numam-spdk/lib/event/scheduler_dynamic.c
Tomasz Zawadzki fe2f80961c scheduler_dynamic: start core selection from first core
The round-robin logic is no longer necessary to spread
the threads around the cores. Starting from core other
than first is even counter-productive to bunching up
threads.

Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Change-Id: I5fcee2bacc2d0b4af26336caf381ed954814d731
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8085
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2021-07-12 21:58:56 +00:00

362 lines
9.4 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/likely.h"
#include "spdk/event.h"
#include "spdk/log.h"
#include "spdk/env.h"
#include "spdk/thread.h"
#include "spdk_internal/event.h"
static uint32_t g_main_lcore;
static bool g_core_mngmnt_available;
struct core_stats {
uint64_t busy;
uint64_t idle;
uint32_t thread_count;
};
static struct core_stats *g_cores;
#define SCHEDULER_THREAD_BUSY 100
#define SCHEDULER_LOAD_LIMIT 50
#define SCHEDULER_CORE_LIMIT 95
static uint8_t
_get_thread_load(struct spdk_lw_thread *lw_thread)
{
uint64_t busy, idle;
busy = lw_thread->current_stats.busy_tsc;
idle = lw_thread->current_stats.idle_tsc;
if (busy == 0) {
/* No work was done, exit before possible division by 0. */
return 0;
}
/* return percentage of time thread was busy */
return busy * 100 / (busy + idle);
}
typedef void (*_foreach_fn)(struct spdk_lw_thread *lw_thread);
static void
_foreach_thread(struct spdk_scheduler_core_info *cores_info, _foreach_fn fn)
{
struct spdk_scheduler_core_info *core;
uint32_t i, j;
SPDK_ENV_FOREACH_CORE(i) {
core = &cores_info[i];
for (j = 0; j < core->threads_count; j++) {
fn(core->threads[j]);
}
}
}
static void
_move_thread(struct spdk_lw_thread *lw_thread, uint32_t dst_core)
{
struct core_stats *dst = &g_cores[dst_core];
struct core_stats *src = &g_cores[lw_thread->lcore];
uint64_t busy_tsc = lw_thread->current_stats.busy_tsc;
uint64_t idle_tsc = lw_thread->current_stats.idle_tsc;
if (src == dst) {
/* Don't modify stats if thread is already on that core. */
return;
}
dst->busy += spdk_min(UINT64_MAX - dst->busy, busy_tsc);
dst->idle -= spdk_min(dst->idle, busy_tsc);
dst->thread_count++;
/* Decrease busy/idle from core as if thread was not present on it.
* Core load will reflect the sum of all other threads on it. */
src->busy -= spdk_min(src->busy, busy_tsc);
src->idle -= spdk_min(src->idle, idle_tsc);
assert(src->thread_count > 0);
src->thread_count--;
lw_thread->lcore = dst_core;
}
static bool
_is_core_over_limit(uint32_t core_id)
{
struct core_stats *core = &g_cores[core_id];
uint64_t busy, idle;
/* Core with no or single thread cannot be over the limit. */
if (core->thread_count <= 1) {
return false;
}
busy = core->busy;
idle = core->idle;
/* No work was done, exit before possible division by 0. */
if (busy == 0) {
return false;
}
/* Work done was less than the limit */
if (busy * 100 / (busy + idle) < SCHEDULER_CORE_LIMIT) {
return false;
}
return true;
}
static bool
_can_core_fit_thread(struct spdk_lw_thread *lw_thread, uint32_t dst_core)
{
struct core_stats *dst = &g_cores[dst_core];
/* Thread can always fit on the core it's currently on. */
if (lw_thread->lcore == dst_core) {
return true;
}
/* Reactors in interrupt mode do not update stats,
* a thread can always fit into reactor in interrupt mode. */
if (dst->busy + dst->idle == 0) {
return true;
}
/* Core has no threads. */
if (dst->thread_count == 0) {
return true;
}
if (lw_thread->current_stats.busy_tsc <= dst->idle) {
return true;
}
return false;
}
static uint32_t
_find_optimal_core(struct spdk_lw_thread *lw_thread)
{
uint32_t i;
uint32_t current_lcore = lw_thread->lcore;
uint32_t least_busy_lcore = lw_thread->lcore;
struct spdk_thread *thread = spdk_thread_get_from_ctx(lw_thread);
struct spdk_cpuset *cpumask = spdk_thread_get_cpumask(thread);
bool core_over_limit = _is_core_over_limit(current_lcore);
/* Find a core that can fit the thread. */
SPDK_ENV_FOREACH_CORE(i) {
/* Ignore cores outside cpumask. */
if (!spdk_cpuset_get_cpu(cpumask, i)) {
continue;
}
/* Search for least busy core. */
if (g_cores[i].busy < g_cores[least_busy_lcore].busy) {
least_busy_lcore = i;
}
/* Skip cores that cannot fit the thread and current one. */
if (!_can_core_fit_thread(lw_thread, i) || i == current_lcore) {
continue;
}
if (i < current_lcore) {
/* Lower core id was found, move to consolidate threads on lowest core ids. */
return i;
} else if (core_over_limit) {
/* When core is over the limit, even higher core ids are better than current one. */
return i;
}
}
/* For cores over the limit, place the thread on least busy core
* to balance threads. */
if (core_over_limit) {
return least_busy_lcore;
}
/* If no better core is found, remain on the same one. */
return current_lcore;
}
static int
init(struct spdk_governor *governor)
{
int rc;
g_main_lcore = spdk_env_get_current_core();
rc = _spdk_governor_set("dpdk_governor");
g_core_mngmnt_available = !rc;
g_cores = calloc(spdk_env_get_last_core() + 1, sizeof(struct core_stats));
if (g_cores == NULL) {
SPDK_ERRLOG("Failed to allocate memory for dynamic scheduler core stats.\n");
return -ENOMEM;
}
return 0;
}
static int
deinit(struct spdk_governor *governor)
{
uint32_t i;
int rc = 0;
free(g_cores);
g_cores = NULL;
if (!g_core_mngmnt_available) {
return 0;
}
if (governor->deinit_core) {
SPDK_ENV_FOREACH_CORE(i) {
rc = governor->deinit_core(i);
if (rc != 0) {
SPDK_ERRLOG("Failed to deinitialize governor for core %d\n", i);
}
}
}
if (governor->deinit) {
rc = governor->deinit();
}
return rc;
}
static void
_balance_idle(struct spdk_lw_thread *lw_thread)
{
if (_get_thread_load(lw_thread) >= SCHEDULER_LOAD_LIMIT) {
return;
}
/* This thread is idle, move it to the main core. */
_move_thread(lw_thread, g_main_lcore);
}
static void
_balance_active(struct spdk_lw_thread *lw_thread)
{
uint32_t target_lcore;
if (_get_thread_load(lw_thread) < SCHEDULER_LOAD_LIMIT) {
return;
}
/* This thread is active. */
target_lcore = _find_optimal_core(lw_thread);
_move_thread(lw_thread, target_lcore);
}
static void
balance(struct spdk_scheduler_core_info *cores_info, int cores_count,
struct spdk_governor *governor)
{
struct spdk_reactor *reactor;
struct spdk_scheduler_core_info *core;
struct core_stats *main_core;
uint32_t i;
int rc;
bool busy_threads_present = false;
SPDK_ENV_FOREACH_CORE(i) {
g_cores[i].thread_count = cores_info[i].threads_count;
g_cores[i].busy = cores_info[i].current_busy_tsc;
g_cores[i].idle = cores_info[i].current_idle_tsc;
}
main_core = &g_cores[g_main_lcore];
/* Distribute threads in two passes, to make sure updated core stats are considered on each pass.
* 1) Move all idle threads to main core. */
_foreach_thread(cores_info, _balance_idle);
/* 2) Distribute active threads across all cores. */
_foreach_thread(cores_info, _balance_active);
/* Switch unused cores to interrupt mode and switch cores to polled mode
* if they will be used after rebalancing */
SPDK_ENV_FOREACH_CORE(i) {
reactor = spdk_reactor_get(i);
core = &cores_info[i];
/* We can switch mode only if reactor already does not have any threads */
if (g_cores[i].thread_count == 0 && TAILQ_EMPTY(&reactor->threads)) {
core->interrupt_mode = true;
} else if (g_cores[i].thread_count != 0) {
core->interrupt_mode = false;
if (i != g_main_lcore) {
/* If a thread is present on non g_main_lcore,
* it has to be busy. */
busy_threads_present = true;
}
}
}
if (!g_core_mngmnt_available) {
return;
}
/* Change main core frequency if needed */
if (busy_threads_present) {
rc = governor->set_core_freq_max(g_main_lcore);
if (rc < 0) {
SPDK_ERRLOG("setting default frequency for core %u failed\n", g_main_lcore);
}
} else if (main_core->busy > main_core->idle) {
rc = governor->core_freq_up(g_main_lcore);
if (rc < 0) {
SPDK_ERRLOG("increasing frequency for core %u failed\n", g_main_lcore);
}
} else {
rc = governor->core_freq_down(g_main_lcore);
if (rc < 0) {
SPDK_ERRLOG("lowering frequency for core %u failed\n", g_main_lcore);
}
}
}
static struct spdk_scheduler scheduler_dynamic = {
.name = "dynamic",
.init = init,
.deinit = deinit,
.balance = balance,
};
SPDK_SCHEDULER_REGISTER(scheduler_dynamic);