;
bool closed;
bool write;
TAILQ_ENTRY(spdk_bdev_desc) link;
};
struct spdk_bdev_iostat_ctx {
struct spdk_bdev_io_stat *stat;
spdk_bdev_get_device_stat_cb cb;
void *cb_arg;
};
#define __bdev_to_io_dev(bdev) (((char *)bdev) + 1)
#define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1))
static void _spdk_bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success,
void *cb_arg);
static void _spdk_bdev_write_zero_buffer_next(void *_bdev_io);
void
spdk_bdev_get_opts(struct spdk_bdev_opts *opts)
{
*opts = g_bdev_opts;
}
int
spdk_bdev_set_opts(struct spdk_bdev_opts *opts)
{
uint32_t min_pool_size;
/*
* Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem
* initialization. A second mgmt_ch will be created on the same thread when the application starts
* but before the deferred put_io_channel event is executed for the first mgmt_ch.
*/
min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1);
if (opts->bdev_io_pool_size < min_pool_size) {
SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32
" and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size,
spdk_thread_get_count());
SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size);
return -1;
}
g_bdev_opts = *opts;
return 0;
}
struct spdk_bdev *
spdk_bdev_first(void)
{
struct spdk_bdev *bdev;
bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs);
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_next(struct spdk_bdev *prev)
{
struct spdk_bdev *bdev;
bdev = TAILQ_NEXT(prev, internal.link);
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name);
}
return bdev;
}
static struct spdk_bdev *
_bdev_next_leaf(struct spdk_bdev *bdev)
{
while (bdev != NULL) {
if (bdev->internal.claim_module == NULL) {
return bdev;
} else {
bdev = TAILQ_NEXT(bdev, internal.link);
}
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_first_leaf(void)
{
struct spdk_bdev *bdev;
bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs));
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_next_leaf(struct spdk_bdev *prev)
{
struct spdk_bdev *bdev;
bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link));
if (bdev) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_get_by_name(const char *bdev_name)
{
struct spdk_bdev_alias *tmp;
struct spdk_bdev *bdev = spdk_bdev_first();
while (bdev != NULL) {
if (strcmp(bdev_name, bdev->name) == 0) {
return bdev;
}
TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
if (strcmp(bdev_name, tmp->alias) == 0) {
return bdev;
}
}
bdev = spdk_bdev_next(bdev);
}
return NULL;
}
void
spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len)
{
struct iovec *iovs;
iovs = bdev_io->u.bdev.iovs;
assert(iovs != NULL);
assert(bdev_io->u.bdev.iovcnt >= 1);
iovs[0].iov_base = buf;
iovs[0].iov_len = len;
}
static void
spdk_bdev_io_put_buf(struct spdk_bdev_io *bdev_io)
{
struct spdk_mempool *pool;
struct spdk_bdev_io *tmp;
void *buf, *aligned_buf;
bdev_io_stailq_t *stailq;
struct spdk_bdev_mgmt_channel *ch;
assert(bdev_io->u.bdev.iovcnt == 1);
buf = bdev_io->internal.buf;
ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
bdev_io->internal.buf = NULL;
if (bdev_io->internal.buf_len <= SPDK_BDEV_SMALL_BUF_MAX_SIZE) {
pool = g_bdev_mgr.buf_small_pool;
stailq = &ch->need_buf_small;
} else {
pool = g_bdev_mgr.buf_large_pool;
stailq = &ch->need_buf_large;
}
if (STAILQ_EMPTY(stailq)) {
spdk_mempool_put(pool, buf);
} else {
tmp = STAILQ_FIRST(stailq);
aligned_buf = (void *)(((uintptr_t)buf + 511) & ~511UL);
spdk_bdev_io_set_buf(tmp, aligned_buf, tmp->internal.buf_len);
STAILQ_REMOVE_HEAD(stailq, internal.buf_link);
tmp->internal.buf = buf;
tmp->internal.get_buf_cb(tmp->internal.ch->channel, tmp);
}
}
void
spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
{
struct spdk_mempool *pool;
bdev_io_stailq_t *stailq;
void *buf, *aligned_buf;
struct spdk_bdev_mgmt_channel *mgmt_ch;
assert(cb != NULL);
assert(bdev_io->u.bdev.iovs != NULL);
if (spdk_unlikely(bdev_io->u.bdev.iovs[0].iov_base != NULL)) {
/* Buffer already present */
cb(bdev_io->internal.ch->channel, bdev_io);
return;
}
assert(len <= SPDK_BDEV_LARGE_BUF_MAX_SIZE);
mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
bdev_io->internal.buf_len = len;
bdev_io->internal.get_buf_cb = cb;
if (len <= SPDK_BDEV_SMALL_BUF_MAX_SIZE) {
pool = g_bdev_mgr.buf_small_pool;
stailq = &mgmt_ch->need_buf_small;
} else {
pool = g_bdev_mgr.buf_large_pool;
stailq = &mgmt_ch->need_buf_large;
}
buf = spdk_mempool_get(pool);
if (!buf) {
STAILQ_INSERT_TAIL(stailq, bdev_io, internal.buf_link);
} else {
aligned_buf = (void *)(((uintptr_t)buf + 511) & ~511UL);
spdk_bdev_io_set_buf(bdev_io, aligned_buf, len);
bdev_io->internal.buf = buf;
bdev_io->internal.get_buf_cb(bdev_io->internal.ch->channel, bdev_io);
}
}
static int
spdk_bdev_module_get_max_ctx_size(void)
{
struct spdk_bdev_module *bdev_module;
int max_bdev_module_size = 0;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) {
max_bdev_module_size = bdev_module->get_ctx_size();
}
}
return max_bdev_module_size;
}
void
spdk_bdev_config_text(FILE *fp)
{
struct spdk_bdev_module *bdev_module;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (bdev_module->config_text) {
bdev_module->config_text(fp);
}
}
}
static void
spdk_bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
int i;
struct spdk_bdev_qos *qos = bdev->internal.qos;
uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES];
if (!qos) {
return;
}
spdk_bdev_get_qos_rate_limits(bdev, limits);
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "set_bdev_qos_limit");
spdk_json_write_name(w, "params");
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "name", bdev->name);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] > 0) {
spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]);
}
}
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
void
spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w)
{
struct spdk_bdev_module *bdev_module;
struct spdk_bdev *bdev;
assert(w != NULL);
spdk_json_write_array_begin(w);
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "set_bdev_options");
spdk_json_write_name(w, "params");
spdk_json_write_object_begin(w);
spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size);
spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (bdev_module->config_json) {
bdev_module->config_json(w);
}
}
TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) {
spdk_bdev_qos_config_json(bdev, w);
if (bdev->fn_table->write_config_json) {
bdev->fn_table->write_config_json(bdev, w);
}
}
spdk_json_write_array_end(w);
}
static int
spdk_bdev_mgmt_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_bdev_mgmt_channel *ch = ctx_buf;
struct spdk_bdev_io *bdev_io;
uint32_t i;
STAILQ_INIT(&ch->need_buf_small);
STAILQ_INIT(&ch->need_buf_large);
STAILQ_INIT(&ch->per_thread_cache);
ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size;
/* Pre-populate bdev_io cache to ensure this thread cannot be starved. */
ch->per_thread_cache_count = 0;
for (i = 0; i < ch->bdev_io_cache_size; i++) {
bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
assert(bdev_io != NULL);
ch->per_thread_cache_count++;
STAILQ_INSERT_TAIL(&ch->per_thread_cache, bdev_io, internal.buf_link);
}
TAILQ_INIT(&ch->shared_resources);
TAILQ_INIT(&ch->io_wait_queue);
return 0;
}
static void
spdk_bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bdev_mgmt_channel *ch = ctx_buf;
struct spdk_bdev_io *bdev_io;
if (!STAILQ_EMPTY(&ch->need_buf_small) || !STAILQ_EMPTY(&ch->need_buf_large)) {
SPDK_ERRLOG("Pending I/O list wasn't empty on mgmt channel free\n");
}
if (!TAILQ_EMPTY(&ch->shared_resources)) {
SPDK_ERRLOG("Module channel list wasn't empty on mgmt channel free\n");
}
while (!STAILQ_EMPTY(&ch->per_thread_cache)) {
bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link);
ch->per_thread_cache_count--;
spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
}
assert(ch->per_thread_cache_count == 0);
}
static void
spdk_bdev_init_complete(int rc)
{
spdk_bdev_init_cb cb_fn = g_init_cb_fn;
void *cb_arg = g_init_cb_arg;
struct spdk_bdev_module *m;
g_bdev_mgr.init_complete = true;
g_init_cb_fn = NULL;
g_init_cb_arg = NULL;
/*
* For modules that need to know when subsystem init is complete,
* inform them now.
*/
if (rc == 0) {
TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (m->init_complete) {
m->init_complete();
}
}
}
cb_fn(cb_arg, rc);
}
static void
spdk_bdev_module_action_complete(void)
{
struct spdk_bdev_module *m;
/*
* Don't finish bdev subsystem initialization if
* module pre-initialization is still in progress, or
* the subsystem been already initialized.
*/
if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) {
return;
}
/*
* Check all bdev modules for inits/examinations in progress. If any
* exist, return immediately since we cannot finish bdev subsystem
* initialization until all are completed.
*/
TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (m->internal.action_in_progress > 0) {
return;
}
}
/*
* Modules already finished initialization - now that all
* the bdev modules have finished their asynchronous I/O
* processing, the entire bdev layer can be marked as complete.
*/
spdk_bdev_init_complete(0);
}
static void
spdk_bdev_module_action_done(struct spdk_bdev_module *module)
{
assert(module->internal.action_in_progress > 0);
module->internal.action_in_progress--;
spdk_bdev_module_action_complete();
}
void
spdk_bdev_module_init_done(struct spdk_bdev_module *module)
{
spdk_bdev_module_action_done(module);
}
void
spdk_bdev_module_examine_done(struct spdk_bdev_module *module)
{
spdk_bdev_module_action_done(module);
}
/** The last initialized bdev module */
static struct spdk_bdev_module *g_resume_bdev_module = NULL;
static int
spdk_bdev_modules_init(void)
{
struct spdk_bdev_module *module;
int rc = 0;
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
g_resume_bdev_module = module;
rc = module->module_init();
if (rc != 0) {
return rc;
}
}
g_resume_bdev_module = NULL;
return 0;
}
static void
spdk_bdev_init_failed_complete(void *cb_arg)
{
spdk_bdev_init_complete(-1);
}
static void
spdk_bdev_init_failed(void *cb_arg)
{
spdk_bdev_finish(spdk_bdev_init_failed_complete, NULL);
}
void
spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg)
{
struct spdk_conf_section *sp;
struct spdk_bdev_opts bdev_opts;
int32_t bdev_io_pool_size, bdev_io_cache_size;
int cache_size;
int rc = 0;
char mempool_name[32];
assert(cb_fn != NULL);
sp = spdk_conf_find_section(NULL, "Bdev");
if (sp != NULL) {
spdk_bdev_get_opts(&bdev_opts);
bdev_io_pool_size = spdk_conf_section_get_intval(sp, "BdevIoPoolSize");
if (bdev_io_pool_size >= 0) {
bdev_opts.bdev_io_pool_size = bdev_io_pool_size;
}
bdev_io_cache_size = spdk_conf_section_get_intval(sp, "BdevIoCacheSize");
if (bdev_io_cache_size >= 0) {
bdev_opts.bdev_io_cache_size = bdev_io_cache_size;
}
if (spdk_bdev_set_opts(&bdev_opts)) {
spdk_bdev_init_complete(-1);
return;
}
assert(memcmp(&bdev_opts, &g_bdev_opts, sizeof(bdev_opts)) == 0);
}
g_init_cb_fn = cb_fn;
g_init_cb_arg = cb_arg;
snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid());
g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name,
g_bdev_opts.bdev_io_pool_size,
sizeof(struct spdk_bdev_io) +
spdk_bdev_module_get_max_ctx_size(),
0,
SPDK_ENV_SOCKET_ID_ANY);
if (g_bdev_mgr.bdev_io_pool == NULL) {
SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n");
spdk_bdev_init_complete(-1);
return;
}
/**
* Ensure no more than half of the total buffers end up local caches, by
* using spdk_thread_get_count() to determine how many local caches we need
* to account for.
*/
cache_size = BUF_SMALL_POOL_SIZE / (2 * spdk_thread_get_count());
snprintf(mempool_name, sizeof(mempool_name), "buf_small_pool_%d", getpid());
g_bdev_mgr.buf_small_pool = spdk_mempool_create(mempool_name,
BUF_SMALL_POOL_SIZE,
SPDK_BDEV_SMALL_BUF_MAX_SIZE + 512,
cache_size,
SPDK_ENV_SOCKET_ID_ANY);
if (!g_bdev_mgr.buf_small_pool) {
SPDK_ERRLOG("create rbuf small pool failed\n");
spdk_bdev_init_complete(-1);
return;
}
cache_size = BUF_LARGE_POOL_SIZE / (2 * spdk_thread_get_count());
snprintf(mempool_name, sizeof(mempool_name), "buf_large_pool_%d", getpid());
g_bdev_mgr.buf_large_pool = spdk_mempool_create(mempool_name,
BUF_LARGE_POOL_SIZE,
SPDK_BDEV_LARGE_BUF_MAX_SIZE + 512,
cache_size,
SPDK_ENV_SOCKET_ID_ANY);
if (!g_bdev_mgr.buf_large_pool) {
SPDK_ERRLOG("create rbuf large pool failed\n");
spdk_bdev_init_complete(-1);
return;
}
g_bdev_mgr.zero_buffer = spdk_dma_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE,
NULL);
if (!g_bdev_mgr.zero_buffer) {
SPDK_ERRLOG("create bdev zero buffer failed\n");
spdk_bdev_init_complete(-1);
return;
}
#ifdef SPDK_CONFIG_VTUNE
g_bdev_mgr.domain = __itt_domain_create("spdk_bdev");
#endif
spdk_io_device_register(&g_bdev_mgr, spdk_bdev_mgmt_channel_create,
spdk_bdev_mgmt_channel_destroy,
sizeof(struct spdk_bdev_mgmt_channel),
"bdev_mgr");
rc = spdk_bdev_modules_init();
g_bdev_mgr.module_init_complete = true;
if (rc != 0) {
SPDK_ERRLOG("bdev modules init failed\n");
spdk_thread_send_msg(spdk_get_thread(), spdk_bdev_init_failed, NULL);
return;
}
spdk_bdev_module_action_complete();
}
static void
spdk_bdev_mgr_unregister_cb(void *io_device)
{
spdk_bdev_fini_cb cb_fn = g_fini_cb_fn;
if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) {
SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.bdev_io_pool),
g_bdev_opts.bdev_io_pool_size);
}
if (spdk_mempool_count(g_bdev_mgr.buf_small_pool) != BUF_SMALL_POOL_SIZE) {
SPDK_ERRLOG("Small buffer pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.buf_small_pool),
BUF_SMALL_POOL_SIZE);
assert(false);
}
if (spdk_mempool_count(g_bdev_mgr.buf_large_pool) != BUF_LARGE_POOL_SIZE) {
SPDK_ERRLOG("Large buffer pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.buf_large_pool),
BUF_LARGE_POOL_SIZE);
assert(false);
}
spdk_mempool_free(g_bdev_mgr.bdev_io_pool);
spdk_mempool_free(g_bdev_mgr.buf_small_pool);
spdk_mempool_free(g_bdev_mgr.buf_large_pool);
spdk_dma_free(g_bdev_mgr.zero_buffer);
cb_fn(g_fini_cb_arg);
g_fini_cb_fn = NULL;
g_fini_cb_arg = NULL;
g_bdev_mgr.init_complete = false;
g_bdev_mgr.module_init_complete = false;
}
static void
spdk_bdev_module_finish_iter(void *arg)
{
struct spdk_bdev_module *bdev_module;
/* Start iterating from the last touched module */
if (!g_resume_bdev_module) {
bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list);
} else {
bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list,
internal.tailq);
}
while (bdev_module) {
if (bdev_module->async_fini) {
/* Save our place so we can resume later. We must
* save the variable here, before calling module_fini()
* below, because in some cases the module may immediately
* call spdk_bdev_module_finish_done() and re-enter
* this function to continue iterating. */
g_resume_bdev_module = bdev_module;
}
if (bdev_module->module_fini) {
bdev_module->module_fini();
}
if (bdev_module->async_fini) {
return;
}
bdev_module = TAILQ_PREV(bdev_module, bdev_module_list,
internal.tailq);
}
g_resume_bdev_module = NULL;
spdk_io_device_unregister(&g_bdev_mgr, spdk_bdev_mgr_unregister_cb);
}
void
spdk_bdev_module_finish_done(void)
{
if (spdk_get_thread() != g_fini_thread) {
spdk_thread_send_msg(g_fini_thread, spdk_bdev_module_finish_iter, NULL);
} else {
spdk_bdev_module_finish_iter(NULL);
}
}
static void
_spdk_bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno)
{
struct spdk_bdev *bdev = cb_arg;
if (bdeverrno && bdev) {
SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n",
bdev->name);
/*
* Since the call to spdk_bdev_unregister() failed, we have no way to free this
* bdev; try to continue by manually removing this bdev from the list and continue
* with the next bdev in the list.
*/
TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link);
}
if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Done unregistering bdevs\n");
/*
* Bdev module finish need to be deffered as we might be in the middle of some context
* (like bdev part free) that will use this bdev (or private bdev driver ctx data)
* after returning.
*/
spdk_thread_send_msg(spdk_get_thread(), spdk_bdev_module_finish_iter, NULL);
return;
}
/*
* Unregister the last bdev in the list. The last bdev in the list should be a bdev
* that has no bdevs that depend on it.
*/
bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list);
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Unregistering bdev '%s'\n", bdev->name);
spdk_bdev_unregister(bdev, _spdk_bdev_finish_unregister_bdevs_iter, bdev);
}
void
spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg)
{
struct spdk_bdev_module *m;
assert(cb_fn != NULL);
g_fini_thread = spdk_get_thread();
g_fini_cb_fn = cb_fn;
g_fini_cb_arg = cb_arg;
TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (m->fini_start) {
m->fini_start();
}
}
_spdk_bdev_finish_unregister_bdevs_iter(NULL, 0);
}
static struct spdk_bdev_io *
spdk_bdev_get_io(struct spdk_bdev_channel *channel)
{
struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch;
struct spdk_bdev_io *bdev_io;
if (ch->per_thread_cache_count > 0) {
bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link);
ch->per_thread_cache_count--;
} else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) {
/*
* Don't try to look for bdev_ios in the global pool if there are
* waiters on bdev_ios - we don't want this caller to jump the line.
*/
bdev_io = NULL;
} else {
bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
}
return bdev_io;
}
void
spdk_bdev_free_io(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_mgmt_channel *ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
assert(bdev_io != NULL);
assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING);
if (bdev_io->internal.buf != NULL) {
spdk_bdev_io_put_buf(bdev_io);
}
if (ch->per_thread_cache_count < ch->bdev_io_cache_size) {
ch->per_thread_cache_count++;
STAILQ_INSERT_TAIL(&ch->per_thread_cache, bdev_io, internal.buf_link);
while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) {
struct spdk_bdev_io_wait_entry *entry;
entry = TAILQ_FIRST(&ch->io_wait_queue);
TAILQ_REMOVE(&ch->io_wait_queue, entry, link);
entry->cb_fn(entry->cb_arg);
}
} else {
/* We should never have a full cache with entries on the io wait queue. */
assert(TAILQ_EMPTY(&ch->io_wait_queue));
spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
}
}
static bool
_spdk_bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit)
{
assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES);
switch (limit) {
case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT:
return true;
case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT:
return false;
case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES:
default:
return false;
}
}
static bool
_spdk_bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io)
{
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_UNMAP:
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
return true;
default:
return false;
}
}
static uint64_t
_spdk_bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return bdev_io->u.nvme_passthru.nbytes;
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_UNMAP:
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
return bdev_io->u.bdev.num_blocks * bdev->blocklen;
default:
return 0;
}
}
static void
_spdk_bdev_qos_update_per_io(struct spdk_bdev_qos *qos, uint64_t io_size_in_byte)
{
int i;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
continue;
}
switch (i) {
case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT:
qos->rate_limits[i].remaining_this_timeslice--;
break;
case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT:
qos->rate_limits[i].remaining_this_timeslice -= io_size_in_byte;
break;
case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES:
default:
break;
}
}
}
static int
_spdk_bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos)
{
struct spdk_bdev_io *bdev_io = NULL;
struct spdk_bdev *bdev = ch->bdev;
struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource;
int i, submitted_ios = 0;
bool to_limit_io;
uint64_t io_size_in_byte;
while (!TAILQ_EMPTY(&qos->queued)) {
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (qos->rate_limits[i].max_per_timeslice > 0 &&
(qos->rate_limits[i].remaining_this_timeslice <= 0)) {
return submitted_ios;
}
}
bdev_io = TAILQ_FIRST(&qos->queued);
TAILQ_REMOVE(&qos->queued, bdev_io, internal.link);
ch->io_outstanding++;
shared_resource->io_outstanding++;
to_limit_io = _spdk_bdev_qos_io_to_limit(bdev_io);
if (to_limit_io == true) {
io_size_in_byte = _spdk_bdev_get_io_size_in_byte(bdev_io);
_spdk_bdev_qos_update_per_io(qos, io_size_in_byte);
}
bdev->fn_table->submit_request(ch->channel, bdev_io);
submitted_ios++;
}
return submitted_ios;
}
static void
_spdk_bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn)
{
int rc;
bdev_io->internal.waitq_entry.bdev = bdev_io->bdev;
bdev_io->internal.waitq_entry.cb_fn = cb_fn;
bdev_io->internal.waitq_entry.cb_arg = bdev_io;
rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch),
&bdev_io->internal.waitq_entry);
if (rc != 0) {
SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc);
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
static bool
_spdk_bdev_io_type_can_split(uint8_t type)
{
assert(type != SPDK_BDEV_IO_TYPE_INVALID);
assert(type < SPDK_BDEV_NUM_IO_TYPES);
/* Only split READ and WRITE I/O. Theoretically other types of I/O like
* UNMAP could be split, but these types of I/O are typically much larger
* in size (sometimes the size of the entire block device), and the bdev
* module can more efficiently split these types of I/O. Plus those types
* of I/O do not have a payload, which makes the splitting process simpler.
*/
if (type == SPDK_BDEV_IO_TYPE_READ || type == SPDK_BDEV_IO_TYPE_WRITE) {
return true;
} else {
return false;
}
}
static bool
_spdk_bdev_io_should_split(struct spdk_bdev_io *bdev_io)
{
uint64_t start_stripe, end_stripe;
uint32_t io_boundary = bdev_io->bdev->optimal_io_boundary;
if (io_boundary == 0) {
return false;
}
if (!_spdk_bdev_io_type_can_split(bdev_io->type)) {
return false;
}
start_stripe = bdev_io->u.bdev.offset_blocks;
end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1;
/* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */
if (spdk_likely(spdk_u32_is_pow2(io_boundary))) {
start_stripe >>= spdk_u32log2(io_boundary);
end_stripe >>= spdk_u32log2(io_boundary);
} else {
start_stripe /= io_boundary;
end_stripe /= io_boundary;
}
return (start_stripe != end_stripe);
}
static uint32_t
_to_next_boundary(uint64_t offset, uint32_t boundary)
{
return (boundary - (offset % boundary));
}
static void
_spdk_bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void
_spdk_bdev_io_split_with_payload(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
uint64_t current_offset, remaining;
uint32_t blocklen, to_next_boundary, to_next_boundary_bytes;
struct iovec *parent_iov, *iov;
uint64_t parent_iov_offset, iov_len;
uint32_t parent_iovpos, parent_iovcnt, child_iovcnt, iovcnt;
int rc;
remaining = bdev_io->u.bdev.split_remaining_num_blocks;
current_offset = bdev_io->u.bdev.split_current_offset_blocks;
blocklen = bdev_io->bdev->blocklen;
parent_iov_offset = (current_offset - bdev_io->u.bdev.offset_blocks) * blocklen;
parent_iovcnt = bdev_io->u.bdev.iovcnt;
for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) {
parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos];
if (parent_iov_offset < parent_iov->iov_len) {
break;
}
parent_iov_offset -= parent_iov->iov_len;
}
child_iovcnt = 0;
while (remaining > 0 && parent_iovpos < parent_iovcnt && child_iovcnt < BDEV_IO_NUM_CHILD_IOV) {
to_next_boundary = _to_next_boundary(current_offset, bdev_io->bdev->optimal_io_boundary);
to_next_boundary = spdk_min(remaining, to_next_boundary);
to_next_boundary_bytes = to_next_boundary * blocklen;
iov = &bdev_io->child_iov[child_iovcnt];
iovcnt = 0;
while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt &&
child_iovcnt < BDEV_IO_NUM_CHILD_IOV) {
parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos];
iov_len = spdk_min(to_next_boundary_bytes, parent_iov->iov_len - parent_iov_offset);
to_next_boundary_bytes -= iov_len;
bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset;
bdev_io->child_iov[child_iovcnt].iov_len = iov_len;
if (iov_len < parent_iov->iov_len - parent_iov_offset) {
parent_iov_offset += iov_len;
} else {
parent_iovpos++;
parent_iov_offset = 0;
}
child_iovcnt++;
iovcnt++;
}
if (to_next_boundary_bytes > 0) {
/* We had to stop this child I/O early because we ran out of
* child_iov space. Make sure the iovs collected are valid and
* then adjust to_next_boundary before starting the child I/O.
*/
if ((to_next_boundary_bytes % blocklen) != 0) {
SPDK_ERRLOG("Remaining %" PRIu32 " is not multiple of block size %" PRIu32 "\n",
to_next_boundary_bytes, blocklen);
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
if (bdev_io->u.bdev.split_outstanding == 0) {
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
return;
}
to_next_boundary -= to_next_boundary_bytes / blocklen;
}
bdev_io->u.bdev.split_outstanding++;
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
rc = spdk_bdev_readv_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
iov, iovcnt, current_offset, to_next_boundary,
_spdk_bdev_io_split_done, bdev_io);
} else {
rc = spdk_bdev_writev_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
iov, iovcnt, current_offset, to_next_boundary,
_spdk_bdev_io_split_done, bdev_io);
}
if (rc == 0) {
current_offset += to_next_boundary;
remaining -= to_next_boundary;
bdev_io->u.bdev.split_current_offset_blocks = current_offset;
bdev_io->u.bdev.split_remaining_num_blocks = remaining;
} else {
bdev_io->u.bdev.split_outstanding--;
if (rc == -ENOMEM) {
if (bdev_io->u.bdev.split_outstanding == 0) {
/* No I/O is outstanding. Hence we should wait here. */
_spdk_bdev_queue_io_wait_with_cb(bdev_io,
_spdk_bdev_io_split_with_payload);
}
} else {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
if (bdev_io->u.bdev.split_outstanding == 0) {
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
return;
}
}
}
static void
_spdk_bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
if (!success) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
parent_io->u.bdev.split_outstanding--;
if (parent_io->u.bdev.split_outstanding != 0) {
return;
}
/*
* Parent I/O finishes when all blocks are consumed or there is any failure of
* child I/O and no outstanding child I/O.
*/
if (parent_io->u.bdev.split_remaining_num_blocks == 0 ||
parent_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS) {
parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS,
parent_io->internal.caller_ctx);
return;
}
/*
* Continue with the splitting process. This function will complete the parent I/O if the
* splitting is done.
*/
_spdk_bdev_io_split_with_payload(parent_io);
}
static void
_spdk_bdev_io_split(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
assert(_spdk_bdev_io_type_can_split(bdev_io->type));
bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks;
bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks;
bdev_io->u.bdev.split_outstanding = 0;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
_spdk_bdev_io_split_with_payload(bdev_io);
}
static void
_spdk_bdev_io_submit(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
struct spdk_io_channel *ch = bdev_ch->channel;
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
uint64_t tsc;
tsc = spdk_get_ticks();
bdev_io->internal.submit_tsc = tsc;
spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_START, 0, 0, (uintptr_t)bdev_io, bdev_io->type);
bdev_ch->io_outstanding++;
shared_resource->io_outstanding++;
bdev_io->internal.in_submit_request = true;
if (spdk_likely(bdev_ch->flags == 0)) {
if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) {
bdev->fn_table->submit_request(ch, bdev_io);
} else {
bdev_ch->io_outstanding--;
shared_resource->io_outstanding--;
TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link);
}
} else if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
} else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) {
bdev_ch->io_outstanding--;
shared_resource->io_outstanding--;
TAILQ_INSERT_TAIL(&bdev->internal.qos->queued, bdev_io, internal.link);
_spdk_bdev_qos_io_submit(bdev_ch, bdev->internal.qos);
} else {
SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags);
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
bdev_io->internal.in_submit_request = false;
}
static void
spdk_bdev_io_submit(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_thread *thread = spdk_io_channel_get_thread(bdev_io->internal.ch->channel);
assert(thread != NULL);
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING);
if (bdev->split_on_optimal_io_boundary && _spdk_bdev_io_should_split(bdev_io)) {
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
spdk_bdev_io_get_buf(bdev_io, _spdk_bdev_io_split,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
} else {
_spdk_bdev_io_split(NULL, bdev_io);
}
return;
}
if (bdev_io->internal.ch->flags & BDEV_CH_QOS_ENABLED) {
if ((thread == bdev->internal.qos->thread) || !bdev->internal.qos->thread) {
_spdk_bdev_io_submit(bdev_io);
} else {
bdev_io->internal.io_submit_ch = bdev_io->internal.ch;
bdev_io->internal.ch = bdev->internal.qos->ch;
spdk_thread_send_msg(bdev->internal.qos->thread, _spdk_bdev_io_submit, bdev_io);
}
} else {
_spdk_bdev_io_submit(bdev_io);
}
}
static void
spdk_bdev_io_submit_reset(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
struct spdk_io_channel *ch = bdev_ch->channel;
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING);
bdev_io->internal.in_submit_request = true;
bdev->fn_table->submit_request(ch, bdev_io);
bdev_io->internal.in_submit_request = false;
}
static void
spdk_bdev_io_init(struct spdk_bdev_io *bdev_io,
struct spdk_bdev *bdev, void *cb_arg,
spdk_bdev_io_completion_cb cb)
{
bdev_io->bdev = bdev;
bdev_io->internal.caller_ctx = cb_arg;
bdev_io->internal.cb = cb;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
bdev_io->internal.in_submit_request = false;
bdev_io->internal.buf = NULL;
bdev_io->internal.io_submit_ch = NULL;
}
static bool
_spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
{
return bdev->fn_table->io_type_supported(bdev->ctxt, io_type);
}
bool
spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
{
bool supported;
supported = _spdk_bdev_io_type_supported(bdev, io_type);
if (!supported) {
switch (io_type) {
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
/* The bdev layer will emulate write zeroes as long as write is supported. */
supported = _spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE);
break;
default:
break;
}
}
return supported;
}
int
spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
if (bdev->fn_table->dump_info_json) {
return bdev->fn_table->dump_info_json(bdev->ctxt, w);
}
return 0;
}
static void
spdk_bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos)
{
uint32_t max_per_timeslice = 0;
int i;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
qos->rate_limits[i].max_per_timeslice = 0;
continue;
}
max_per_timeslice = qos->rate_limits[i].limit *
SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC;
qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice,
qos->rate_limits[i].min_per_timeslice);
qos->rate_limits[i].remaining_this_timeslice = qos->rate_limits[i].max_per_timeslice;
}
}
static int
spdk_bdev_channel_poll_qos(void *arg)
{
struct spdk_bdev_qos *qos = arg;
uint64_t now = spdk_get_ticks();
int i;
if (now < (qos->last_timeslice + qos->timeslice_size)) {
/* We received our callback earlier than expected - return
* immediately and wait to do accounting until at least one
* timeslice has actually expired. This should never happen
* with a well-behaved timer implementation.
*/
return 0;
}
/* Reset for next round of rate limiting */
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
/* We may have allowed the IOs or bytes to slightly overrun in the last
* timeslice. remaining_this_timeslice is signed, so if it's negative
* here, we'll account for the overrun so that the next timeslice will
* be appropriately reduced.
*/
if (qos->rate_limits[i].remaining_this_timeslice > 0) {
qos->rate_limits[i].remaining_this_timeslice = 0;
}
}
while (now >= (qos->last_timeslice + qos->timeslice_size)) {
qos->last_timeslice += qos->timeslice_size;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
qos->rate_limits[i].remaining_this_timeslice +=
qos->rate_limits[i].max_per_timeslice;
}
}
return _spdk_bdev_qos_io_submit(qos->ch, qos);
}
static void
_spdk_bdev_channel_destroy_resource(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_shared_resource *shared_resource;
if (!ch) {
return;
}
if (ch->channel) {
spdk_put_io_channel(ch->channel);
}
assert(ch->io_outstanding == 0);
shared_resource = ch->shared_resource;
if (shared_resource) {
assert(ch->io_outstanding == 0);
assert(shared_resource->ref > 0);
shared_resource->ref--;
if (shared_resource->ref == 0) {
assert(shared_resource->io_outstanding == 0);
TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link);
spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch));
free(shared_resource);
}
}
}
/* Caller must hold bdev->internal.mutex. */
static void
_spdk_bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch)
{
struct spdk_bdev_qos *qos = bdev->internal.qos;
int i;
/* Rate limiting on this bdev enabled */
if (qos) {
if (qos->ch == NULL) {
struct spdk_io_channel *io_ch;
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch,
bdev->name, spdk_get_thread());
/* No qos channel has been selected, so set one up */
/* Take another reference to ch */
io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev));
qos->ch = ch;
qos->thread = spdk_io_channel_get_thread(io_ch);
TAILQ_INIT(&qos->queued);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (_spdk_bdev_qos_is_iops_rate_limit(i) == true) {
qos->rate_limits[i].min_per_timeslice =
SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE;
} else {
qos->rate_limits[i].min_per_timeslice =
SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE;
}
if (qos->rate_limits[i].limit == 0) {
qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
}
}
spdk_bdev_qos_update_max_quota_per_timeslice(qos);
qos->timeslice_size =
SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
qos->last_timeslice = spdk_get_ticks();
qos->poller = spdk_poller_register(spdk_bdev_channel_poll_qos,
qos,
SPDK_BDEV_QOS_TIMESLICE_IN_USEC);
}
ch->flags |= BDEV_CH_QOS_ENABLED;
}
}
static int
spdk_bdev_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_bdev *bdev = __bdev_from_io_dev(io_device);
struct spdk_bdev_channel *ch = ctx_buf;
struct spdk_io_channel *mgmt_io_ch;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_shared_resource *shared_resource;
ch->bdev = bdev;
ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt);
if (!ch->channel) {
return -1;
}
mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr);
if (!mgmt_io_ch) {
return -1;
}
mgmt_ch = spdk_io_channel_get_ctx(mgmt_io_ch);
TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) {
if (shared_resource->shared_ch == ch->channel) {
spdk_put_io_channel(mgmt_io_ch);
shared_resource->ref++;
break;
}
}
if (shared_resource == NULL) {
shared_resource = calloc(1, sizeof(*shared_resource));
if (shared_resource == NULL) {
spdk_put_io_channel(mgmt_io_ch);
return -1;
}
shared_resource->mgmt_ch = mgmt_ch;
shared_resource->io_outstanding = 0;
TAILQ_INIT(&shared_resource->nomem_io);
shared_resource->nomem_threshold = 0;
shared_resource->shared_ch = ch->channel;
shared_resource->ref = 1;
TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link);
}
memset(&ch->stat, 0, sizeof(ch->stat));
ch->stat.ticks_rate = spdk_get_ticks_hz();
ch->io_outstanding = 0;
TAILQ_INIT(&ch->queued_resets);
ch->flags = 0;
ch->shared_resource = shared_resource;
#ifdef SPDK_CONFIG_VTUNE
{
char *name;
__itt_init_ittlib(NULL, 0);
name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch);
if (!name) {
_spdk_bdev_channel_destroy_resource(ch);
return -1;
}
ch->handle = __itt_string_handle_create(name);
free(name);
ch->start_tsc = spdk_get_ticks();
ch->interval_tsc = spdk_get_ticks_hz() / 100;
memset(&ch->prev_stat, 0, sizeof(ch->prev_stat));
}
#endif
pthread_mutex_lock(&bdev->internal.mutex);
_spdk_bdev_enable_qos(bdev, ch);
pthread_mutex_unlock(&bdev->internal.mutex);
return 0;
}
/*
* Abort I/O that are waiting on a data buffer. These types of I/O are
* linked using the spdk_bdev_io internal.buf_link TAILQ_ENTRY.
*/
static void
_spdk_bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_channel *ch)
{
bdev_io_stailq_t tmp;
struct spdk_bdev_io *bdev_io;
STAILQ_INIT(&tmp);
while (!STAILQ_EMPTY(queue)) {
bdev_io = STAILQ_FIRST(queue);
STAILQ_REMOVE_HEAD(queue, internal.buf_link);
if (bdev_io->internal.ch == ch) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
} else {
STAILQ_INSERT_TAIL(&tmp, bdev_io, internal.buf_link);
}
}
STAILQ_SWAP(&tmp, queue, spdk_bdev_io);
}
/*
* Abort I/O that are queued waiting for submission. These types of I/O are
* linked using the spdk_bdev_io link TAILQ_ENTRY.
*/
static void
_spdk_bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch)
{
struct spdk_bdev_io *bdev_io, *tmp;
TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) {
if (bdev_io->internal.ch == ch) {
TAILQ_REMOVE(queue, bdev_io, internal.link);
/*
* spdk_bdev_io_complete() assumes that the completed I/O had
* been submitted to the bdev module. Since in this case it
* hadn't, bump io_outstanding to account for the decrement
* that spdk_bdev_io_complete() will do.
*/
if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) {
ch->io_outstanding++;
ch->shared_resource->io_outstanding++;
}
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
static void
spdk_bdev_qos_channel_destroy(void *cb_arg)
{
struct spdk_bdev_qos *qos = cb_arg;
spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch));
spdk_poller_unregister(&qos->poller);
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Free QoS %p.\n", qos);
free(qos);
}
static int
spdk_bdev_qos_destroy(struct spdk_bdev *bdev)
{
int i;
/*
* Cleanly shutting down the QoS poller is tricky, because
* during the asynchronous operation the user could open
* a new descriptor and create a new channel, spawning
* a new QoS poller.
*
* The strategy is to create a new QoS structure here and swap it
* in. The shutdown path then continues to refer to the old one
* until it completes and then releases it.
*/
struct spdk_bdev_qos *new_qos, *old_qos;
old_qos = bdev->internal.qos;
new_qos = calloc(1, sizeof(*new_qos));
if (!new_qos) {
SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n");
return -ENOMEM;
}
/* Copy the old QoS data into the newly allocated structure */
memcpy(new_qos, old_qos, sizeof(*new_qos));
/* Zero out the key parts of the QoS structure */
new_qos->ch = NULL;
new_qos->thread = NULL;
new_qos->poller = NULL;
TAILQ_INIT(&new_qos->queued);
/*
* The limit member of spdk_bdev_qos_limit structure is not zeroed.
* It will be used later for the new QoS structure.
*/
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
new_qos->rate_limits[i].remaining_this_timeslice = 0;
new_qos->rate_limits[i].min_per_timeslice = 0;
new_qos->rate_limits[i].max_per_timeslice = 0;
}
bdev->internal.qos = new_qos;
if (old_qos->thread == NULL) {
free(old_qos);
} else {
spdk_thread_send_msg(old_qos->thread, spdk_bdev_qos_channel_destroy,
old_qos);
}
/* It is safe to continue with destroying the bdev even though the QoS channel hasn't
* been destroyed yet. The destruction path will end up waiting for the final
* channel to be put before it releases resources. */
return 0;
}
static void
_spdk_bdev_io_stat_add(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add)
{
total->bytes_read += add->bytes_read;
total->num_read_ops += add->num_read_ops;
total->bytes_written += add->bytes_written;
total->num_write_ops += add->num_write_ops;
total->read_latency_ticks += add->read_latency_ticks;
total->write_latency_ticks += add->write_latency_ticks;
}
static void
spdk_bdev_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bdev_channel *ch = ctx_buf;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource;
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name,
spdk_get_thread());
/* This channel is going away, so add its statistics into the bdev so that they don't get lost. */
pthread_mutex_lock(&ch->bdev->internal.mutex);
_spdk_bdev_io_stat_add(&ch->bdev->internal.stat, &ch->stat);
pthread_mutex_unlock(&ch->bdev->internal.mutex);
mgmt_ch = shared_resource->mgmt_ch;
_spdk_bdev_abort_queued_io(&ch->queued_resets, ch);
_spdk_bdev_abort_queued_io(&shared_resource->nomem_io, ch);
_spdk_bdev_abort_buf_io(&mgmt_ch->need_buf_small, ch);
_spdk_bdev_abort_buf_io(&mgmt_ch->need_buf_large, ch);
_spdk_bdev_channel_destroy_resource(ch);
}
int
spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias)
{
struct spdk_bdev_alias *tmp;
if (alias == NULL) {
SPDK_ERRLOG("Empty alias passed\n");
return -EINVAL;
}
if (spdk_bdev_get_by_name(alias)) {
SPDK_ERRLOG("Bdev name/alias: %s already exists\n", alias);
return -EEXIST;
}
tmp = calloc(1, sizeof(*tmp));
if (tmp == NULL) {
SPDK_ERRLOG("Unable to allocate alias\n");
return -ENOMEM;
}
tmp->alias = strdup(alias);
if (tmp->alias == NULL) {
free(tmp);
SPDK_ERRLOG("Unable to allocate alias\n");
return -ENOMEM;
}
TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq);
return 0;
}
int
spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias)
{
struct spdk_bdev_alias *tmp;
TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
if (strcmp(alias, tmp->alias) == 0) {
TAILQ_REMOVE(&bdev->aliases, tmp, tailq);
free(tmp->alias);
free(tmp);
return 0;
}
}
SPDK_INFOLOG(SPDK_LOG_BDEV, "Alias %s does not exists\n", alias);
return -ENOENT;
}
void
spdk_bdev_alias_del_all(struct spdk_bdev *bdev)
{
struct spdk_bdev_alias *p, *tmp;
TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) {
TAILQ_REMOVE(&bdev->aliases, p, tailq);
free(p->alias);
free(p);
}
}
struct spdk_io_channel *
spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc)
{
return spdk_get_io_channel(__bdev_to_io_dev(desc->bdev));
}
const char *
spdk_bdev_get_name(const struct spdk_bdev *bdev)
{
return bdev->name;
}
const char *
spdk_bdev_get_product_name(const struct spdk_bdev *bdev)
{
return bdev->product_name;
}
const struct spdk_bdev_aliases_list *
spdk_bdev_get_aliases(const struct spdk_bdev *bdev)
{
return &bdev->aliases;
}
uint32_t
spdk_bdev_get_block_size(const struct spdk_bdev *bdev)
{
return bdev->blocklen;
}
uint64_t
spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev)
{
return bdev->blockcnt;
}
const char *
spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type)
{
return qos_rpc_type[type];
}
void
spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits)
{
int i;
memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES);
pthread_mutex_lock(&bdev->internal.mutex);
if (bdev->internal.qos) {
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (bdev->internal.qos->rate_limits[i].limit !=
SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
limits[i] = bdev->internal.qos->rate_limits[i].limit;
if (_spdk_bdev_qos_is_iops_rate_limit(i) == false) {
/* Change from Byte to Megabyte which is user visible. */
limits[i] = limits[i] / 1024 / 1024;
}
}
}
}
pthread_mutex_unlock(&bdev->internal.mutex);
}
size_t
spdk_bdev_get_buf_align(const struct spdk_bdev *bdev)
{
return 1 << bdev->required_alignment;
}
uint32_t
spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev)
{
return bdev->optimal_io_boundary;
}
bool
spdk_bdev_has_write_cache(const struct spdk_bdev *bdev)
{
return bdev->write_cache;
}
const struct spdk_uuid *
spdk_bdev_get_uuid(const struct spdk_bdev *bdev)
{
return &bdev->uuid;
}
uint64_t
spdk_bdev_get_qd(const struct spdk_bdev *bdev)
{
return bdev->internal.measured_queue_depth;
}
uint64_t
spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev)
{
return bdev->internal.period;
}
uint64_t
spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev)
{
return bdev->internal.weighted_io_time;
}
uint64_t
spdk_bdev_get_io_time(const struct spdk_bdev *bdev)
{
return bdev->internal.io_time;
}
static void
_calculate_measured_qd_cpl(struct spdk_io_channel_iter *i, int status)
{
struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i);
bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth;
if (bdev->internal.measured_queue_depth) {
bdev->internal.io_time += bdev->internal.period;
bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth;
}
}
static void
_calculate_measured_qd(struct spdk_io_channel_iter *i)
{
struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i);
struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(io_ch);
bdev->internal.temporary_queue_depth += ch->io_outstanding;
spdk_for_each_channel_continue(i, 0);
}
static int
spdk_bdev_calculate_measured_queue_depth(void *ctx)
{
struct spdk_bdev *bdev = ctx;
bdev->internal.temporary_queue_depth = 0;
spdk_for_each_channel(__bdev_to_io_dev(bdev), _calculate_measured_qd, bdev,
_calculate_measured_qd_cpl);
return 0;
}
void
spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period)
{
bdev->internal.period = period;
if (bdev->internal.qd_poller != NULL) {
spdk_poller_unregister(&bdev->internal.qd_poller);
bdev->internal.measured_queue_depth = UINT64_MAX;
}
if (period != 0) {
bdev->internal.qd_poller = spdk_poller_register(spdk_bdev_calculate_measured_queue_depth, bdev,
period);
}
}
int
spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size)
{
int ret;
pthread_mutex_lock(&bdev->internal.mutex);
/* bdev has open descriptors */
if (!TAILQ_EMPTY(&bdev->internal.open_descs) &&
bdev->blockcnt > size) {
ret = -EBUSY;
} else {
bdev->blockcnt = size;
ret = 0;
}
pthread_mutex_unlock(&bdev->internal.mutex);
return ret;
}
/*
* Convert I/O offset and length from bytes to blocks.
*
* Returns zero on success or non-zero if the byte parameters aren't divisible by the block size.
*/
static uint64_t
spdk_bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks,
uint64_t num_bytes, uint64_t *num_blocks)
{
uint32_t block_size = bdev->blocklen;
*offset_blocks = offset_bytes / block_size;
*num_blocks = num_bytes / block_size;
return (offset_bytes % block_size) | (num_bytes % block_size);
}
static bool
spdk_bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks)
{
/* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there
* has been an overflow and hence the offset has been wrapped around */
if (offset_blocks + num_blocks < offset_blocks) {
return false;
}
/* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */
if (offset_blocks + num_blocks > bdev->blockcnt) {
return false;
}
return true;
}
int
spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = buf;
bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
}
int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = buf;
bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset, uint64_t len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, len, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, len, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES;
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
if (_spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) {
spdk_bdev_io_submit(bdev_io);
return 0;
} else if (_spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) {
assert(spdk_bdev_get_block_size(bdev) <= ZERO_BUFFER_SIZE);
bdev_io->u.bdev.split_remaining_num_blocks = num_blocks;
bdev_io->u.bdev.split_current_offset_blocks = offset_blocks;
_spdk_bdev_write_zero_buffer_next(bdev_io);
return 0;
} else {
spdk_bdev_free_io(bdev_io);
return -ENOTSUP;
}
}
int
spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
if (num_blocks == 0) {
SPDK_ERRLOG("Can't unmap 0 bytes\n");
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = NULL;
bdev_io->u.bdev.iovs[0].iov_len = 0;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t length,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, length, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH;
bdev_io->u.bdev.iovs = NULL;
bdev_io->u.bdev.iovcnt = 0;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
static void
_spdk_bdev_reset_dev(struct spdk_io_channel_iter *i, int status)
{
struct spdk_bdev_channel *ch = spdk_io_channel_iter_get_ctx(i);
struct spdk_bdev_io *bdev_io;
bdev_io = TAILQ_FIRST(&ch->queued_resets);
TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link);
spdk_bdev_io_submit_reset(bdev_io);
}
static void
_spdk_bdev_reset_freeze_channel(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_channel;
struct spdk_bdev_shared_resource *shared_resource;
bdev_io_tailq_t tmp_queued;
TAILQ_INIT(&tmp_queued);
ch = spdk_io_channel_iter_get_channel(i);
channel = spdk_io_channel_get_ctx(ch);
shared_resource = channel->shared_resource;
mgmt_channel = shared_resource->mgmt_ch;
channel->flags |= BDEV_CH_RESET_IN_PROGRESS;
if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) {
/* The QoS object is always valid and readable while
* the channel flag is set, so the lock here should not
* be necessary. We're not in the fast path though, so
* just take it anyway. */
pthread_mutex_lock(&channel->bdev->internal.mutex);
if (channel->bdev->internal.qos->ch == channel) {
TAILQ_SWAP(&channel->bdev->internal.qos->queued, &tmp_queued, spdk_bdev_io, internal.link);
}
pthread_mutex_unlock(&channel->bdev->internal.mutex);
}
_spdk_bdev_abort_queued_io(&shared_resource->nomem_io, channel);
_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_small, channel);
_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_large, channel);
_spdk_bdev_abort_queued_io(&tmp_queued, channel);
spdk_for_each_channel_continue(i, 0);
}
static void
_spdk_bdev_start_reset(void *ctx)
{
struct spdk_bdev_channel *ch = ctx;
spdk_for_each_channel(__bdev_to_io_dev(ch->bdev), _spdk_bdev_reset_freeze_channel,
ch, _spdk_bdev_reset_dev);
}
static void
_spdk_bdev_channel_start_reset(struct spdk_bdev_channel *ch)
{
struct spdk_bdev *bdev = ch->bdev;
assert(!TAILQ_EMPTY(&ch->queued_resets));
pthread_mutex_lock(&bdev->internal.mutex);
if (bdev->internal.reset_in_progress == NULL) {
bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets);
/*
* Take a channel reference for the target bdev for the life of this
* reset. This guards against the channel getting destroyed while
* spdk_for_each_channel() calls related to this reset IO are in
* progress. We will release the reference when this reset is
* completed.
*/
bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev));
_spdk_bdev_start_reset(ch);
}
pthread_mutex_unlock(&bdev->internal.mutex);
}
int
spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_RESET;
bdev_io->u.reset.ch_ref = NULL;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
pthread_mutex_lock(&bdev->internal.mutex);
TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link);
pthread_mutex_unlock(&bdev->internal.mutex);
_spdk_bdev_channel_start_reset(channel);
return 0;
}
void
spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
struct spdk_bdev_io_stat *stat)
{
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
*stat = channel->stat;
}
static void
_spdk_bdev_get_device_stat_done(struct spdk_io_channel_iter *i, int status)
{
void *io_device = spdk_io_channel_iter_get_io_device(i);
struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i);
bdev_iostat_ctx->cb(__bdev_from_io_dev(io_device), bdev_iostat_ctx->stat,
bdev_iostat_ctx->cb_arg, 0);
free(bdev_iostat_ctx);
}
static void
_spdk_bdev_get_each_channel_stat(struct spdk_io_channel_iter *i)
{
struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i);
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
_spdk_bdev_io_stat_add(bdev_iostat_ctx->stat, &channel->stat);
spdk_for_each_channel_continue(i, 0);
}
void
spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat,
spdk_bdev_get_device_stat_cb cb, void *cb_arg)
{
struct spdk_bdev_iostat_ctx *bdev_iostat_ctx;
assert(bdev != NULL);
assert(stat != NULL);
assert(cb != NULL);
bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx));
if (bdev_iostat_ctx == NULL) {
SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n");
cb(bdev, stat, cb_arg, -ENOMEM);
return;
}
bdev_iostat_ctx->stat = stat;
bdev_iostat_ctx->cb = cb;
bdev_iostat_ctx->cb_arg = cb_arg;
/* Start with the statistics from previously deleted channels. */
pthread_mutex_lock(&bdev->internal.mutex);
_spdk_bdev_io_stat_add(bdev_iostat_ctx->stat, &bdev->internal.stat);
pthread_mutex_unlock(&bdev->internal.mutex);
/* Then iterate and add the statistics from each existing channel. */
spdk_for_each_channel(__bdev_to_io_dev(bdev),
_spdk_bdev_get_each_channel_stat,
bdev_iostat_ctx,
_spdk_bdev_get_device_stat_done);
}
int
spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = NULL;
bdev_io->u.nvme_passthru.md_len = 0;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
/*
* Do not try to parse the NVMe command - we could maybe use bits in the opcode
* to easily determine if the command is a read or write, but for now just
* do not allow io_passthru with a read-only descriptor.
*/
return -EBADF;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = NULL;
bdev_io->u.nvme_passthru.md_len = 0;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
/*
* Do not try to parse the NVMe command - we could maybe use bits in the opcode
* to easily determine if the command is a read or write, but for now just
* do not allow io_passthru with a read-only descriptor.
*/
return -EBADF;
}
bdev_io = spdk_bdev_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = md_buf;
bdev_io->u.nvme_passthru.md_len = md_len;
spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
struct spdk_bdev_io_wait_entry *entry)
{
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch;
if (bdev != entry->bdev) {
SPDK_ERRLOG("bdevs do not match\n");
return -EINVAL;
}
if (mgmt_ch->per_thread_cache_count > 0) {
SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n");
return -EINVAL;
}
TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link);
return 0;
}
static void
_spdk_bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch)
{
struct spdk_bdev *bdev = bdev_ch->bdev;
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
struct spdk_bdev_io *bdev_io;
if (shared_resource->io_outstanding > shared_resource->nomem_threshold) {
/*
* Allow some more I/O to complete before retrying the nomem_io queue.
* Some drivers (such as nvme) cannot immediately take a new I/O in
* the context of a completion, because the resources for the I/O are
* not released until control returns to the bdev poller. Also, we
* may require several small I/O to complete before a larger I/O
* (that requires splitting) can be submitted.
*/
return;
}
while (!TAILQ_EMPTY(&shared_resource->nomem_io)) {
bdev_io = TAILQ_FIRST(&shared_resource->nomem_io);
TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link);
bdev_io->internal.ch->io_outstanding++;
shared_resource->io_outstanding++;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
bdev->fn_table->submit_request(bdev_io->internal.ch->channel, bdev_io);
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) {
break;
}
}
}
static inline void
_spdk_bdev_io_complete(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
uint64_t tsc;
if (spdk_unlikely(bdev_io->internal.in_submit_request || bdev_io->internal.io_submit_ch)) {
/*
* Send the completion to the thread that originally submitted the I/O,
* which may not be the current thread in the case of QoS.
*/
if (bdev_io->internal.io_submit_ch) {
bdev_io->internal.ch = bdev_io->internal.io_submit_ch;
bdev_io->internal.io_submit_ch = NULL;
}
/*
* Defer completion to avoid potential infinite recursion if the
* user's completion callback issues a new I/O.
*/
spdk_thread_send_msg(spdk_io_channel_get_thread(bdev_io->internal.ch->channel),
_spdk_bdev_io_complete, bdev_io);
return;
}
tsc = spdk_get_ticks();
spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, 0);
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
bdev_io->internal.ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
bdev_io->internal.ch->stat.num_read_ops++;
bdev_io->internal.ch->stat.read_latency_ticks += (tsc - bdev_io->internal.submit_tsc);
break;
case SPDK_BDEV_IO_TYPE_WRITE:
bdev_io->internal.ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
bdev_io->internal.ch->stat.num_write_ops++;
bdev_io->internal.ch->stat.write_latency_ticks += (tsc - bdev_io->internal.submit_tsc);
break;
default:
break;
}
}
#ifdef SPDK_CONFIG_VTUNE
uint64_t now_tsc = spdk_get_ticks();
if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) {
uint64_t data[5];
data[0] = bdev_io->internal.ch->stat.num_read_ops - bdev_io->internal.ch->prev_stat.num_read_ops;
data[1] = bdev_io->internal.ch->stat.bytes_read - bdev_io->internal.ch->prev_stat.bytes_read;
data[2] = bdev_io->internal.ch->stat.num_write_ops - bdev_io->internal.ch->prev_stat.num_write_ops;
data[3] = bdev_io->internal.ch->stat.bytes_written - bdev_io->internal.ch->prev_stat.bytes_written;
data[4] = bdev_io->bdev->fn_table->get_spin_time ?
bdev_io->bdev->fn_table->get_spin_time(bdev_io->internal.ch->channel) : 0;
__itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle,
__itt_metadata_u64, 5, data);
bdev_io->internal.ch->prev_stat = bdev_io->internal.ch->stat;
bdev_io->internal.ch->start_tsc = now_tsc;
}
#endif
assert(bdev_io->internal.cb != NULL);
assert(spdk_get_thread() == spdk_io_channel_get_thread(bdev_io->internal.ch->channel));
bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS,
bdev_io->internal.caller_ctx);
}
static void
_spdk_bdev_reset_complete(struct spdk_io_channel_iter *i, int status)
{
struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i);
if (bdev_io->u.reset.ch_ref != NULL) {
spdk_put_io_channel(bdev_io->u.reset.ch_ref);
bdev_io->u.reset.ch_ref = NULL;
}
_spdk_bdev_io_complete(bdev_io);
}
static void
_spdk_bdev_unfreeze_channel(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS;
if (!TAILQ_EMPTY(&ch->queued_resets)) {
_spdk_bdev_channel_start_reset(ch);
}
spdk_for_each_channel_continue(i, 0);
}
void
spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
bdev_io->internal.status = status;
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) {
bool unlock_channels = false;
if (status == SPDK_BDEV_IO_STATUS_NOMEM) {
SPDK_ERRLOG("NOMEM returned for reset\n");
}
pthread_mutex_lock(&bdev->internal.mutex);
if (bdev_io == bdev->internal.reset_in_progress) {
bdev->internal.reset_in_progress = NULL;
unlock_channels = true;
}
pthread_mutex_unlock(&bdev->internal.mutex);
if (unlock_channels) {
spdk_for_each_channel(__bdev_to_io_dev(bdev), _spdk_bdev_unfreeze_channel,
bdev_io, _spdk_bdev_reset_complete);
return;
}
} else {
assert(bdev_ch->io_outstanding > 0);
assert(shared_resource->io_outstanding > 0);
bdev_ch->io_outstanding--;
shared_resource->io_outstanding--;
if (spdk_unlikely(status == SPDK_BDEV_IO_STATUS_NOMEM)) {
TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link);
/*
* Wait for some of the outstanding I/O to complete before we
* retry any of the nomem_io. Normally we will wait for
* NOMEM_THRESHOLD_COUNT I/O to complete but for low queue
* depth channels we will instead wait for half to complete.
*/
shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2,
(int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT);
return;
}
if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) {
_spdk_bdev_ch_retry_io(bdev_ch);
}
}
_spdk_bdev_io_complete(bdev_io);
}
void
spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc,
enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq)
{
if (sc == SPDK_SCSI_STATUS_GOOD) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SCSI_ERROR;
bdev_io->internal.error.scsi.sc = sc;
bdev_io->internal.error.scsi.sk = sk;
bdev_io->internal.error.scsi.asc = asc;
bdev_io->internal.error.scsi.ascq = ascq;
}
spdk_bdev_io_complete(bdev_io, bdev_io->internal.status);
}
void
spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io,
int *sc, int *sk, int *asc, int *ascq)
{
assert(sc != NULL);
assert(sk != NULL);
assert(asc != NULL);
assert(ascq != NULL);
switch (bdev_io->internal.status) {
case SPDK_BDEV_IO_STATUS_SUCCESS:
*sc = SPDK_SCSI_STATUS_GOOD;
*sk = SPDK_SCSI_SENSE_NO_SENSE;
*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
break;
case SPDK_BDEV_IO_STATUS_NVME_ERROR:
spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq);
break;
case SPDK_BDEV_IO_STATUS_SCSI_ERROR:
*sc = bdev_io->internal.error.scsi.sc;
*sk = bdev_io->internal.error.scsi.sk;
*asc = bdev_io->internal.error.scsi.asc;
*ascq = bdev_io->internal.error.scsi.ascq;
break;
default:
*sc = SPDK_SCSI_STATUS_CHECK_CONDITION;
*sk = SPDK_SCSI_SENSE_ABORTED_COMMAND;
*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
break;
}
}
void
spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, int sct, int sc)
{
if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
bdev_io->internal.error.nvme.sct = sct;
bdev_io->internal.error.nvme.sc = sc;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NVME_ERROR;
}
spdk_bdev_io_complete(bdev_io, bdev_io->internal.status);
}
void
spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, int *sct, int *sc)
{
assert(sct != NULL);
assert(sc != NULL);
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) {
*sct = bdev_io->internal.error.nvme.sct;
*sc = bdev_io->internal.error.nvme.sc;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_SUCCESS;
} else {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
struct spdk_thread *
spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io)
{
return spdk_io_channel_get_thread(bdev_io->internal.ch->channel);
}
static void
_spdk_bdev_qos_config_limit(struct spdk_bdev *bdev, uint64_t *limits)
{
uint64_t min_qos_set;
int i;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
break;
}
}
if (i == SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES) {
SPDK_ERRLOG("Invalid rate limits set.\n");
return;
}
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
continue;
}
if (_spdk_bdev_qos_is_iops_rate_limit(i) == true) {
min_qos_set = SPDK_BDEV_QOS_MIN_IOS_PER_SEC;
} else {
min_qos_set = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC;
}
if (limits[i] == 0 || limits[i] % min_qos_set) {
SPDK_ERRLOG("Assigned limit %" PRIu64 " on bdev %s is not multiple of %" PRIu64 "\n",
limits[i], bdev->name, min_qos_set);
SPDK_ERRLOG("Failed to enable QoS on this bdev %s\n", bdev->name);
return;
}
}
if (!bdev->internal.qos) {
bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
if (!bdev->internal.qos) {
SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n");
return;
}
}
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
bdev->internal.qos->rate_limits[i].limit = limits[i];
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Bdev:%s QoS type:%d set:%lu\n",
bdev->name, i, limits[i]);
}
return;
}
static void
_spdk_bdev_qos_config(struct spdk_bdev *bdev)
{
struct spdk_conf_section *sp = NULL;
const char *val = NULL;
int i = 0, j = 0;
uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
bool config_qos = false;
sp = spdk_conf_find_section(NULL, "QoS");
if (!sp) {
return;
}
while (j < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES) {
limits[j] = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
i = 0;
while (true) {
val = spdk_conf_section_get_nmval(sp, qos_conf_type[j], i, 0);
if (!val) {
break;
}
if (strcmp(bdev->name, val) != 0) {
i++;
continue;
}
val = spdk_conf_section_get_nmval(sp, qos_conf_type[j], i, 1);
if (val) {
if (_spdk_bdev_qos_is_iops_rate_limit(j) == true) {
limits[j] = strtoull(val, NULL, 10);
} else {
limits[j] = strtoull(val, NULL, 10) * 1024 * 1024;
}
config_qos = true;
}
break;
}
j++;
}
if (config_qos == true) {
_spdk_bdev_qos_config_limit(bdev, limits);
}
return;
}
static int
spdk_bdev_init(struct spdk_bdev *bdev)
{
char *bdev_name;
assert(bdev->module != NULL);
if (!bdev->name) {
SPDK_ERRLOG("Bdev name is NULL\n");
return -EINVAL;
}
if (spdk_bdev_get_by_name(bdev->name)) {
SPDK_ERRLOG("Bdev name:%s already exists\n", bdev->name);
return -EEXIST;
}
/* Users often register their own I/O devices using the bdev name. In
* order to avoid conflicts, prepend bdev_. */
bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name);
if (!bdev_name) {
SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n");
return -ENOMEM;
}
bdev->internal.status = SPDK_BDEV_STATUS_READY;
bdev->internal.measured_queue_depth = UINT64_MAX;
bdev->internal.claim_module = NULL;
bdev->internal.qd_poller = NULL;
bdev->internal.qos = NULL;
if (spdk_bdev_get_buf_align(bdev) > 1) {
if (bdev->split_on_optimal_io_boundary) {
bdev->optimal_io_boundary = spdk_min(bdev->optimal_io_boundary,
SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen);
} else {
bdev->split_on_optimal_io_boundary = true;
bdev->optimal_io_boundary = SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen;
}
}
TAILQ_INIT(&bdev->internal.open_descs);
TAILQ_INIT(&bdev->aliases);
bdev->internal.reset_in_progress = NULL;
_spdk_bdev_qos_config(bdev);
spdk_io_device_register(__bdev_to_io_dev(bdev),
spdk_bdev_channel_create, spdk_bdev_channel_destroy,
sizeof(struct spdk_bdev_channel),
bdev_name);
free(bdev_name);
pthread_mutex_init(&bdev->internal.mutex, NULL);
return 0;
}
static void
spdk_bdev_destroy_cb(void *io_device)
{
int rc;
struct spdk_bdev *bdev;
spdk_bdev_unregister_cb cb_fn;
void *cb_arg;
bdev = __bdev_from_io_dev(io_device);
cb_fn = bdev->internal.unregister_cb;
cb_arg = bdev->internal.unregister_ctx;
rc = bdev->fn_table->destruct(bdev->ctxt);
if (rc < 0) {
SPDK_ERRLOG("destruct failed\n");
}
if (rc <= 0 && cb_fn != NULL) {
cb_fn(cb_arg, rc);
}
}
static void
spdk_bdev_fini(struct spdk_bdev *bdev)
{
pthread_mutex_destroy(&bdev->internal.mutex);
free(bdev->internal.qos);
spdk_io_device_unregister(__bdev_to_io_dev(bdev), spdk_bdev_destroy_cb);
}
static void
spdk_bdev_start(struct spdk_bdev *bdev)
{
struct spdk_bdev_module *module;
uint32_t action;
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Inserting bdev %s into list\n", bdev->name);
TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link);
/* Examine configuration before initializing I/O */
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (module->examine_config) {
action = module->internal.action_in_progress;
module->internal.action_in_progress++;
module->examine_config(bdev);
if (action != module->internal.action_in_progress) {
SPDK_ERRLOG("examine_config for module %s did not call spdk_bdev_module_examine_done()\n",
module->name);
}
}
}
if (bdev->internal.claim_module) {
return;
}
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (module->examine_disk) {
module->internal.action_in_progress++;
module->examine_disk(bdev);
}
}
}
int
spdk_bdev_register(struct spdk_bdev *bdev)
{
int rc = spdk_bdev_init(bdev);
if (rc == 0) {
spdk_bdev_start(bdev);
}
return rc;
}
int
spdk_vbdev_register(struct spdk_bdev *vbdev, struct spdk_bdev **base_bdevs, int base_bdev_count)
{
int rc;
rc = spdk_bdev_init(vbdev);
if (rc) {
return rc;
}
spdk_bdev_start(vbdev);
return 0;
}
void
spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno)
{
if (bdev->internal.unregister_cb != NULL) {
bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno);
}
}
static void
_remove_notify(void *arg)
{
struct spdk_bdev_desc *desc = arg;
desc->remove_scheduled = false;
if (desc->closed) {
free(desc);
} else {
desc->remove_cb(desc->remove_ctx);
}
}
void
spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg)
{
struct spdk_bdev_desc *desc, *tmp;
bool do_destruct = true;
struct spdk_thread *thread;
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Removing bdev %s from list\n", bdev->name);
thread = spdk_get_thread();
if (!thread) {
/* The user called this from a non-SPDK thread. */
if (cb_fn != NULL) {
cb_fn(cb_arg, -ENOTSUP);
}
return;
}
pthread_mutex_lock(&bdev->internal.mutex);
bdev->internal.status = SPDK_BDEV_STATUS_REMOVING;
bdev->internal.unregister_cb = cb_fn;
bdev->internal.unregister_ctx = cb_arg;
TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) {
if (desc->remove_cb) {
do_destruct = false;
/*
* Defer invocation of the remove_cb to a separate message that will
* run later on its thread. This ensures this context unwinds and
* we don't recursively unregister this bdev again if the remove_cb
* immediately closes its descriptor.
*/
if (!desc->remove_scheduled) {
/* Avoid scheduling removal of the same descriptor multiple times. */
desc->remove_scheduled = true;
spdk_thread_send_msg(desc->thread, _remove_notify, desc);
}
}
}
if (!do_destruct) {
pthread_mutex_unlock(&bdev->internal.mutex);
return;
}
TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link);
pthread_mutex_unlock(&bdev->internal.mutex);
spdk_bdev_fini(bdev);
}
int
spdk_bdev_open(struct spdk_bdev *bdev, bool write, spdk_bdev_remove_cb_t remove_cb,
void *remove_ctx, struct spdk_bdev_desc **_desc)
{
struct spdk_bdev_desc *desc;
struct spdk_thread *thread;
thread = spdk_get_thread();
if (!thread) {
SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n");
return -ENOTSUP;
}
desc = calloc(1, sizeof(*desc));
if (desc == NULL) {
SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n");
return -ENOMEM;
}
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name,
spdk_get_thread());
pthread_mutex_lock(&bdev->internal.mutex);
if (write && bdev->internal.claim_module) {
SPDK_ERRLOG("Could not open %s - %s module already claimed it\n",
bdev->name, bdev->internal.claim_module->name);
free(desc);
pthread_mutex_unlock(&bdev->internal.mutex);
return -EPERM;
}
TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link);
desc->bdev = bdev;
desc->thread = thread;
desc->remove_cb = remove_cb;
desc->remove_ctx = remove_ctx;
desc->write = write;
*_desc = desc;
pthread_mutex_unlock(&bdev->internal.mutex);
return 0;
}
void
spdk_bdev_close(struct spdk_bdev_desc *desc)
{
struct spdk_bdev *bdev = desc->bdev;
bool do_unregister = false;
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name,
spdk_get_thread());
assert(desc->thread == spdk_get_thread());
pthread_mutex_lock(&bdev->internal.mutex);
TAILQ_REMOVE(&bdev->internal.open_descs, desc, link);
desc->closed = true;
if (!desc->remove_scheduled) {
free(desc);
}
/* If no more descriptors, kill QoS channel */
if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n",
bdev->name, spdk_get_thread());
if (spdk_bdev_qos_destroy(bdev)) {
/* There isn't anything we can do to recover here. Just let the
* old QoS poller keep running. The QoS handling won't change
* cores when the user allocates a new channel, but it won't break. */
SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n");
}
}
spdk_bdev_set_qd_sampling_period(bdev, 0);
if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) {
do_unregister = true;
}
pthread_mutex_unlock(&bdev->internal.mutex);
if (do_unregister == true) {
spdk_bdev_unregister(bdev, bdev->internal.unregister_cb, bdev->internal.unregister_ctx);
}
}
int
spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
struct spdk_bdev_module *module)
{
if (bdev->internal.claim_module != NULL) {
SPDK_ERRLOG("bdev %s already claimed by module %s\n", bdev->name,
bdev->internal.claim_module->name);
return -EPERM;
}
if (desc && !desc->write) {
desc->write = true;
}
bdev->internal.claim_module = module;
return 0;
}
void
spdk_bdev_module_release_bdev(struct spdk_bdev *bdev)
{
assert(bdev->internal.claim_module != NULL);
bdev->internal.claim_module = NULL;
}
struct spdk_bdev *
spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc)
{
return desc->bdev;
}
void
spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp)
{
struct iovec *iovs;
int iovcnt;
if (bdev_io == NULL) {
return;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
iovs = bdev_io->u.bdev.iovs;
iovcnt = bdev_io->u.bdev.iovcnt;
break;
case SPDK_BDEV_IO_TYPE_WRITE:
iovs = bdev_io->u.bdev.iovs;
iovcnt = bdev_io->u.bdev.iovcnt;
break;
default:
iovs = NULL;
iovcnt = 0;
break;
}
if (iovp) {
*iovp = iovs;
}
if (iovcntp) {
*iovcntp = iovcnt;
}
}
void
spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module)
{
if (spdk_bdev_module_list_find(bdev_module->name)) {
SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name);
assert(false);
}
if (bdev_module->async_init) {
bdev_module->internal.action_in_progress = 1;
}
/*
* Modules with examine callbacks must be initialized first, so they are
* ready to handle examine callbacks from later modules that will
* register physical bdevs.
*/
if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) {
TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq);
} else {
TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq);
}
}
struct spdk_bdev_module *
spdk_bdev_module_list_find(const char *name)
{
struct spdk_bdev_module *bdev_module;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (strcmp(name, bdev_module->name) == 0) {
break;
}
}
return bdev_module;
}
static void
_spdk_bdev_write_zero_buffer_next(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
uint64_t num_bytes, num_blocks;
int rc;
num_bytes = spdk_min(spdk_bdev_get_block_size(bdev_io->bdev) *
bdev_io->u.bdev.split_remaining_num_blocks,
ZERO_BUFFER_SIZE);
num_blocks = num_bytes / spdk_bdev_get_block_size(bdev_io->bdev);
rc = spdk_bdev_write_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
g_bdev_mgr.zero_buffer,
bdev_io->u.bdev.split_current_offset_blocks, num_blocks,
_spdk_bdev_write_zero_buffer_done, bdev_io);
if (rc == 0) {
bdev_io->u.bdev.split_remaining_num_blocks -= num_blocks;
bdev_io->u.bdev.split_current_offset_blocks += num_blocks;
} else if (rc == -ENOMEM) {
_spdk_bdev_queue_io_wait_with_cb(bdev_io, _spdk_bdev_write_zero_buffer_next);
} else {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
static void
_spdk_bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
if (!success) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx);
return;
}
if (parent_io->u.bdev.split_remaining_num_blocks == 0) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx);
return;
}
_spdk_bdev_write_zero_buffer_next(parent_io);
}
struct set_qos_limit_ctx {
void (*cb_fn)(void *cb_arg, int status);
void *cb_arg;
struct spdk_bdev *bdev;
};
static void
_spdk_bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status)
{
pthread_mutex_lock(&ctx->bdev->internal.mutex);
ctx->bdev->internal.qos_mod_in_progress = false;
pthread_mutex_unlock(&ctx->bdev->internal.mutex);
ctx->cb_fn(ctx->cb_arg, status);
free(ctx);
}
static void
_spdk_bdev_disable_qos_done(void *cb_arg)
{
struct set_qos_limit_ctx *ctx = cb_arg;
struct spdk_bdev *bdev = ctx->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_qos *qos;
pthread_mutex_lock(&bdev->internal.mutex);
qos = bdev->internal.qos;
bdev->internal.qos = NULL;
pthread_mutex_unlock(&bdev->internal.mutex);
while (!TAILQ_EMPTY(&qos->queued)) {
/* Send queued I/O back to their original thread for resubmission. */
bdev_io = TAILQ_FIRST(&qos->queued);
TAILQ_REMOVE(&qos->queued, bdev_io, internal.link);
if (bdev_io->internal.io_submit_ch) {
/*
* Channel was changed when sending it to the QoS thread - change it back
* before sending it back to the original thread.
*/
bdev_io->internal.ch = bdev_io->internal.io_submit_ch;
bdev_io->internal.io_submit_ch = NULL;
}
spdk_thread_send_msg(spdk_io_channel_get_thread(bdev_io->internal.ch->channel),
_spdk_bdev_io_submit, bdev_io);
}
spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch));
spdk_poller_unregister(&qos->poller);
free(qos);
_spdk_bdev_set_qos_limit_done(ctx, 0);
}
static void
_spdk_bdev_disable_qos_msg_done(struct spdk_io_channel_iter *i, int status)
{
void *io_device = spdk_io_channel_iter_get_io_device(i);
struct spdk_bdev *bdev = __bdev_from_io_dev(io_device);
struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
struct spdk_thread *thread;
pthread_mutex_lock(&bdev->internal.mutex);
thread = bdev->internal.qos->thread;
pthread_mutex_unlock(&bdev->internal.mutex);
spdk_thread_send_msg(thread, _spdk_bdev_disable_qos_done, ctx);
}
static void
_spdk_bdev_disable_qos_msg(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch);
bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED;
spdk_for_each_channel_continue(i, 0);
}
static void
_spdk_bdev_update_qos_rate_limit_msg(void *cb_arg)
{
struct set_qos_limit_ctx *ctx = cb_arg;
struct spdk_bdev *bdev = ctx->bdev;
pthread_mutex_lock(&bdev->internal.mutex);
spdk_bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos);
pthread_mutex_unlock(&bdev->internal.mutex);
_spdk_bdev_set_qos_limit_done(ctx, 0);
}
static void
_spdk_bdev_enable_qos_msg(struct spdk_io_channel_iter *i)
{
void *io_device = spdk_io_channel_iter_get_io_device(i);
struct spdk_bdev *bdev = __bdev_from_io_dev(io_device);
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch);
pthread_mutex_lock(&bdev->internal.mutex);
_spdk_bdev_enable_qos(bdev, bdev_ch);
pthread_mutex_unlock(&bdev->internal.mutex);
spdk_for_each_channel_continue(i, 0);
}
static void
_spdk_bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status)
{
struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
_spdk_bdev_set_qos_limit_done(ctx, status);
}
static void
_spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits)
{
int i;
assert(bdev->internal.qos != NULL);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
bdev->internal.qos->rate_limits[i].limit = limits[i];
if (limits[i] == 0) {
bdev->internal.qos->rate_limits[i].limit =
SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
}
}
}
}
void
spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits,
void (*cb_fn)(void *cb_arg, int status), void *cb_arg)
{
struct set_qos_limit_ctx *ctx;
uint32_t limit_set_complement;
uint64_t min_limit_per_sec;
int i;
bool disable_rate_limit = true;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
continue;
}
if (limits[i] > 0) {
disable_rate_limit = false;
}
if (_spdk_bdev_qos_is_iops_rate_limit(i) == true) {
min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC;
} else {
/* Change from megabyte to byte rate limit */
limits[i] = limits[i] * 1024 * 1024;
min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC;
}
limit_set_complement = limits[i] % min_limit_per_sec;
if (limit_set_complement) {
SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n",
limits[i], min_limit_per_sec);
limits[i] += min_limit_per_sec - limit_set_complement;
SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]);
}
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
ctx->bdev = bdev;
pthread_mutex_lock(&bdev->internal.mutex);
if (bdev->internal.qos_mod_in_progress) {
pthread_mutex_unlock(&bdev->internal.mutex);
free(ctx);
cb_fn(cb_arg, -EAGAIN);
return;
}
bdev->internal.qos_mod_in_progress = true;
if (disable_rate_limit == true && bdev->internal.qos) {
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED &&
(bdev->internal.qos->rate_limits[i].limit > 0 &&
bdev->internal.qos->rate_limits[i].limit !=
SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) {
disable_rate_limit = false;
break;
}
}
}
if (disable_rate_limit == false) {
if (bdev->internal.qos == NULL) {
/* Enabling */
bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
if (!bdev->internal.qos) {
pthread_mutex_unlock(&bdev->internal.mutex);
SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n");
free(ctx);
cb_fn(cb_arg, -ENOMEM);
return;
}
_spdk_bdev_set_qos_rate_limits(bdev, limits);
spdk_for_each_channel(__bdev_to_io_dev(bdev),
_spdk_bdev_enable_qos_msg, ctx,
_spdk_bdev_enable_qos_done);
} else {
/* Updating */
_spdk_bdev_set_qos_rate_limits(bdev, limits);
spdk_thread_send_msg(bdev->internal.qos->thread,
_spdk_bdev_update_qos_rate_limit_msg, ctx);
}
} else {
if (bdev->internal.qos != NULL) {
_spdk_bdev_set_qos_rate_limits(bdev, limits);
/* Disabling */
spdk_for_each_channel(__bdev_to_io_dev(bdev),
_spdk_bdev_disable_qos_msg, ctx,
_spdk_bdev_disable_qos_msg_done);
} else {
pthread_mutex_unlock(&bdev->internal.mutex);
_spdk_bdev_set_qos_limit_done(ctx, 0);
return;
}
}
pthread_mutex_unlock(&bdev->internal.mutex);
}
SPDK_LOG_REGISTER_COMPONENT("bdev", SPDK_LOG_BDEV)
SPDK_TRACE_REGISTER_FN(bdev_trace)
{
spdk_trace_register_owner(OWNER_BDEV, 'b');
spdk_trace_register_object(OBJECT_BDEV_IO, 'i');
spdk_trace_register_description("BDEV_IO_START", "", TRACE_BDEV_IO_START, OWNER_BDEV,
OBJECT_BDEV_IO, 1, 0, "type: ");
spdk_trace_register_description("BDEV_IO_DONE", "", TRACE_BDEV_IO_DONE, OWNER_BDEV,
OBJECT_BDEV_IO, 0, 0, "");
}