numam-spdk/lib/nvme/nvme_rdma.c
Daniel Verkamp 0eb3125531 nvme: remove transport qpair_construct callback
Make the qpair construct functions private to the transports - it
doesn't need to be called from generic code.

Change-Id: I5f730a4bcf60ce231fe27bc8f4c3c39cb647dd2d
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-12-15 11:09:49 -07:00

1520 lines
37 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over RDMA transport
*/
#include <arpa/inet.h>
#include <fcntl.h>
#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <netdb.h>
#include "spdk/assert.h"
#include "spdk/log.h"
#include "spdk/trace.h"
#include "spdk/event.h"
#include "spdk/queue.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "nvme_internal.h"
#define NVME_RDMA_TIME_OUT_IN_MS 2000
#define NVME_RDMA_RW_BUFFER_SIZE 131072
#define NVME_HOST_ID_DEFAULT "12345679890"
#define NVME_HOST_MAX_ENTRIES_PER_QUEUE (127)
/*
NVME RDMA qpair Resouce Defaults
*/
#define NVME_RDMA_DEFAULT_TX_SGE 2
#define NVME_RDMA_DEFAULT_RX_SGE 1
/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
struct nvme_rdma_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
uint16_t cntlid;
};
/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
struct nvme_rdma_qpair {
struct spdk_nvme_qpair qpair;
struct rdma_event_channel *cm_channel;
struct rdma_cm_id *cm_id;
uint16_t max_queue_depth;
struct spdk_nvme_rdma_req *rdma_reqs;
/* Parallel arrays of response buffers + response SGLs of size max_queue_depth */
struct ibv_sge *rsp_sgls;
struct spdk_nvme_cpl *rsps;
struct ibv_recv_wr *rsp_recv_wrs;
/* Memory region describing all rsps for this qpair */
struct ibv_mr *rsp_mr;
/*
* Array of qpair.num_entries NVMe commands registered as RDMA message buffers.
* Indexed by rdma_req->id.
*/
struct spdk_nvme_cmd *cmds;
/* Memory region describing all cmds for this qpair */
struct ibv_mr *cmd_mr;
STAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
};
struct spdk_nvme_rdma_req {
int id;
struct ibv_send_wr send_wr;
struct nvme_request *req;
enum spdk_nvme_data_transfer xfer;
struct ibv_sge send_sgl;
struct ibv_mr *bb_mr;
uint8_t *bb;
uint32_t bb_len;
STAILQ_ENTRY(spdk_nvme_rdma_req) link;
};
static int nvme_rdma_qpair_construct(struct spdk_nvme_qpair *qpair);
static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair);
static inline struct nvme_rdma_qpair *
nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
return (struct nvme_rdma_qpair *)((uintptr_t)qpair - offsetof(struct nvme_rdma_qpair, qpair));
}
static inline struct nvme_rdma_ctrlr *
nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
return (struct nvme_rdma_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_rdma_ctrlr, ctrlr));
}
static struct spdk_nvme_rdma_req *
nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = STAILQ_FIRST(&rqpair->free_reqs);
if (rdma_req) {
STAILQ_REMOVE_HEAD(&rqpair->free_reqs, link);
}
return rdma_req;
}
static void
nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
STAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
}
static void
nvme_rdma_req_complete(struct nvme_request *req,
struct spdk_nvme_cpl *rsp)
{
req->cb_fn(req->cb_arg, rsp);
nvme_free_request(req);
}
static int
nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
{
int rc;
struct ibv_qp_init_attr attr;
rqpair->max_queue_depth = rqpair->qpair.num_entries;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "rqpair depth = %d\n", rqpair->max_queue_depth);
memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
attr.qp_type = IBV_QPT_RC;
attr.cap.max_send_wr = rqpair->max_queue_depth; /* SEND operations */
attr.cap.max_recv_wr = rqpair->max_queue_depth; /* RECV operations */
attr.cap.max_send_sge = NVME_RDMA_DEFAULT_TX_SGE;
attr.cap.max_recv_sge = NVME_RDMA_DEFAULT_RX_SGE;
rc = rdma_create_qp(rqpair->cm_id, NULL, &attr);
if (rc) {
SPDK_ERRLOG("rdma_create_qp failed\n");
return -1;
}
rc = fcntl(rqpair->cm_id->send_cq_channel->fd, F_SETFL, O_NONBLOCK);
if (rc < 0) {
SPDK_ERRLOG("fcntl to set comp channel to non-blocking failed\n");
return -1;
}
rc = fcntl(rqpair->cm_id->recv_cq_channel->fd, F_SETFL, O_NONBLOCK);
if (rc < 0) {
SPDK_ERRLOG("fcntl to set comp channel to non-blocking failed\n");
return -1;
}
rqpair->cm_id->context = &rqpair->qpair;
return 0;
}
static void
nvme_rdma_pre_copy_mem(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
struct spdk_nvme_cmd *cmd;
struct spdk_nvme_sgl_descriptor *nvme_sgl;
void *address;
assert(rdma_req->bb_mr != NULL);
assert(rdma_req->bb != NULL);
nvme_sgl = &rdma_req->req->cmd.dptr.sgl1;
address = (void *)nvme_sgl->address;
if (address != NULL) {
if (rdma_req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER ||
rdma_req->xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
memcpy(rdma_req->bb, address, nvme_sgl->keyed.length);
}
cmd = &rqpair->cmds[rdma_req->id];
nvme_sgl = &cmd->dptr.sgl1;
nvme_sgl->address = (uint64_t)rdma_req->bb;
nvme_sgl->keyed.key = rdma_req->bb_mr->lkey;
}
}
static void
nvme_rdma_post_copy_mem(struct spdk_nvme_rdma_req *rdma_req)
{
struct spdk_nvme_sgl_descriptor *nvme_sgl;
void *address;
assert(rdma_req != NULL);
assert(rdma_req->req != NULL);
nvme_sgl = &rdma_req->req->cmd.dptr.sgl1;
address = (void *)nvme_sgl->address;
if ((address != NULL) &&
(rdma_req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
rdma_req->xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
memcpy(address, rdma_req->bb, nvme_sgl->keyed.length);
}
}
#define nvme_rdma_trace_ibv_sge(sg_list) \
if (sg_list) { \
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "local addr %p length 0x%x lkey 0x%x\n", \
(void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
}
static int
nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
{
struct ibv_recv_wr *wr, *bad_wr = NULL;
int rc;
wr = &rqpair->rsp_recv_wrs[rsp_idx];
wr->wr_id = rsp_idx;
wr->next = NULL;
wr->sg_list = &rqpair->rsp_sgls[rsp_idx];
wr->num_sge = 1;
nvme_rdma_trace_ibv_sge(wr->sg_list);
rc = ibv_post_recv(rqpair->cm_id->qp, wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc);
}
return rc;
}
static void
nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
{
if (rqpair->rsp_mr && rdma_dereg_mr(rqpair->rsp_mr)) {
SPDK_ERRLOG("Unable to de-register rsp_mr\n");
}
rqpair->rsp_mr = NULL;
free(rqpair->rsps);
rqpair->rsps = NULL;
free(rqpair->rsp_sgls);
rqpair->rsp_sgls = NULL;
free(rqpair->rsp_recv_wrs);
rqpair->rsp_recv_wrs = NULL;
}
static int
nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
{
uint16_t i;
rqpair->rsp_mr = NULL;
rqpair->rsps = NULL;
rqpair->rsp_recv_wrs = NULL;
rqpair->rsp_sgls = calloc(rqpair->max_queue_depth, sizeof(*rqpair->rsp_sgls));
if (!rqpair->rsp_sgls) {
SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
goto fail;
}
rqpair->rsp_recv_wrs = calloc(rqpair->max_queue_depth,
sizeof(*rqpair->rsp_recv_wrs));
if (!rqpair->rsp_recv_wrs) {
SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
goto fail;
}
rqpair->rsps = calloc(rqpair->max_queue_depth, sizeof(*rqpair->rsps));
if (!rqpair->rsps) {
SPDK_ERRLOG("can not allocate rdma rsps\n");
goto fail;
}
rqpair->rsp_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->rsps,
rqpair->max_queue_depth * sizeof(*rqpair->rsps));
if (rqpair->rsp_mr == NULL) {
SPDK_ERRLOG("Unable to register rsp_mr\n");
goto fail;
}
for (i = 0; i < rqpair->max_queue_depth; i++) {
struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
rsp_sgl->length = sizeof(rqpair->rsps[i]);
rsp_sgl->lkey = rqpair->rsp_mr->lkey;
if (nvme_rdma_post_recv(rqpair, i)) {
SPDK_ERRLOG("Unable to post connection rx desc\n");
goto fail;
}
}
return 0;
fail:
nvme_rdma_free_rsps(rqpair);
return -ENOMEM;
}
static struct spdk_nvme_rdma_req *
config_rdma_req(struct nvme_rdma_qpair *rqpair, int i)
{
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = &rqpair->rdma_reqs[i];
if (!rdma_req) {
return NULL;
}
/* initialize send_sgl */
rdma_req->send_sgl.addr = (uint64_t)&rqpair->cmds[i];
rdma_req->send_sgl.length = sizeof(rqpair->cmds[i]);
rdma_req->send_sgl.lkey = rqpair->cmd_mr->lkey;
rdma_req->bb = calloc(1, NVME_RDMA_RW_BUFFER_SIZE);
if (!rdma_req->bb) {
SPDK_ERRLOG("Unable to register allocate read/write buffer\n");
return NULL;
}
rdma_req->bb_len = NVME_RDMA_RW_BUFFER_SIZE;
rdma_req->bb_mr = ibv_reg_mr(rqpair->cm_id->qp->pd, rdma_req->bb, rdma_req->bb_len,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);
if (!rdma_req->bb_mr) {
SPDK_ERRLOG("Unable to register bb_mr\n");
return NULL;
}
return rdma_req;
}
static void
nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
int i;
if (!rqpair->rdma_reqs) {
return;
}
for (i = 0; i < rqpair->max_queue_depth; i++) {
rdma_req = &rqpair->rdma_reqs[i];
if (rdma_req->bb_mr && ibv_dereg_mr(rdma_req->bb_mr)) {
SPDK_ERRLOG("Unable to de-register bb_mr\n");
}
if (rdma_req->bb) {
free(rdma_req->bb);
}
}
if (rqpair->cmd_mr && rdma_dereg_mr(rqpair->cmd_mr)) {
SPDK_ERRLOG("Unable to de-register cmd_mr\n");
}
rqpair->cmd_mr = NULL;
free(rqpair->cmds);
rqpair->cmds = NULL;
free(rqpair->rdma_reqs);
rqpair->rdma_reqs = NULL;
}
static int
nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
int i;
rqpair->cmds = calloc(rqpair->max_queue_depth, sizeof(*rqpair->cmds));
if (!rqpair->cmds) {
SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
goto fail;
}
rqpair->cmd_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->cmds,
rqpair->max_queue_depth * sizeof(*rqpair->cmds));
if (!rqpair->cmd_mr) {
SPDK_ERRLOG("Unable to register cmd_mr\n");
goto fail;
}
for (i = 0; i < rqpair->max_queue_depth; i++) {
rdma_req = config_rdma_req(rqpair, i);
if (rdma_req == NULL) {
goto fail;
}
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "rdma_req %p: cmd %p\n",
rdma_req, &rqpair->cmds[i]);
}
return 0;
fail:
nvme_rdma_free_reqs(rqpair);
return -ENOMEM;
}
static int
nvme_rdma_recv(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
{
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_cpl *rsp;
struct nvme_request *req;
uint64_t rsp_idx = wc->wr_id;
if (wc->byte_len < sizeof(struct spdk_nvmf_fabric_connect_rsp)) {
SPDK_ERRLOG("recv length %u less than capsule header\n", wc->byte_len);
return -1;
}
assert(rsp_idx < rqpair->max_queue_depth);
rsp = &rqpair->rsps[rsp_idx];
rdma_req = &rqpair->rdma_reqs[rsp->cid];
nvme_rdma_post_copy_mem(rdma_req);
req = rdma_req->req;
nvme_rdma_req_complete(req, rsp);
nvme_rdma_req_put(rqpair, rdma_req);
if (nvme_rdma_post_recv(rqpair, rsp_idx)) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
return -1;
}
return 0;
}
static int
nvme_rdma_bind_addr(struct nvme_rdma_qpair *rqpair,
struct sockaddr_storage *sin,
struct rdma_event_channel *cm_channel)
{
int ret;
struct rdma_cm_event *event;
ret = rdma_resolve_addr(rqpair->cm_id, NULL, (struct sockaddr *) sin,
NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
return ret;
}
ret = rdma_get_cm_event(cm_channel, &event);
if (ret) {
SPDK_ERRLOG("rdma address resolution error\n");
return ret;
}
if (event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
return -1;
}
rdma_ack_cm_event(event);
ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_route\n");
return ret;
}
ret = rdma_get_cm_event(cm_channel, &event);
if (ret) {
SPDK_ERRLOG("rdma address resolution error\n");
return ret;
}
if (event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
SPDK_ERRLOG("rdma route resolution error\n");
return -1;
}
rdma_ack_cm_event(event);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "rdma_resolve_addr - rdma_resolve_route successful\n");
return 0;
}
static int
nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
{
struct rdma_conn_param conn_param;
struct spdk_nvmf_rdma_request_private_data pdata;
const union spdk_nvmf_rdma_private_data *data;
struct rdma_cm_event *event;
struct ibv_device_attr attr;
int ret;
ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
if (ret != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return ret;
}
memset(&conn_param, 0, sizeof(conn_param));
/* Note: the following parameters apply only for PS = RDMA_PS_TCP,
and even then it appears that any values supplied here by host
application are over-written by the rdma_cm layer for the given
device. Verified at target side that private data arrived as
specified here, but the other param values either zeroed out or
replaced.
*/
conn_param.responder_resources = 1; /* 0 or 1*/
conn_param.initiator_depth = nvme_min(rqpair->max_queue_depth, attr.max_qp_init_rd_atom);
conn_param.retry_count = 7;
conn_param.rnr_retry_count = 7;
/* init private data for connect */
memset(&pdata, 0, sizeof(pdata));
pdata.qid = rqpair->qpair.id;
pdata.hrqsize = rqpair->max_queue_depth;
pdata.hsqsize = rqpair->max_queue_depth - 1;
conn_param.private_data = &pdata;
conn_param.private_data_len = sizeof(pdata);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "qid =%d\n", pdata.qid);
ret = rdma_connect(rqpair->cm_id, &conn_param);
if (ret) {
SPDK_ERRLOG("nvme rdma connect error\n");
return ret;
}
ret = rdma_get_cm_event(rqpair->cm_channel, &event);
if (ret) {
SPDK_ERRLOG("rdma address resolution error\n");
return ret;
}
if (event->event != RDMA_CM_EVENT_ESTABLISHED) {
SPDK_ERRLOG("rdma connect error\n");
return -1;
}
rdma_ack_cm_event(event);
/* Look for any rdma connection returned by server */
data = event->param.conn.private_data;
if (event->param.conn.private_data_len >= sizeof(union spdk_nvmf_rdma_private_data) &&
data != NULL) {
if (data->pd_accept.recfmt != 0) {
SPDK_ERRLOG("NVMF fabric connect accept: invalid private data format!\n");
} else {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "NVMF fabric connect accept, Private data length %d\n",
event->param.conn.private_data_len);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "NVMF fabric connect accept, RECFMT %d\n",
data->pd_accept.recfmt);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "NVMF fabric connect accept, CRQSIZE %d\n",
data->pd_accept.crqsize);
}
}
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "connect successful\n");
return 0;
}
static int
nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed - invalid hostname or IP address\n");
return ret;
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static int
nvmf_cm_construct(struct nvme_rdma_qpair *rqpair)
{
/* create an event channel with rdmacm to receive
connection oriented requests and notifications */
rqpair->cm_channel = rdma_create_event_channel();
if (rqpair->cm_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed\n");
return -1;
}
return 0;
}
static int
nvme_rdma_qpair_connect(struct nvme_rdma_qpair *rqpair)
{
struct sockaddr_storage sin;
int rc;
struct spdk_nvme_ctrlr *ctrlr;
int family;
rc = nvmf_cm_construct(rqpair);
if (rc < 0) {
SPDK_ERRLOG("nvmf_cm_construct() failed\n");
return -1;
}
ctrlr = rqpair->qpair.ctrlr;
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
return -1;
}
SPDK_TRACELOG(SPDK_TRACE_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&sin, 0, sizeof(struct sockaddr_storage));
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_rdma_parse_addr(&sin, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("nvme_rdma_parse_addr() failed\n");
return -1;
}
rc = rdma_create_id(rqpair->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
return -1;
}
rc = nvme_rdma_bind_addr(rqpair, &sin, rqpair->cm_channel);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_bind_addr() failed\n");
return -1;
}
rc = nvme_rdma_qpair_init(rqpair);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
return -1;
}
rc = nvme_rdma_alloc_reqs(rqpair);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "rc =%d\n", rc);
if (rc) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
return -1;
}
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "RDMA requests allocated\n");
rc = nvme_rdma_alloc_rsps(rqpair);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "rc =%d\n", rc);
if (rc < 0) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
return -1;
}
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "RDMA responses allocated\n");
rc = nvme_rdma_connect(rqpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect the rqpair\n");
return -1;
}
return 0;
}
static struct spdk_nvme_rdma_req *
nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req)
{
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_sgl_descriptor *nvme_sgl;
if (!rqpair || !req) {
return NULL;
}
rdma_req = nvme_rdma_req_get(rqpair);
if (!rdma_req) {
return NULL;
}
rdma_req->req = req;
req->cmd.cid = rdma_req->id;
/* setup the RDMA SGL details */
nvme_sgl = &req->cmd.dptr.sgl1;
if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) {
nvme_sgl->address = (uint64_t)req->payload.u.contig + req->payload_offset;
nvme_sgl->keyed.length = req->payload_size;
} else {
nvme_rdma_req_put(rqpair, rdma_req);
/* Need to handle other case later */
return NULL;
}
rdma_req->req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
nvme_sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
nvme_sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
if (req->cmd.opc == SPDK_NVME_OPC_FABRIC) {
struct spdk_nvmf_capsule_cmd *nvmf_cmd = (struct spdk_nvmf_capsule_cmd *)&req->cmd;
rdma_req->xfer = spdk_nvme_opc_get_data_transfer(nvmf_cmd->fctype);
} else {
rdma_req->xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
}
memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
return rdma_req;
}
static int
nvme_rdma_qpair_fabric_connect(struct nvme_rdma_qpair *rqpair)
{
struct nvme_completion_poll_status status;
struct spdk_nvmf_fabric_connect_rsp *rsp;
struct spdk_nvmf_fabric_connect_cmd cmd;
struct spdk_nvmf_fabric_connect_data *nvmf_data;
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_rdma_ctrlr *rctrlr;
int rc = 0;
ctrlr = rqpair->qpair.ctrlr;
if (!ctrlr) {
return -1;
}
rctrlr = nvme_rdma_ctrlr(ctrlr);
nvmf_data = calloc(1, sizeof(*nvmf_data));
if (!nvmf_data) {
SPDK_ERRLOG("nvmf_data allocation error\n");
rc = -1;
return rc;
}
memset(&cmd, 0, sizeof(cmd));
memset(&status, 0, sizeof(struct nvme_completion_poll_status));
cmd.opcode = SPDK_NVME_OPC_FABRIC;
cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_CONNECT;
cmd.qid = rqpair->qpair.id;
cmd.sqsize = rqpair->qpair.num_entries - 1;
cmd.kato = ctrlr->opts.keep_alive_timeout_ms;
if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
nvmf_data->cntlid = 0xFFFF;
} else {
nvmf_data->cntlid = rctrlr->cntlid;
}
strncpy((char *)&nvmf_data->hostid, (char *)NVME_HOST_ID_DEFAULT,
strlen((char *)NVME_HOST_ID_DEFAULT));
strncpy((char *)nvmf_data->hostnqn, ctrlr->opts.hostnqn, sizeof(nvmf_data->hostnqn));
strncpy((char *)nvmf_data->subnqn, ctrlr->trid.subnqn, sizeof(nvmf_data->subnqn));
if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr,
(struct spdk_nvme_cmd *)&cmd,
nvmf_data, sizeof(*nvmf_data),
nvme_completion_poll_cb, &status);
} else {
rc = spdk_nvme_ctrlr_cmd_io_raw(ctrlr, &rqpair->qpair,
(struct spdk_nvme_cmd *)&cmd,
nvmf_data, sizeof(*nvmf_data),
nvme_completion_poll_cb, &status);
}
if (rc < 0) {
SPDK_ERRLOG("spdk_nvme_rdma_req_fabric_connect failed\n");
rc = -1;
goto ret;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&rqpair->qpair, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("Connect command failed\n");
return -1;
}
rsp = (struct spdk_nvmf_fabric_connect_rsp *)&status.cpl;
rctrlr->cntlid = rsp->status_code_specific.success.cntlid;
ret:
free(nvmf_data);
return rc;
}
static int
nvme_rdma_fabric_prop_set_cmd(struct spdk_nvme_ctrlr *ctrlr,
uint32_t offset, uint8_t size, uint64_t value)
{
struct spdk_nvmf_fabric_prop_set_cmd cmd = {};
struct nvme_completion_poll_status status = {};
int rc;
cmd.opcode = SPDK_NVME_OPC_FABRIC;
cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET;
cmd.ofst = offset;
cmd.attrib.size = size;
cmd.value.u64 = value;
rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, (struct spdk_nvme_cmd *)&cmd,
NULL, 0,
nvme_completion_poll_cb, &status);
if (rc < 0) {
SPDK_ERRLOG("failed to send nvmf_fabric_prop_set_cmd\n");
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_rdma_fabric_prop_get_cmd failed\n");
return -1;
}
return 0;
}
static int
nvme_rdma_fabric_prop_get_cmd(struct spdk_nvme_ctrlr *ctrlr,
uint32_t offset, uint8_t size, uint64_t *value)
{
struct spdk_nvmf_fabric_prop_set_cmd cmd = {};
struct nvme_completion_poll_status status = {};
struct spdk_nvmf_fabric_prop_get_rsp *response;
int rc;
cmd.opcode = SPDK_NVME_OPC_FABRIC;
cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET;
cmd.ofst = offset;
cmd.attrib.size = size;
rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, (struct spdk_nvme_cmd *)&cmd,
NULL, 0, nvme_completion_poll_cb,
&status);
if (rc < 0) {
SPDK_ERRLOG("failed to send nvme_rdma_fabric_prop_get_cmd\n");
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_rdma_fabric_prop_get_cmd failed\n");
return -1;
}
response = (struct spdk_nvmf_fabric_prop_get_rsp *)&status.cpl;
if (!size) {
*value = response->value.u32.low;
} else {
*value = response->value.u64;
}
return 0;
}
static int
_nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair)
{
int rc;
struct nvme_rdma_qpair *rqpair;
rqpair = nvme_rdma_qpair(qpair);
rc = nvme_rdma_qpair_connect(rqpair);
if (rc < 0) {
SPDK_ERRLOG("Failed to connect through rdma qpair\n");
return rc;
}
rc = nvme_rdma_qpair_fabric_connect(rqpair);
if (rc < 0) {
SPDK_ERRLOG("Failed to send/receive the qpair fabric request\n");
return rc;
}
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
enum spdk_nvme_qprio qprio)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_qpair *qpair;
uint32_t num_entries;
int rc;
rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
if (!rqpair) {
SPDK_ERRLOG("failed to get create rqpair\n");
return NULL;
}
qpair = &rqpair->qpair;
/* At this time, queue is not initialized, so use the passing parameter qid */
if (!qid) {
num_entries = SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES;
ctrlr->adminq = qpair;
} else {
num_entries = ctrlr->opts.io_queue_size;
}
rc = nvme_qpair_construct(qpair, qid, num_entries, ctrlr, qprio);
if (rc != 0) {
return NULL;
}
rc = nvme_rdma_qpair_construct(qpair);
if (rc != 0) {
return NULL;
}
rc = _nvme_rdma_ctrlr_create_qpair(ctrlr, qpair);
if (rc < 0) {
nvme_rdma_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
static int
nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair;
if (!qpair) {
return -1;
}
rqpair = nvme_rdma_qpair(qpair);
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free_rsps(rqpair);
if (rqpair->cm_id) {
if (rqpair->cm_id->qp) {
rdma_destroy_qp(rqpair->cm_id);
}
rdma_destroy_id(rqpair->cm_id);
}
if (rqpair->cm_channel) {
rdma_destroy_event_channel(rqpair->cm_channel);
}
free(rqpair);
return 0;
}
static int
nvme_rdma_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
{
struct spdk_nvme_qpair *qpair;
int rc;
qpair = nvme_rdma_ctrlr_create_qpair(ctrlr, 0, 0);
if (!qpair) {
SPDK_ERRLOG("failed to create admin qpair\n");
rc = -1;
goto error;
}
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "successfully create admin qpair\n");
return 0;
error:
nvme_rdma_qpair_destroy(qpair);
return rc;
}
struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
enum spdk_nvme_qprio qprio)
{
return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, qprio);
}
int
nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
/* do nothing here */
return 0;
}
static int
nvme_fabrics_get_log_discovery_page(struct spdk_nvme_ctrlr *ctrlr,
void *log_page, uint32_t size)
{
struct nvme_completion_poll_status status;
int rc;
status.done = false;
rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_DISCOVERY, 0, log_page, size,
nvme_completion_poll_cb, &status);
if (rc < 0) {
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
return -1;
}
return 0;
}
static void
nvme_rdma_discovery_probe(struct spdk_nvmf_discovery_log_page_entry *entry,
void *cb_ctx, spdk_nvme_probe_cb probe_cb)
{
struct spdk_nvme_transport_id trid;
uint8_t *end;
size_t len;
memset(&trid, 0, sizeof(trid));
if (entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
SPDK_WARNLOG("Skipping unsupported discovery service referral\n");
return;
} else if (entry->subtype != SPDK_NVMF_SUBTYPE_NVME) {
SPDK_WARNLOG("Skipping unknown subtype %u\n", entry->subtype);
return;
}
trid.trtype = entry->trtype;
if (!spdk_nvme_transport_available(trid.trtype)) {
SPDK_WARNLOG("NVMe transport type %u not available; skipping probe\n",
trid.trtype);
return;
}
trid.adrfam = entry->adrfam;
/* Ensure that subnqn is null terminated. */
end = memchr(entry->subnqn, '\0', SPDK_NVMF_NQN_MAX_LEN);
if (!end) {
SPDK_ERRLOG("Discovery entry SUBNQN is not null terminated\n");
return;
}
len = end - entry->subnqn;
memcpy(trid.subnqn, entry->subnqn, len);
trid.subnqn[len] = '\0';
/* Convert traddr to a null terminated string. */
len = spdk_strlen_pad(entry->traddr, sizeof(entry->traddr), ' ');
memcpy(trid.traddr, entry->traddr, len);
/* Convert trsvcid to a null terminated string. */
len = spdk_strlen_pad(entry->trsvcid, sizeof(entry->trsvcid), ' ');
memcpy(trid.trsvcid, entry->trsvcid, len);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "subnqn=%s, trtype=%u, traddr=%s, trsvcid=%s\n",
trid.subnqn, trid.trtype,
trid.traddr, trid.trsvcid);
nvme_ctrlr_probe(&trid, NULL, probe_cb, cb_ctx);
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_rdma_ctrlr_scan(const struct spdk_nvme_transport_id *discovery_trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb)
{
struct spdk_nvme_ctrlr_opts discovery_opts;
struct spdk_nvme_ctrlr *discovery_ctrlr;
struct spdk_nvmf_discovery_log_page *log_page;
union spdk_nvme_cc_register cc;
char buffer[4096];
int rc;
uint64_t i, numrec, buffer_max_entries;
spdk_nvme_ctrlr_opts_set_defaults(&discovery_opts);
/* For discovery_ctrlr set the timeout to 0 */
discovery_opts.keep_alive_timeout_ms = 0;
memset(buffer, 0x0, 4096);
discovery_ctrlr = nvme_rdma_ctrlr_construct(discovery_trid, &discovery_opts, NULL);
if (discovery_ctrlr == NULL) {
return -1;
}
/* TODO: this should be using the normal NVMe controller initialization process */
cc.raw = 0;
cc.bits.en = 1;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
cc.raw);
if (rc < 0) {
SPDK_ERRLOG("Failed to set cc\n");
nvme_ctrlr_destruct(discovery_ctrlr);
return -1;
}
rc = nvme_fabrics_get_log_discovery_page(discovery_ctrlr, buffer, sizeof(buffer));
if (rc < 0) {
SPDK_ERRLOG("nvme_fabrics_get_log_discovery_page error\n");
nvme_ctrlr_destruct(discovery_ctrlr);
return -1;
}
log_page = (struct spdk_nvmf_discovery_log_page *)buffer;
/*
* For now, only support retrieving one buffer of discovery entries.
* This could be extended to call Get Log Page multiple times as needed.
*/
buffer_max_entries = (sizeof(buffer) - offsetof(struct spdk_nvmf_discovery_log_page, entries[0])) /
sizeof(struct spdk_nvmf_discovery_log_page_entry);
numrec = nvme_min(log_page->numrec, buffer_max_entries);
if (numrec != log_page->numrec) {
SPDK_WARNLOG("Discovery service returned %" PRIu64 " entries,"
"but buffer can only hold %" PRIu64 "\n",
log_page->numrec, numrec);
}
for (i = 0; i < numrec; i++) {
nvme_rdma_discovery_probe(&log_page->entries[i], cb_ctx, probe_cb);
}
nvme_ctrlr_destruct(discovery_ctrlr);
return 0;
}
int
nvme_rdma_ctrlr_attach(enum spdk_nvme_transport_type trtype,
spdk_nvme_probe_cb probe_cb, void *cb_ctx,
struct spdk_pci_addr *addr)
{
/* Not implemented yet */
return -1;
}
struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_rdma_ctrlr *rctrlr;
union spdk_nvme_cap_register cap;
int rc;
rctrlr = calloc(1, sizeof(struct nvme_rdma_ctrlr));
if (rctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
rctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
rctrlr->ctrlr.opts = *opts;
memcpy(&rctrlr->ctrlr.trid, trid, sizeof(rctrlr->ctrlr.trid));
rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
if (rc != 0) {
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
rc = nvme_rdma_ctrlr_construct_admin_qpair(&rctrlr->ctrlr);
if (rc != 0) {
SPDK_ERRLOG("create admin qpair failed\n");
return NULL;
}
if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "succesully initialized the nvmf ctrlr\n");
return &rctrlr->ctrlr;
}
int
nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
if (ctrlr->adminq) {
nvme_rdma_qpair_destroy(ctrlr->adminq);
}
free(rctrlr);
return 0;
}
int
nvme_rdma_ctrlr_get_pci_id(struct spdk_nvme_ctrlr *ctrlr, struct spdk_pci_id *pci_id)
{
return -1;
}
int
nvme_rdma_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
return nvme_rdma_fabric_prop_set_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_4, value);
}
int
nvme_rdma_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
return nvme_rdma_fabric_prop_set_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_8, value);
}
int
nvme_rdma_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
uint64_t tmp_value;
int rc;
rc = nvme_rdma_fabric_prop_get_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_4, &tmp_value);
if (!rc) {
*value = (uint32_t)tmp_value;
}
return rc;
}
int
nvme_rdma_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
return nvme_rdma_fabric_prop_get_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_8, value);
}
int
nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct ibv_send_wr *wr, *bad_wr = NULL;
int rc;
rqpair = nvme_rdma_qpair(qpair);
rdma_req = nvme_rdma_req_init(rqpair, req);
if (!rdma_req) {
SPDK_ERRLOG("spdk_nvme_rdma_req memory allocation failed duing read\n");
return -1;
}
nvme_rdma_pre_copy_mem(rqpair, rdma_req);
wr = &rdma_req->send_wr;
wr->wr_id = (uint64_t)rdma_req;
wr->next = NULL;
wr->opcode = IBV_WR_SEND;
wr->send_flags = IBV_SEND_SIGNALED;
wr->sg_list = &rdma_req->send_sgl;
wr->num_sge = 1;
wr->imm_data = 0;
nvme_rdma_trace_ibv_sge(wr->sg_list);
rc = ibv_post_send(rqpair->cm_id->qp, wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma send for NVMf completion, rc = 0x%x\n", rc);
}
return rc;
}
int
nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return nvme_rdma_qpair_destroy(qpair);
}
int
nvme_rdma_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return _nvme_rdma_ctrlr_create_qpair(ctrlr, qpair);
}
static int
nvme_rdma_qpair_construct(struct spdk_nvme_qpair *qpair)
{
int32_t i;
struct nvme_rdma_qpair *rqpair;
rqpair = nvme_rdma_qpair(qpair);
rqpair->rdma_reqs = calloc(qpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
if (rqpair->rdma_reqs == NULL) {
nvme_rdma_qpair_destroy(qpair);
return -1;
}
STAILQ_INIT(&rqpair->free_reqs);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "qpair num entries = %d\n", qpair->num_entries);
for (i = 0; i < qpair->num_entries; i++) {
STAILQ_INSERT_TAIL(&rqpair->free_reqs, &rqpair->rdma_reqs[i], link);
rqpair->rdma_reqs[i].id = i;
}
return 0;
}
int
nvme_rdma_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_disable(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_fail(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions)
{
struct nvme_rdma_qpair *rqpair;
struct ibv_wc wc;
uint32_t size;
int rc;
uint32_t io_completed = 0;
rqpair = nvme_rdma_qpair(qpair);
size = qpair->num_entries - 1U;
if (!max_completions || max_completions > size) {
max_completions = size;
}
/* poll the send_cq */
while (true) {
rc = ibv_poll_cq(rqpair->cm_id->send_cq, 1, &wc);
if (rc == 0) {
break;
}
if (rc < 0) {
SPDK_ERRLOG("Poll CQ error!(%d): %s\n",
errno, strerror(errno));
return -1;
}
if (wc.status) {
SPDK_ERRLOG("CQ completion error status %d, exiting handler\n",
wc.status);
break;
}
if (wc.opcode == IBV_WC_SEND) {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "CQ send completion\n");
} else {
SPDK_ERRLOG("Poll cq opcode type unknown!!!!! completion\n");
return -1;
}
}
/* poll the recv_cq */
while (true) {
rc = ibv_poll_cq(rqpair->cm_id->recv_cq, 1, &wc);
if (rc == 0) {
break;
}
if (rc < 0) {
SPDK_ERRLOG("Poll CQ error!(%d): %s\n",
errno, strerror(errno));
return -1;
}
if (wc.status) {
SPDK_ERRLOG("CQ completion error status %d, exiting handler\n", wc.status);
break;
}
if (wc.opcode == IBV_WC_RECV) {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "CQ recv completion\n");
rc = nvme_rdma_recv(rqpair, &wc);
if (rc) {
SPDK_ERRLOG("nvme_rdma_recv processing failure\n");
return -1;
}
io_completed++;
} else {
SPDK_ERRLOG("Poll cq opcode type unknown!!!!! completion\n");
return -1;
}
if (io_completed == max_completions) {
break;
}
}
return io_completed;
}
uint32_t
nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/* Todo, which should get from the NVMF target */
return NVME_RDMA_RW_BUFFER_SIZE;
}
uint32_t
nvme_rdma_ctrlr_get_max_io_queue_size(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_HOST_MAX_ENTRIES_PER_QUEUE;
}