3708070daf
spdk_dma_*malloc() is about to be deprecated. Change-Id: I3c3c65829ea9479ec6574716f41ed61fb0a8d81c Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/459555 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Paul Luse <paul.e.luse@intel.com> Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
448 lines
12 KiB
C
448 lines
12 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk/nvme.h"
|
|
#include "spdk/env.h"
|
|
|
|
#define NUM_BLOCKS 100
|
|
|
|
/*
|
|
* The purpose of this sample app is to determine the read value of deallocated logical blocks
|
|
* from a given NVMe Controller. The NVMe 1.3 spec requires the controller to list this value,
|
|
* but controllers adhering to the NVMe 1.2 spec may not report this value. According to the spec,
|
|
* "The values read from a deallocated logical block and its metadata (excluding protection information) shall
|
|
* be all bytes set to 00h, all bytes set to FFh, or the last data written to the associated logical block".
|
|
*/
|
|
|
|
struct ns_entry {
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_nvme_ns *ns;
|
|
struct ns_entry *next;
|
|
struct spdk_nvme_qpair *qpair;
|
|
};
|
|
|
|
struct deallocate_context {
|
|
struct ns_entry *ns_entry;
|
|
char **write_buf;
|
|
char **read_buf;
|
|
char *zero_buf;
|
|
char *FFh_buf;
|
|
int writes_completed;
|
|
int reads_completed;
|
|
int deallocate_completed;
|
|
int flush_complete;
|
|
int matches_zeroes;
|
|
int matches_previous_data;
|
|
int matches_FFh;
|
|
};
|
|
|
|
static struct ns_entry *g_namespaces = NULL;
|
|
|
|
static void cleanup(struct deallocate_context *context);
|
|
|
|
static void
|
|
fill_random(char *buf, size_t num_bytes)
|
|
{
|
|
size_t i;
|
|
|
|
srand((unsigned) time(NULL));
|
|
for (i = 0; i < num_bytes; i++) {
|
|
buf[i] = rand() % 0x100;
|
|
}
|
|
}
|
|
|
|
static void
|
|
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
|
|
{
|
|
struct ns_entry *entry;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
if (!spdk_nvme_ns_is_active(ns)) {
|
|
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
|
|
cdata->mn, cdata->sn,
|
|
spdk_nvme_ns_get_id(ns));
|
|
return;
|
|
}
|
|
|
|
entry = malloc(sizeof(struct ns_entry));
|
|
if (entry == NULL) {
|
|
perror("ns_entry malloc");
|
|
exit(1);
|
|
}
|
|
|
|
entry->ctrlr = ctrlr;
|
|
entry->ns = ns;
|
|
entry->next = g_namespaces;
|
|
g_namespaces = entry;
|
|
|
|
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
|
|
spdk_nvme_ns_get_size(ns) / 1000000000);
|
|
}
|
|
|
|
static uint32_t
|
|
get_max_block_size(void)
|
|
{
|
|
struct ns_entry *ns;
|
|
uint32_t max_block_size, temp_block_size;
|
|
|
|
ns = g_namespaces;
|
|
max_block_size = 0;
|
|
|
|
while (ns != NULL) {
|
|
temp_block_size = spdk_nvme_ns_get_sector_size(ns->ns);
|
|
max_block_size = temp_block_size > max_block_size ? temp_block_size : max_block_size;
|
|
ns = ns->next;
|
|
}
|
|
|
|
return max_block_size;
|
|
}
|
|
|
|
static void
|
|
write_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct deallocate_context *context = arg;
|
|
|
|
context->writes_completed++;
|
|
}
|
|
|
|
static void
|
|
read_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct deallocate_context *context = arg;
|
|
struct ns_entry *ns_entry = context->ns_entry;
|
|
int rc;
|
|
|
|
rc = memcmp(context->write_buf[context->reads_completed],
|
|
context->read_buf[context->reads_completed], spdk_nvme_ns_get_sector_size(ns_entry->ns));
|
|
if (rc == 0) {
|
|
context->matches_previous_data++;
|
|
}
|
|
|
|
rc = memcmp(context->zero_buf, context->read_buf[context->reads_completed],
|
|
spdk_nvme_ns_get_sector_size(ns_entry->ns));
|
|
if (rc == 0) {
|
|
context->matches_zeroes++;
|
|
}
|
|
|
|
rc = memcmp(context->FFh_buf, context->read_buf[context->reads_completed],
|
|
spdk_nvme_ns_get_sector_size(ns_entry->ns));
|
|
if (rc == 0) {
|
|
context->matches_FFh++;
|
|
}
|
|
context->reads_completed++;
|
|
}
|
|
|
|
static void
|
|
deallocate_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct deallocate_context *context = arg;
|
|
|
|
printf("blocks matching previous data: %d\n", context->matches_previous_data);
|
|
printf("blocks matching zeroes: %d\n", context->matches_zeroes);
|
|
printf("blocks matching 0xFF: %d\n", context->matches_FFh);
|
|
printf("Deallocating Blocks 0 to %d with random data.\n", NUM_BLOCKS - 1);
|
|
printf("On next read, read value will match deallocated block read value.\n");
|
|
context->deallocate_completed = 1;
|
|
context->reads_completed = 0;
|
|
context->matches_previous_data = 0;
|
|
context->matches_zeroes = 0;
|
|
context->matches_FFh = 0;
|
|
}
|
|
|
|
static void
|
|
flush_complete(void *arg, const struct spdk_nvme_cpl *completion)
|
|
{
|
|
struct deallocate_context *context = arg;
|
|
|
|
context->flush_complete = 1;
|
|
}
|
|
|
|
static void
|
|
deallocate_test(void)
|
|
{
|
|
struct ns_entry *ns_entry;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
const struct spdk_nvme_ctrlr_data *data;
|
|
struct deallocate_context context;
|
|
struct spdk_nvme_dsm_range range;
|
|
uint32_t max_block_size;
|
|
int rc, i;
|
|
|
|
memset(&context, 0, sizeof(struct deallocate_context));
|
|
max_block_size = get_max_block_size();
|
|
ns_entry = g_namespaces;
|
|
|
|
if (max_block_size > 0) {
|
|
context.zero_buf = malloc(max_block_size);
|
|
} else {
|
|
printf("Unable to determine max block size.\n");
|
|
return;
|
|
}
|
|
|
|
if (context.zero_buf == NULL) {
|
|
printf("could not allocate buffer for test.\n");
|
|
return;
|
|
}
|
|
|
|
context.FFh_buf = malloc(max_block_size);
|
|
if (context.FFh_buf == NULL) {
|
|
cleanup(&context);
|
|
printf("could not allocate buffer for test.\n");
|
|
return;
|
|
}
|
|
|
|
context.write_buf = calloc(NUM_BLOCKS, sizeof(char *));
|
|
if (context.write_buf == NULL) {
|
|
cleanup(&context);
|
|
return;
|
|
}
|
|
|
|
context.read_buf = calloc(NUM_BLOCKS, sizeof(char *));
|
|
if (context.read_buf == NULL) {
|
|
printf("could not allocate buffer for test.\n");
|
|
cleanup(&context);
|
|
return;
|
|
}
|
|
|
|
memset(context.zero_buf, 0x00, max_block_size);
|
|
memset(context.FFh_buf, 0xFF, max_block_size);
|
|
|
|
for (i = 0; i < NUM_BLOCKS; i++) {
|
|
context.write_buf[i] = spdk_zmalloc(0x1000, max_block_size, NULL, SPDK_ENV_LCORE_ID_ANY,
|
|
SPDK_MALLOC_DMA);
|
|
if (context.write_buf[i] == NULL) {
|
|
printf("could not allocate buffer for test.\n");
|
|
cleanup(&context);
|
|
return;
|
|
}
|
|
|
|
fill_random(context.write_buf[i], 0x1000);
|
|
context.read_buf[i] = spdk_zmalloc(0x1000, max_block_size, NULL, SPDK_ENV_LCORE_ID_ANY,
|
|
SPDK_MALLOC_DMA);
|
|
if (context.read_buf[i] == NULL) {
|
|
printf("could not allocate buffer for test.\n");
|
|
cleanup(&context);
|
|
return;
|
|
}
|
|
}
|
|
|
|
while (ns_entry != NULL) {
|
|
|
|
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
|
|
if (ns_entry->qpair == NULL) {
|
|
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed.\n");
|
|
return;
|
|
}
|
|
|
|
ctrlr = spdk_nvme_ns_get_ctrlr(ns_entry->ns);
|
|
data = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
printf("\nController %-20.20s (%-20.20s)\n", data->mn, data->sn);
|
|
printf("Controller PCI vendor:%u PCI subsystem vendor:%u\n", data->vid, data->ssvid);
|
|
printf("Namespace Block Size:%u\n", spdk_nvme_ns_get_sector_size(ns_entry->ns));
|
|
printf("Writing Blocks 0 to %d with random data.\n", NUM_BLOCKS - 1);
|
|
printf("On next read, read value will match random data.\n");
|
|
|
|
context.ns_entry = ns_entry;
|
|
|
|
for (i = 0; i < NUM_BLOCKS; i++) {
|
|
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, context.write_buf[i],
|
|
i,
|
|
1,
|
|
write_complete, &context, 0);
|
|
if (rc) {
|
|
printf("Error in nvme command completion, values may be inaccurate.\n");
|
|
}
|
|
}
|
|
while (context.writes_completed < NUM_BLOCKS) {
|
|
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
|
|
}
|
|
|
|
spdk_nvme_ns_cmd_flush(ns_entry->ns, ns_entry->qpair, flush_complete, &context);
|
|
while (!context.flush_complete) {
|
|
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
|
|
}
|
|
|
|
for (i = 0; i < NUM_BLOCKS; i++) {
|
|
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_buf[i],
|
|
i, /* LBA start */
|
|
1, /* number of LBAs */
|
|
read_complete, &context, 0);
|
|
if (rc) {
|
|
printf("Error in nvme command completion, values may be inaccurate.\n");
|
|
}
|
|
|
|
/* block after each read command so that we can match the block to the write buffer. */
|
|
while (context.reads_completed <= i) {
|
|
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
|
|
}
|
|
}
|
|
|
|
context.flush_complete = 0;
|
|
range.length = NUM_BLOCKS;
|
|
range.starting_lba = 0;
|
|
rc = spdk_nvme_ns_cmd_dataset_management(ns_entry->ns, ns_entry->qpair,
|
|
SPDK_NVME_DSM_ATTR_DEALLOCATE, &range, 1, deallocate_complete, &context);
|
|
if (rc) {
|
|
printf("Error in nvme command completion, values may be inaccurate.\n");
|
|
}
|
|
|
|
while (!context.deallocate_completed) {
|
|
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
|
|
}
|
|
|
|
for (i = 0; i < NUM_BLOCKS; i++) {
|
|
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_buf[i],
|
|
i, /* LBA start */
|
|
1, /* number of LBAs */
|
|
read_complete, &context, 0);
|
|
if (rc) {
|
|
printf("Error in nvme command completion, values may be inaccurate.\n");
|
|
}
|
|
while (context.reads_completed <= i) {
|
|
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
|
|
}
|
|
}
|
|
|
|
printf("blocks matching previous data: %d\n", context.matches_previous_data);
|
|
printf("blocks matching zeroes: %d\n", context.matches_zeroes);
|
|
printf("blocks matching FFh: %d\n", context.matches_FFh);
|
|
|
|
/* reset counters in between each namespace. */
|
|
context.matches_previous_data = 0;
|
|
context.matches_zeroes = 0;
|
|
context.matches_FFh = 0;
|
|
context.writes_completed = 0;
|
|
context.reads_completed = 0;
|
|
context.deallocate_completed = 0;
|
|
|
|
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
|
|
ns_entry = ns_entry->next;
|
|
}
|
|
cleanup(&context);
|
|
}
|
|
|
|
static bool
|
|
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
printf("Attaching to %s\n", trid->traddr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
int num_ns;
|
|
struct spdk_nvme_ns *ns;
|
|
|
|
printf("Attached to %s\n", trid->traddr);
|
|
/*
|
|
* Use only the first namespace from each controller since we are testing controller level functionality.
|
|
*/
|
|
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
|
|
if (num_ns < 1) {
|
|
printf("No valid namespaces in controller\n");
|
|
} else {
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, 1);
|
|
register_ns(ctrlr, ns);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cleanup(struct deallocate_context *context)
|
|
{
|
|
struct ns_entry *ns_entry = g_namespaces;
|
|
int i;
|
|
|
|
while (ns_entry) {
|
|
struct ns_entry *next = ns_entry->next;
|
|
free(ns_entry);
|
|
ns_entry = next;
|
|
}
|
|
for (i = 0; i < NUM_BLOCKS; i++) {
|
|
if (context->write_buf && context->write_buf[i]) {
|
|
spdk_free(context->write_buf[i]);
|
|
} else {
|
|
break;
|
|
}
|
|
if (context->read_buf && context->read_buf[i]) {
|
|
spdk_free(context->read_buf[i]);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(context->write_buf);
|
|
free(context->read_buf);
|
|
free(context->zero_buf);
|
|
free(context->FFh_buf);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int rc;
|
|
struct spdk_env_opts opts;
|
|
|
|
spdk_env_opts_init(&opts);
|
|
opts.name = "deallocate_test";
|
|
opts.shm_id = 0;
|
|
if (spdk_env_init(&opts) < 0) {
|
|
fprintf(stderr, "Unable to initialize SPDK env\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("Initializing NVMe Controllers\n");
|
|
|
|
rc = spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "spdk_nvme_probe() failed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (g_namespaces == NULL) {
|
|
fprintf(stderr, "no NVMe controllers found\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("Initialization complete.\n");
|
|
deallocate_test();
|
|
return 0;
|
|
}
|