0f9dc2af87
Change-Id: Ied40ba8d3e342f2374c7c8c8b46ac11e9502db4f Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-on: https://review.gerrithub.io/c/441630 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: wuzhouhui <wuzhouhui@kingsoft.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
1917 lines
46 KiB
C
1917 lines
46 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk/env.h"
|
|
#include "spdk/fd.h"
|
|
#include "spdk/nvme.h"
|
|
#include "spdk/queue.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/nvme_intel.h"
|
|
#include "spdk/histogram_data.h"
|
|
#include "spdk/endian.h"
|
|
#include "spdk/dif.h"
|
|
|
|
#if HAVE_LIBAIO
|
|
#include <libaio.h>
|
|
#endif
|
|
|
|
struct ctrlr_entry {
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
enum spdk_nvme_transport_type trtype;
|
|
struct spdk_nvme_intel_rw_latency_page *latency_page;
|
|
struct ctrlr_entry *next;
|
|
char name[1024];
|
|
};
|
|
|
|
enum entry_type {
|
|
ENTRY_TYPE_NVME_NS,
|
|
ENTRY_TYPE_AIO_FILE,
|
|
};
|
|
|
|
struct ns_fn_table;
|
|
|
|
struct ns_entry {
|
|
enum entry_type type;
|
|
const struct ns_fn_table *fn_table;
|
|
|
|
union {
|
|
struct {
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_nvme_ns *ns;
|
|
} nvme;
|
|
#if HAVE_LIBAIO
|
|
struct {
|
|
int fd;
|
|
} aio;
|
|
#endif
|
|
} u;
|
|
|
|
struct ns_entry *next;
|
|
uint32_t io_size_blocks;
|
|
uint32_t num_io_requests;
|
|
uint64_t size_in_ios;
|
|
uint32_t block_size;
|
|
uint32_t md_size;
|
|
bool md_interleave;
|
|
bool pi_loc;
|
|
enum spdk_nvme_pi_type pi_type;
|
|
uint32_t io_flags;
|
|
char name[1024];
|
|
};
|
|
|
|
static const double g_latency_cutoffs[] = {
|
|
0.01,
|
|
0.10,
|
|
0.25,
|
|
0.50,
|
|
0.75,
|
|
0.90,
|
|
0.95,
|
|
0.98,
|
|
0.99,
|
|
0.995,
|
|
0.999,
|
|
0.9999,
|
|
0.99999,
|
|
0.999999,
|
|
0.9999999,
|
|
-1,
|
|
};
|
|
|
|
struct ns_worker_ctx {
|
|
struct ns_entry *entry;
|
|
uint64_t io_completed;
|
|
uint64_t total_tsc;
|
|
uint64_t min_tsc;
|
|
uint64_t max_tsc;
|
|
uint64_t current_queue_depth;
|
|
uint64_t offset_in_ios;
|
|
bool is_draining;
|
|
|
|
union {
|
|
struct {
|
|
struct spdk_nvme_qpair *qpair;
|
|
} nvme;
|
|
|
|
#if HAVE_LIBAIO
|
|
struct {
|
|
struct io_event *events;
|
|
io_context_t ctx;
|
|
} aio;
|
|
#endif
|
|
} u;
|
|
|
|
struct ns_worker_ctx *next;
|
|
|
|
struct spdk_histogram_data *histogram;
|
|
};
|
|
|
|
struct perf_task {
|
|
struct ns_worker_ctx *ns_ctx;
|
|
struct iovec iov;
|
|
struct iovec md_iov;
|
|
uint64_t submit_tsc;
|
|
bool is_read;
|
|
struct spdk_dif_ctx dif_ctx;
|
|
#if HAVE_LIBAIO
|
|
struct iocb iocb;
|
|
#endif
|
|
};
|
|
|
|
struct worker_thread {
|
|
struct ns_worker_ctx *ns_ctx;
|
|
struct worker_thread *next;
|
|
unsigned lcore;
|
|
};
|
|
|
|
struct ns_fn_table {
|
|
void (*setup_payload)(struct perf_task *task, uint8_t pattern);
|
|
|
|
int (*submit_io)(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
|
|
struct ns_entry *entry, uint64_t offset_in_ios);
|
|
|
|
void (*check_io)(struct ns_worker_ctx *ns_ctx);
|
|
|
|
void (*verify_io)(struct perf_task *task, struct ns_entry *entry);
|
|
|
|
int (*init_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx);
|
|
|
|
void (*cleanup_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx);
|
|
};
|
|
|
|
static int g_outstanding_commands;
|
|
|
|
static bool g_latency_ssd_tracking_enable = false;
|
|
static int g_latency_sw_tracking_level = 0;
|
|
|
|
static struct ctrlr_entry *g_controllers = NULL;
|
|
static int g_controllers_found = 0;
|
|
static struct ns_entry *g_namespaces = NULL;
|
|
static int g_num_namespaces = 0;
|
|
static struct worker_thread *g_workers = NULL;
|
|
static int g_num_workers = 0;
|
|
|
|
static uint64_t g_tsc_rate;
|
|
|
|
static uint32_t g_io_align = 0x200;
|
|
static uint32_t g_io_size_bytes;
|
|
static uint32_t g_max_io_md_size;
|
|
static uint32_t g_max_io_size_blocks;
|
|
static uint32_t g_metacfg_pract_flag;
|
|
static uint32_t g_metacfg_prchk_flags;
|
|
static int g_rw_percentage;
|
|
static int g_is_random;
|
|
static int g_queue_depth;
|
|
static int g_time_in_sec;
|
|
static uint32_t g_max_completions;
|
|
static int g_dpdk_mem;
|
|
static int g_shm_id = -1;
|
|
static uint32_t g_disable_sq_cmb;
|
|
static bool g_no_pci;
|
|
static bool g_warn;
|
|
static bool g_header_digest;
|
|
static bool g_data_digest;
|
|
|
|
static const char *g_core_mask;
|
|
|
|
struct trid_entry {
|
|
struct spdk_nvme_transport_id trid;
|
|
uint16_t nsid;
|
|
TAILQ_ENTRY(trid_entry) tailq;
|
|
};
|
|
|
|
static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
|
|
|
|
static int g_aio_optind; /* Index of first AIO filename in argv */
|
|
|
|
static void
|
|
task_complete(struct perf_task *task);
|
|
|
|
#if HAVE_LIBAIO
|
|
static void
|
|
aio_setup_payload(struct perf_task *task, uint8_t pattern)
|
|
{
|
|
task->iov.iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
|
|
task->iov.iov_len = g_io_size_bytes;
|
|
if (task->iov.iov_base == NULL) {
|
|
fprintf(stderr, "spdk_dma_zmalloc() for task->buf failed\n");
|
|
exit(1);
|
|
}
|
|
memset(task->iov.iov_base, pattern, task->iov.iov_len);
|
|
}
|
|
|
|
static int
|
|
aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd,
|
|
struct iovec *iov, uint64_t offset, void *cb_ctx)
|
|
{
|
|
iocb->aio_fildes = fd;
|
|
iocb->aio_reqprio = 0;
|
|
iocb->aio_lio_opcode = cmd;
|
|
iocb->u.c.buf = iov->iov_base;
|
|
iocb->u.c.nbytes = iov->iov_len;
|
|
iocb->u.c.offset = offset * iov->iov_len;
|
|
iocb->data = cb_ctx;
|
|
|
|
if (io_submit(aio_ctx, 1, &iocb) < 0) {
|
|
printf("io_submit");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
aio_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
|
|
struct ns_entry *entry, uint64_t offset_in_ios)
|
|
{
|
|
if (task->is_read) {
|
|
return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD,
|
|
&task->iov, offset_in_ios, task);
|
|
} else {
|
|
return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE,
|
|
&task->iov, offset_in_ios, task);
|
|
}
|
|
}
|
|
|
|
static void
|
|
aio_check_io(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
int count, i;
|
|
struct timespec timeout;
|
|
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_nsec = 0;
|
|
|
|
count = io_getevents(ns_ctx->u.aio.ctx, 1, g_queue_depth, ns_ctx->u.aio.events, &timeout);
|
|
if (count < 0) {
|
|
fprintf(stderr, "io_getevents error\n");
|
|
exit(1);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
task_complete(ns_ctx->u.aio.events[i].data);
|
|
}
|
|
}
|
|
|
|
static void
|
|
aio_verify_io(struct perf_task *task, struct ns_entry *entry)
|
|
{
|
|
}
|
|
|
|
static int
|
|
aio_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
ns_ctx->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event));
|
|
if (!ns_ctx->u.aio.events) {
|
|
return -1;
|
|
}
|
|
ns_ctx->u.aio.ctx = 0;
|
|
if (io_setup(g_queue_depth, &ns_ctx->u.aio.ctx) < 0) {
|
|
free(ns_ctx->u.aio.events);
|
|
perror("io_setup");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
aio_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
io_destroy(ns_ctx->u.aio.ctx);
|
|
free(ns_ctx->u.aio.events);
|
|
}
|
|
|
|
static const struct ns_fn_table aio_fn_table = {
|
|
.setup_payload = aio_setup_payload,
|
|
.submit_io = aio_submit_io,
|
|
.check_io = aio_check_io,
|
|
.verify_io = aio_verify_io,
|
|
.init_ns_worker_ctx = aio_init_ns_worker_ctx,
|
|
.cleanup_ns_worker_ctx = aio_cleanup_ns_worker_ctx,
|
|
};
|
|
|
|
static int
|
|
register_aio_file(const char *path)
|
|
{
|
|
struct ns_entry *entry;
|
|
|
|
int flags, fd;
|
|
uint64_t size;
|
|
uint32_t blklen;
|
|
|
|
if (g_rw_percentage == 100) {
|
|
flags = O_RDONLY;
|
|
} else if (g_rw_percentage == 0) {
|
|
flags = O_WRONLY;
|
|
} else {
|
|
flags = O_RDWR;
|
|
}
|
|
|
|
flags |= O_DIRECT;
|
|
|
|
fd = open(path, flags);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
size = spdk_fd_get_size(fd);
|
|
if (size == 0) {
|
|
fprintf(stderr, "Could not determine size of AIO device %s\n", path);
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
blklen = spdk_fd_get_blocklen(fd);
|
|
if (blklen == 0) {
|
|
fprintf(stderr, "Could not determine block size of AIO device %s\n", path);
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* TODO: This should really calculate the LCM of the current g_io_align and blklen.
|
|
* For now, it's fairly safe to just assume all block sizes are powers of 2.
|
|
*/
|
|
if (g_io_align < blklen) {
|
|
g_io_align = blklen;
|
|
}
|
|
|
|
entry = malloc(sizeof(struct ns_entry));
|
|
if (entry == NULL) {
|
|
close(fd);
|
|
perror("aio ns_entry malloc");
|
|
return -1;
|
|
}
|
|
|
|
entry->type = ENTRY_TYPE_AIO_FILE;
|
|
entry->fn_table = &aio_fn_table;
|
|
entry->u.aio.fd = fd;
|
|
entry->size_in_ios = size / g_io_size_bytes;
|
|
entry->io_size_blocks = g_io_size_bytes / blklen;
|
|
|
|
snprintf(entry->name, sizeof(entry->name), "%s", path);
|
|
|
|
g_num_namespaces++;
|
|
entry->next = g_namespaces;
|
|
g_namespaces = entry;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
register_aio_files(int argc, char **argv)
|
|
{
|
|
int i;
|
|
|
|
/* Treat everything after the options as files for AIO */
|
|
for (i = g_aio_optind; i < argc; i++) {
|
|
if (register_aio_file(argv[i]) != 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_LIBAIO */
|
|
|
|
static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
|
|
|
|
static void
|
|
nvme_setup_payload(struct perf_task *task, uint8_t pattern)
|
|
{
|
|
uint32_t max_io_size_bytes, max_io_md_size;
|
|
|
|
/* maximum extended lba format size from all active namespace,
|
|
* it's same with g_io_size_bytes for namespace without metadata.
|
|
*/
|
|
max_io_size_bytes = g_io_size_bytes + g_max_io_md_size * g_max_io_size_blocks;
|
|
task->iov.iov_base = spdk_dma_zmalloc(max_io_size_bytes, g_io_align, NULL);
|
|
task->iov.iov_len = max_io_size_bytes;
|
|
if (task->iov.iov_base == NULL) {
|
|
fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
|
|
exit(1);
|
|
}
|
|
memset(task->iov.iov_base, pattern, task->iov.iov_len);
|
|
|
|
max_io_md_size = g_max_io_md_size * g_max_io_size_blocks;
|
|
if (max_io_md_size != 0) {
|
|
task->md_iov.iov_base = spdk_dma_zmalloc(max_io_md_size, g_io_align, NULL);
|
|
task->md_iov.iov_len = max_io_md_size;
|
|
if (task->md_iov.iov_base == NULL) {
|
|
fprintf(stderr, "task->md_buf spdk_dma_zmalloc failed\n");
|
|
spdk_dma_free(task->iov.iov_base);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
|
|
struct ns_entry *entry, uint64_t offset_in_ios)
|
|
{
|
|
uint64_t lba;
|
|
int rc;
|
|
|
|
enum dif_mode {
|
|
DIF_MODE_NONE = 0,
|
|
DIF_MODE_DIF = 1,
|
|
DIF_MODE_DIX = 2,
|
|
} mode = DIF_MODE_NONE;
|
|
|
|
lba = offset_in_ios * entry->io_size_blocks;
|
|
|
|
if (entry->md_size != 0 && !(entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) {
|
|
if (entry->md_interleave) {
|
|
mode = DIF_MODE_DIF;
|
|
} else {
|
|
mode = DIF_MODE_DIX;
|
|
}
|
|
}
|
|
|
|
if (mode != DIF_MODE_NONE) {
|
|
rc = spdk_dif_ctx_init(&task->dif_ctx, entry->block_size, entry->md_size,
|
|
entry->md_interleave, entry->pi_loc,
|
|
(enum spdk_dif_type)entry->pi_type, entry->io_flags,
|
|
lba, 0xFFFF, (uint16_t)entry->io_size_blocks);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "Initialization of DIF context failed\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (task->is_read) {
|
|
return spdk_nvme_ns_cmd_read_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair,
|
|
task->iov.iov_base, task->md_iov.iov_base,
|
|
lba,
|
|
entry->io_size_blocks, io_complete,
|
|
task, entry->io_flags,
|
|
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
|
|
} else {
|
|
switch (mode) {
|
|
case DIF_MODE_DIF:
|
|
rc = spdk_dif_generate(&task->iov, 1, entry->io_size_blocks, &task->dif_ctx);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "Generation of DIF failed\n");
|
|
return rc;
|
|
}
|
|
break;
|
|
case DIF_MODE_DIX:
|
|
rc = spdk_dix_generate(&task->iov, 1, &task->md_iov, entry->io_size_blocks,
|
|
&task->dif_ctx);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "Generation of DIX failed\n");
|
|
return rc;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return spdk_nvme_ns_cmd_write_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair,
|
|
task->iov.iov_base, task->md_iov.iov_base,
|
|
lba,
|
|
entry->io_size_blocks, io_complete,
|
|
task, entry->io_flags,
|
|
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_check_io(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
spdk_nvme_qpair_process_completions(ns_ctx->u.nvme.qpair, g_max_completions);
|
|
}
|
|
|
|
static void
|
|
nvme_verify_io(struct perf_task *task, struct ns_entry *entry)
|
|
{
|
|
struct spdk_dif_error err_blk = {};
|
|
int rc;
|
|
|
|
if (!task->is_read || entry->md_size == 0 ||
|
|
(entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) {
|
|
return;
|
|
}
|
|
|
|
if (entry->md_interleave) {
|
|
rc = spdk_dif_verify(&task->iov, 1, entry->io_size_blocks, &task->dif_ctx,
|
|
&err_blk);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "DIF error detected. type=%d, offset=%" PRIu32 "\n",
|
|
err_blk.err_type, err_blk.err_offset);
|
|
}
|
|
} else {
|
|
rc = spdk_dix_verify(&task->iov, 1, &task->md_iov, entry->io_size_blocks,
|
|
&task->dif_ctx, &err_blk);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "DIX error detected. type=%d, offset=%" PRIu32 "\n",
|
|
err_blk.err_type, err_blk.err_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TODO: If a controller has multiple namespaces, they could all use the same queue.
|
|
* For now, give each namespace/thread combination its own queue.
|
|
*/
|
|
static int
|
|
nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
struct ns_entry *entry = ns_ctx->entry;
|
|
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->u.nvme.ctrlr, &opts, sizeof(opts));
|
|
if (opts.io_queue_requests < entry->num_io_requests) {
|
|
opts.io_queue_requests = entry->num_io_requests;
|
|
}
|
|
|
|
ns_ctx->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(entry->u.nvme.ctrlr, &opts,
|
|
sizeof(opts));
|
|
if (!ns_ctx->u.nvme.qpair) {
|
|
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair);
|
|
}
|
|
|
|
static const struct ns_fn_table nvme_fn_table = {
|
|
.setup_payload = nvme_setup_payload,
|
|
.submit_io = nvme_submit_io,
|
|
.check_io = nvme_check_io,
|
|
.verify_io = nvme_verify_io,
|
|
.init_ns_worker_ctx = nvme_init_ns_worker_ctx,
|
|
.cleanup_ns_worker_ctx = nvme_cleanup_ns_worker_ctx,
|
|
};
|
|
|
|
static void
|
|
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
|
|
{
|
|
struct ns_entry *entry;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
uint32_t max_xfer_size, entries, ns_size, sector_size;
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
if (!spdk_nvme_ns_is_active(ns)) {
|
|
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
|
|
cdata->mn, cdata->sn,
|
|
spdk_nvme_ns_get_id(ns));
|
|
g_warn = true;
|
|
return;
|
|
}
|
|
|
|
ns_size = spdk_nvme_ns_get_size(ns);
|
|
sector_size = spdk_nvme_ns_get_sector_size(ns);
|
|
|
|
if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
|
|
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
|
|
"ns size %u / block size %u for I/O size %u\n",
|
|
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
|
|
ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
|
|
g_warn = true;
|
|
return;
|
|
}
|
|
|
|
max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
|
|
/* NVMe driver may add additional entries based on
|
|
* stripe size and maximum transfer size, we assume
|
|
* 1 more entry be used for stripe.
|
|
*/
|
|
entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
|
|
if ((g_queue_depth * entries) > opts.io_queue_size) {
|
|
printf("controller IO queue size %u less than required\n",
|
|
opts.io_queue_size);
|
|
printf("Consider using lower queue depth or small IO size because "
|
|
"IO requests may be queued at the NVMe driver.\n");
|
|
g_warn = true;
|
|
}
|
|
/* For requests which have children requests, parent request itself
|
|
* will also occupy 1 entry.
|
|
*/
|
|
entries += 1;
|
|
|
|
entry = calloc(1, sizeof(struct ns_entry));
|
|
if (entry == NULL) {
|
|
perror("ns_entry malloc");
|
|
exit(1);
|
|
}
|
|
|
|
entry->type = ENTRY_TYPE_NVME_NS;
|
|
entry->fn_table = &nvme_fn_table;
|
|
entry->u.nvme.ctrlr = ctrlr;
|
|
entry->u.nvme.ns = ns;
|
|
entry->num_io_requests = g_queue_depth * entries;
|
|
|
|
entry->size_in_ios = ns_size / g_io_size_bytes;
|
|
entry->io_size_blocks = g_io_size_bytes / sector_size;
|
|
|
|
entry->block_size = spdk_nvme_ns_get_extended_sector_size(ns);
|
|
entry->md_size = spdk_nvme_ns_get_md_size(ns);
|
|
entry->md_interleave = spdk_nvme_ns_supports_extended_lba(ns);
|
|
entry->pi_loc = spdk_nvme_ns_get_data(ns)->dps.md_start;
|
|
entry->pi_type = spdk_nvme_ns_get_pi_type(ns);
|
|
|
|
if (spdk_nvme_ns_get_flags(ns) & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
|
|
entry->io_flags = g_metacfg_pract_flag | g_metacfg_prchk_flags;
|
|
}
|
|
|
|
if (g_max_io_md_size < entry->md_size) {
|
|
g_max_io_md_size = entry->md_size;
|
|
}
|
|
|
|
if (g_max_io_size_blocks < entry->io_size_blocks) {
|
|
g_max_io_size_blocks = entry->io_size_blocks;
|
|
}
|
|
|
|
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
|
|
|
|
g_num_namespaces++;
|
|
entry->next = g_namespaces;
|
|
g_namespaces = entry;
|
|
}
|
|
|
|
static void
|
|
unregister_namespaces(void)
|
|
{
|
|
struct ns_entry *entry = g_namespaces;
|
|
|
|
while (entry) {
|
|
struct ns_entry *next = entry->next;
|
|
free(entry);
|
|
entry = next;
|
|
}
|
|
}
|
|
|
|
static void
|
|
enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
printf("enable_latency_tracking_complete failed\n");
|
|
}
|
|
g_outstanding_commands--;
|
|
}
|
|
|
|
static void
|
|
set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable)
|
|
{
|
|
int res;
|
|
union spdk_nvme_intel_feat_latency_tracking latency_tracking;
|
|
|
|
if (enable) {
|
|
latency_tracking.bits.enable = 0x01;
|
|
} else {
|
|
latency_tracking.bits.enable = 0x00;
|
|
}
|
|
|
|
res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING,
|
|
latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL);
|
|
if (res) {
|
|
printf("fail to allocate nvme request.\n");
|
|
return;
|
|
}
|
|
g_outstanding_commands++;
|
|
|
|
while (g_outstanding_commands) {
|
|
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
|
|
{
|
|
struct spdk_nvme_ns *ns;
|
|
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
|
|
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
uint32_t nsid;
|
|
|
|
if (entry == NULL) {
|
|
perror("ctrlr_entry malloc");
|
|
exit(1);
|
|
}
|
|
|
|
entry->latency_page = spdk_dma_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page),
|
|
4096, NULL);
|
|
if (entry->latency_page == NULL) {
|
|
printf("Allocation error (latency page)\n");
|
|
exit(1);
|
|
}
|
|
|
|
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
|
|
|
|
entry->ctrlr = ctrlr;
|
|
entry->trtype = trid_entry->trid.trtype;
|
|
entry->next = g_controllers;
|
|
g_controllers = entry;
|
|
|
|
if (g_latency_ssd_tracking_enable &&
|
|
spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) {
|
|
set_latency_tracking_feature(ctrlr, true);
|
|
}
|
|
|
|
if (trid_entry->nsid == 0) {
|
|
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
|
|
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
continue;
|
|
}
|
|
register_ns(ctrlr, ns);
|
|
}
|
|
} else {
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid);
|
|
if (!ns) {
|
|
perror("Namespace does not exist.");
|
|
exit(1);
|
|
}
|
|
|
|
register_ns(ctrlr, ns);
|
|
}
|
|
|
|
}
|
|
|
|
static __thread unsigned int seed = 0;
|
|
|
|
static void
|
|
submit_single_io(struct perf_task *task)
|
|
{
|
|
uint64_t offset_in_ios;
|
|
int rc;
|
|
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
|
|
struct ns_entry *entry = ns_ctx->entry;
|
|
|
|
if (g_is_random) {
|
|
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
|
|
} else {
|
|
offset_in_ios = ns_ctx->offset_in_ios++;
|
|
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
|
|
ns_ctx->offset_in_ios = 0;
|
|
}
|
|
}
|
|
|
|
task->submit_tsc = spdk_get_ticks();
|
|
|
|
if ((g_rw_percentage == 100) ||
|
|
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
|
|
task->is_read = true;
|
|
} else {
|
|
task->is_read = false;
|
|
}
|
|
|
|
rc = entry->fn_table->submit_io(task, ns_ctx, entry, offset_in_ios);
|
|
|
|
if (rc != 0) {
|
|
fprintf(stderr, "starting I/O failed\n");
|
|
} else {
|
|
ns_ctx->current_queue_depth++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
task_complete(struct perf_task *task)
|
|
{
|
|
struct ns_worker_ctx *ns_ctx;
|
|
uint64_t tsc_diff;
|
|
struct ns_entry *entry;
|
|
|
|
ns_ctx = task->ns_ctx;
|
|
entry = ns_ctx->entry;
|
|
ns_ctx->current_queue_depth--;
|
|
ns_ctx->io_completed++;
|
|
tsc_diff = spdk_get_ticks() - task->submit_tsc;
|
|
ns_ctx->total_tsc += tsc_diff;
|
|
if (ns_ctx->min_tsc > tsc_diff) {
|
|
ns_ctx->min_tsc = tsc_diff;
|
|
}
|
|
if (ns_ctx->max_tsc < tsc_diff) {
|
|
ns_ctx->max_tsc = tsc_diff;
|
|
}
|
|
if (g_latency_sw_tracking_level > 0) {
|
|
spdk_histogram_data_tally(ns_ctx->histogram, tsc_diff);
|
|
}
|
|
|
|
/* add application level verification for end-to-end data protection */
|
|
entry->fn_table->verify_io(task, entry);
|
|
|
|
/*
|
|
* is_draining indicates when time has expired for the test run
|
|
* and we are just waiting for the previously submitted I/O
|
|
* to complete. In this case, do not submit a new I/O to replace
|
|
* the one just completed.
|
|
*/
|
|
if (ns_ctx->is_draining) {
|
|
spdk_dma_free(task->iov.iov_base);
|
|
spdk_dma_free(task->md_iov.iov_base);
|
|
free(task);
|
|
} else {
|
|
submit_single_io(task);
|
|
}
|
|
}
|
|
|
|
static void
|
|
io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct perf_task *task = ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
fprintf(stderr, "%s completed with error (sct=%d, sc=%d)\n",
|
|
task->is_read ? "Read" : "Write",
|
|
cpl->status.sct, cpl->status.sc);
|
|
}
|
|
|
|
task_complete(task);
|
|
}
|
|
|
|
static void
|
|
check_io(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
ns_ctx->entry->fn_table->check_io(ns_ctx);
|
|
}
|
|
|
|
static struct perf_task *
|
|
allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth)
|
|
{
|
|
struct perf_task *task;
|
|
|
|
task = calloc(1, sizeof(*task));
|
|
if (task == NULL) {
|
|
fprintf(stderr, "Out of memory allocating tasks\n");
|
|
exit(1);
|
|
}
|
|
|
|
ns_ctx->entry->fn_table->setup_payload(task, queue_depth % 8 + 1);
|
|
|
|
task->ns_ctx = ns_ctx;
|
|
|
|
return task;
|
|
}
|
|
|
|
static void
|
|
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
|
|
{
|
|
struct perf_task *task;
|
|
|
|
while (queue_depth-- > 0) {
|
|
task = allocate_task(ns_ctx, queue_depth);
|
|
submit_single_io(task);
|
|
}
|
|
}
|
|
|
|
static int
|
|
init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
return ns_ctx->entry->fn_table->init_ns_worker_ctx(ns_ctx);
|
|
}
|
|
|
|
static void
|
|
cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
|
|
{
|
|
ns_ctx->entry->fn_table->cleanup_ns_worker_ctx(ns_ctx);
|
|
}
|
|
|
|
static int
|
|
work_fn(void *arg)
|
|
{
|
|
uint64_t tsc_end;
|
|
struct worker_thread *worker = (struct worker_thread *)arg;
|
|
struct ns_worker_ctx *ns_ctx = NULL;
|
|
uint32_t unfinished_ns_ctx;
|
|
|
|
printf("Starting thread on core %u\n", worker->lcore);
|
|
|
|
/* Allocate a queue pair for each namespace. */
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx != NULL) {
|
|
if (init_ns_worker_ctx(ns_ctx) != 0) {
|
|
printf("ERROR: init_ns_worker_ctx() failed\n");
|
|
return 1;
|
|
}
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
|
|
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
|
|
|
|
/* Submit initial I/O for each namespace. */
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx != NULL) {
|
|
submit_io(ns_ctx, g_queue_depth);
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
|
|
while (1) {
|
|
/*
|
|
* Check for completed I/O for each controller. A new
|
|
* I/O will be submitted in the io_complete callback
|
|
* to replace each I/O that is completed.
|
|
*/
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx != NULL) {
|
|
check_io(ns_ctx);
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
|
|
if (spdk_get_ticks() > tsc_end) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* drain the io of each ns_ctx in round robin to make the fairness */
|
|
do {
|
|
unfinished_ns_ctx = 0;
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx != NULL) {
|
|
/* first time will enter into this if case */
|
|
if (!ns_ctx->is_draining) {
|
|
ns_ctx->is_draining = true;
|
|
}
|
|
|
|
if (ns_ctx->current_queue_depth > 0) {
|
|
check_io(ns_ctx);
|
|
if (ns_ctx->current_queue_depth == 0) {
|
|
cleanup_ns_worker_ctx(ns_ctx);
|
|
} else {
|
|
unfinished_ns_ctx++;
|
|
}
|
|
}
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
} while (unfinished_ns_ctx > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void usage(char *program_name)
|
|
{
|
|
printf("%s options", program_name);
|
|
#if HAVE_LIBAIO
|
|
printf(" [AIO device(s)]...");
|
|
#endif
|
|
printf("\n");
|
|
printf("\t[-q io depth]\n");
|
|
printf("\t[-o io size in bytes]\n");
|
|
printf("\t[-w io pattern type, must be one of\n");
|
|
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
|
|
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
|
|
printf("\t[-L enable latency tracking via sw, default: disabled]\n");
|
|
printf("\t\t-L for latency summary, -LL for detailed histogram\n");
|
|
printf("\t[-l enable latency tracking via ssd (if supported), default: disabled]\n");
|
|
printf("\t[-t time in seconds]\n");
|
|
printf("\t[-c core mask for I/O submission/completion.]\n");
|
|
printf("\t\t(default: 1)\n");
|
|
printf("\t[-D disable submission queue in controller memory buffer, default: enabled]\n");
|
|
printf("\t[-H enable header digest for TCP transport, default: disabled]\n");
|
|
printf("\t[-I enable data digest for TCP transport, default: disabled]\n");
|
|
printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n");
|
|
printf("\t Format: 'key:value [key:value] ...'\n");
|
|
printf("\t Keys:\n");
|
|
printf("\t trtype Transport type (e.g. PCIe, RDMA)\n");
|
|
printf("\t adrfam Address family (e.g. IPv4, IPv6)\n");
|
|
printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n");
|
|
printf("\t trsvcid Transport service identifier (e.g. 4420)\n");
|
|
printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
|
|
printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n");
|
|
printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
|
|
printf("\t[-e metadata configuration]\n");
|
|
printf("\t Keys:\n");
|
|
printf("\t PRACT Protection Information Action bit (PRACT=1 or PRACT=0)\n");
|
|
printf("\t PRCHK Control of Protection Information Checking (PRCHK=GUARD|REFTAG|APPTAG)\n");
|
|
printf("\t Example: -e 'PRACT=0,PRCHK=GUARD|REFTAG|APPTAG'\n");
|
|
printf("\t -e 'PRACT=1,PRCHK=GUARD'\n");
|
|
printf("\t[-s DPDK huge memory size in MB.]\n");
|
|
printf("\t[-m max completions per poll]\n");
|
|
printf("\t\t(default: 0 - unlimited)\n");
|
|
printf("\t[-i shared memory group ID]\n");
|
|
}
|
|
|
|
static void
|
|
check_cutoff(void *ctx, uint64_t start, uint64_t end, uint64_t count,
|
|
uint64_t total, uint64_t so_far)
|
|
{
|
|
double so_far_pct;
|
|
double **cutoff = ctx;
|
|
|
|
if (count == 0) {
|
|
return;
|
|
}
|
|
|
|
so_far_pct = (double)so_far / total;
|
|
while (so_far_pct >= **cutoff && **cutoff > 0) {
|
|
printf("%9.5f%% : %9.3fus\n", **cutoff * 100, (double)end * 1000 * 1000 / g_tsc_rate);
|
|
(*cutoff)++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count,
|
|
uint64_t total, uint64_t so_far)
|
|
{
|
|
double so_far_pct;
|
|
|
|
if (count == 0) {
|
|
return;
|
|
}
|
|
|
|
so_far_pct = (double)so_far * 100 / total;
|
|
printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n",
|
|
(double)start * 1000 * 1000 / g_tsc_rate,
|
|
(double)end * 1000 * 1000 / g_tsc_rate,
|
|
so_far_pct, count);
|
|
}
|
|
|
|
static void
|
|
print_performance(void)
|
|
{
|
|
uint64_t total_io_completed, total_io_tsc;
|
|
double io_per_second, mb_per_second, average_latency, min_latency, max_latency;
|
|
double sum_ave_latency, min_latency_so_far, max_latency_so_far;
|
|
double total_io_per_second, total_mb_per_second;
|
|
int ns_count;
|
|
struct worker_thread *worker;
|
|
struct ns_worker_ctx *ns_ctx;
|
|
|
|
total_io_per_second = 0;
|
|
total_mb_per_second = 0;
|
|
total_io_completed = 0;
|
|
total_io_tsc = 0;
|
|
min_latency_so_far = (double)UINT64_MAX;
|
|
max_latency_so_far = 0;
|
|
ns_count = 0;
|
|
|
|
printf("========================================================\n");
|
|
printf("%103s\n", "Latency(us)");
|
|
printf("%-55s: %10s %10s %10s %10s %10s\n",
|
|
"Device Information", "IOPS", "MB/s", "Average", "min", "max");
|
|
|
|
worker = g_workers;
|
|
while (worker) {
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx) {
|
|
if (ns_ctx->io_completed != 0) {
|
|
io_per_second = (double)ns_ctx->io_completed / g_time_in_sec;
|
|
mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024);
|
|
average_latency = ((double)ns_ctx->total_tsc / ns_ctx->io_completed) * 1000 * 1000 / g_tsc_rate;
|
|
min_latency = (double)ns_ctx->min_tsc * 1000 * 1000 / g_tsc_rate;
|
|
if (min_latency < min_latency_so_far) {
|
|
min_latency_so_far = min_latency;
|
|
}
|
|
|
|
max_latency = (double)ns_ctx->max_tsc * 1000 * 1000 / g_tsc_rate;
|
|
if (max_latency > max_latency_so_far) {
|
|
max_latency_so_far = max_latency;
|
|
}
|
|
|
|
printf("%-43.43s from core %u: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
|
|
ns_ctx->entry->name, worker->lcore,
|
|
io_per_second, mb_per_second,
|
|
average_latency, min_latency, max_latency);
|
|
total_io_per_second += io_per_second;
|
|
total_mb_per_second += mb_per_second;
|
|
total_io_completed += ns_ctx->io_completed;
|
|
total_io_tsc += ns_ctx->total_tsc;
|
|
ns_count++;
|
|
}
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
worker = worker->next;
|
|
}
|
|
|
|
if (ns_count != 0 && total_io_completed) {
|
|
sum_ave_latency = ((double)total_io_tsc / total_io_completed) * 1000 * 1000 / g_tsc_rate;
|
|
printf("========================================================\n");
|
|
printf("%-55s: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
|
|
"Total", total_io_per_second, total_mb_per_second,
|
|
sum_ave_latency, min_latency_so_far, max_latency_so_far);
|
|
printf("\n");
|
|
}
|
|
|
|
if (g_latency_sw_tracking_level == 0 || total_io_completed == 0) {
|
|
return;
|
|
}
|
|
|
|
worker = g_workers;
|
|
while (worker) {
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx) {
|
|
const double *cutoff = g_latency_cutoffs;
|
|
|
|
printf("Summary latency data for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
|
|
printf("=================================================================================\n");
|
|
|
|
spdk_histogram_data_iterate(ns_ctx->histogram, check_cutoff, &cutoff);
|
|
|
|
printf("\n");
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
worker = worker->next;
|
|
}
|
|
|
|
if (g_latency_sw_tracking_level == 1) {
|
|
return;
|
|
}
|
|
|
|
worker = g_workers;
|
|
while (worker) {
|
|
ns_ctx = worker->ns_ctx;
|
|
while (ns_ctx) {
|
|
printf("Latency histogram for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
|
|
printf("==============================================================================\n");
|
|
printf(" Range in us Cumulative IO count\n");
|
|
|
|
spdk_histogram_data_iterate(ns_ctx->histogram, print_bucket, NULL);
|
|
printf("\n");
|
|
ns_ctx = ns_ctx->next;
|
|
}
|
|
worker = worker->next;
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
print_latency_page(struct ctrlr_entry *entry)
|
|
{
|
|
int i;
|
|
|
|
printf("\n");
|
|
printf("%s\n", entry->name);
|
|
printf("--------------------------------------------------------\n");
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
if (entry->latency_page->buckets_32us[i]) {
|
|
printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]);
|
|
}
|
|
}
|
|
for (i = 0; i < 31; i++) {
|
|
if (entry->latency_page->buckets_1ms[i]) {
|
|
printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]);
|
|
}
|
|
}
|
|
for (i = 0; i < 31; i++) {
|
|
if (entry->latency_page->buckets_32ms[i])
|
|
printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32,
|
|
entry->latency_page->buckets_32ms[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page)
|
|
{
|
|
struct ctrlr_entry *ctrlr;
|
|
|
|
printf("%s Latency Statistics:\n", op_name);
|
|
printf("========================================================\n");
|
|
ctrlr = g_controllers;
|
|
while (ctrlr) {
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG,
|
|
ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), 0,
|
|
enable_latency_tracking_complete,
|
|
NULL)) {
|
|
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
g_outstanding_commands++;
|
|
} else {
|
|
printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name);
|
|
}
|
|
ctrlr = ctrlr->next;
|
|
}
|
|
|
|
while (g_outstanding_commands) {
|
|
ctrlr = g_controllers;
|
|
while (ctrlr) {
|
|
spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr);
|
|
ctrlr = ctrlr->next;
|
|
}
|
|
}
|
|
|
|
ctrlr = g_controllers;
|
|
while (ctrlr) {
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
|
|
print_latency_page(ctrlr);
|
|
}
|
|
ctrlr = ctrlr->next;
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
print_stats(void)
|
|
{
|
|
print_performance();
|
|
if (g_latency_ssd_tracking_enable) {
|
|
if (g_rw_percentage != 0) {
|
|
print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
|
|
}
|
|
if (g_rw_percentage != 100) {
|
|
print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
unregister_trids(void)
|
|
{
|
|
struct trid_entry *trid_entry, *tmp;
|
|
|
|
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
|
|
TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
|
|
free(trid_entry);
|
|
}
|
|
}
|
|
|
|
static int
|
|
add_trid(const char *trid_str)
|
|
{
|
|
struct trid_entry *trid_entry;
|
|
struct spdk_nvme_transport_id *trid;
|
|
char *ns;
|
|
|
|
trid_entry = calloc(1, sizeof(*trid_entry));
|
|
if (trid_entry == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
trid = &trid_entry->trid;
|
|
trid->trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
|
|
|
|
if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
|
|
fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
|
|
free(trid_entry);
|
|
return 1;
|
|
}
|
|
|
|
ns = strcasestr(trid_str, "ns:");
|
|
if (ns) {
|
|
char nsid_str[6]; /* 5 digits maximum in an nsid */
|
|
int len;
|
|
int nsid;
|
|
|
|
ns += 3;
|
|
|
|
len = strcspn(ns, " \t\n");
|
|
if (len > 5) {
|
|
fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n");
|
|
free(trid_entry);
|
|
return 1;
|
|
}
|
|
|
|
memcpy(nsid_str, ns, len);
|
|
nsid_str[len] = '\0';
|
|
|
|
nsid = spdk_strtol(nsid_str, 10);
|
|
if (nsid <= 0 || nsid > 65535) {
|
|
fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n");
|
|
free(trid_entry);
|
|
return 1;
|
|
}
|
|
|
|
trid_entry->nsid = (uint16_t)nsid;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
|
|
return 0;
|
|
}
|
|
|
|
static size_t
|
|
parse_next_key(const char **str, char *key, char *val, size_t key_buf_size,
|
|
size_t val_buf_size)
|
|
{
|
|
const char *sep;
|
|
const char *separator = ", \t\n";
|
|
size_t key_len, val_len;
|
|
|
|
*str += strspn(*str, separator);
|
|
|
|
sep = strchr(*str, '=');
|
|
if (!sep) {
|
|
fprintf(stderr, "Key without '=' separator\n");
|
|
return 0;
|
|
}
|
|
|
|
key_len = sep - *str;
|
|
if (key_len >= key_buf_size) {
|
|
fprintf(stderr, "Key length %zu is greater than maximum allowed %zu\n",
|
|
key_len, key_buf_size - 1);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(key, *str, key_len);
|
|
key[key_len] = '\0';
|
|
|
|
*str += key_len + 1; /* Skip key */
|
|
val_len = strcspn(*str, separator);
|
|
if (val_len == 0) {
|
|
fprintf(stderr, "Key without value\n");
|
|
return 0;
|
|
}
|
|
|
|
if (val_len >= val_buf_size) {
|
|
fprintf(stderr, "Value length %zu is greater than maximum allowed %zu\n",
|
|
val_len, val_buf_size - 1);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(val, *str, val_len);
|
|
val[val_len] = '\0';
|
|
|
|
*str += val_len;
|
|
|
|
return val_len;
|
|
}
|
|
|
|
static int
|
|
parse_metadata(const char *metacfg_str)
|
|
{
|
|
const char *str;
|
|
size_t val_len;
|
|
char key[32];
|
|
char val[1024];
|
|
|
|
if (metacfg_str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
str = metacfg_str;
|
|
|
|
while (*str != '\0') {
|
|
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
|
|
if (val_len == 0) {
|
|
fprintf(stderr, "Failed to parse metadata\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcmp(key, "PRACT") == 0) {
|
|
if (*val == '1') {
|
|
g_metacfg_prchk_flags = SPDK_NVME_IO_FLAGS_PRACT;
|
|
}
|
|
} else if (strcmp(key, "PRCHK") == 0) {
|
|
if (strstr(val, "GUARD") != NULL) {
|
|
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
|
|
}
|
|
if (strstr(val, "REFTAG") != NULL) {
|
|
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
|
|
}
|
|
if (strstr(val, "APPTAG") != NULL) {
|
|
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_APPTAG;
|
|
}
|
|
} else {
|
|
fprintf(stderr, "Unknown key '%s'\n", key);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_args(int argc, char **argv)
|
|
{
|
|
const char *workload_type;
|
|
int op;
|
|
bool mix_specified = false;
|
|
long int val;
|
|
|
|
/* default value */
|
|
g_queue_depth = 0;
|
|
g_io_size_bytes = 0;
|
|
workload_type = NULL;
|
|
g_time_in_sec = 0;
|
|
g_rw_percentage = -1;
|
|
g_core_mask = NULL;
|
|
g_max_completions = 0;
|
|
|
|
while ((op = getopt(argc, argv, "c:e:i:lm:o:q:r:s:t:w:DHILM:")) != -1) {
|
|
switch (op) {
|
|
case 'i':
|
|
case 'm':
|
|
case 'o':
|
|
case 'q':
|
|
case 's':
|
|
case 't':
|
|
case 'M':
|
|
val = spdk_strtol(optarg, 10);
|
|
if (val < 0) {
|
|
fprintf(stderr, "Converting a string to integer failed\n");
|
|
return val;
|
|
}
|
|
switch (op) {
|
|
case 'i':
|
|
g_shm_id = val;
|
|
break;
|
|
case 'm':
|
|
g_max_completions = val;
|
|
break;
|
|
case 'o':
|
|
g_io_size_bytes = val;
|
|
break;
|
|
case 'q':
|
|
g_queue_depth = val;
|
|
break;
|
|
case 's':
|
|
g_dpdk_mem = val;
|
|
break;
|
|
case 't':
|
|
g_time_in_sec = val;
|
|
break;
|
|
case 'M':
|
|
g_rw_percentage = val;
|
|
mix_specified = true;
|
|
break;
|
|
}
|
|
break;
|
|
case 'c':
|
|
g_core_mask = optarg;
|
|
break;
|
|
case 'e':
|
|
if (parse_metadata(optarg)) {
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'l':
|
|
g_latency_ssd_tracking_enable = true;
|
|
break;
|
|
case 'r':
|
|
if (add_trid(optarg)) {
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'w':
|
|
workload_type = optarg;
|
|
break;
|
|
case 'D':
|
|
g_disable_sq_cmb = 1;
|
|
break;
|
|
case 'H':
|
|
g_header_digest = 1;
|
|
break;
|
|
case 'I':
|
|
g_data_digest = 1;
|
|
break;
|
|
case 'L':
|
|
g_latency_sw_tracking_level++;
|
|
break;
|
|
default:
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (!g_queue_depth) {
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
if (!g_io_size_bytes) {
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
if (!workload_type) {
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
if (!g_time_in_sec) {
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
if (strcmp(workload_type, "read") &&
|
|
strcmp(workload_type, "write") &&
|
|
strcmp(workload_type, "randread") &&
|
|
strcmp(workload_type, "randwrite") &&
|
|
strcmp(workload_type, "rw") &&
|
|
strcmp(workload_type, "randrw")) {
|
|
fprintf(stderr,
|
|
"io pattern type must be one of\n"
|
|
"(read, write, randread, randwrite, rw, randrw)\n");
|
|
return 1;
|
|
}
|
|
|
|
if (!strcmp(workload_type, "read") ||
|
|
!strcmp(workload_type, "randread")) {
|
|
g_rw_percentage = 100;
|
|
}
|
|
|
|
if (!strcmp(workload_type, "write") ||
|
|
!strcmp(workload_type, "randwrite")) {
|
|
g_rw_percentage = 0;
|
|
}
|
|
|
|
if (!strcmp(workload_type, "read") ||
|
|
!strcmp(workload_type, "randread") ||
|
|
!strcmp(workload_type, "write") ||
|
|
!strcmp(workload_type, "randwrite")) {
|
|
if (mix_specified) {
|
|
fprintf(stderr, "Ignoring -M option... Please use -M option"
|
|
" only when using rw or randrw.\n");
|
|
}
|
|
}
|
|
|
|
if (!strcmp(workload_type, "rw") ||
|
|
!strcmp(workload_type, "randrw")) {
|
|
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
|
|
fprintf(stderr,
|
|
"-M must be specified to value from 0 to 100 "
|
|
"for rw or randrw.\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (!strcmp(workload_type, "read") ||
|
|
!strcmp(workload_type, "write") ||
|
|
!strcmp(workload_type, "rw")) {
|
|
g_is_random = 0;
|
|
} else {
|
|
g_is_random = 1;
|
|
}
|
|
|
|
if (TAILQ_EMPTY(&g_trid_list)) {
|
|
/* If no transport IDs specified, default to enumerating all local PCIe devices */
|
|
add_trid("trtype:PCIe");
|
|
} else {
|
|
struct trid_entry *trid_entry, *trid_entry_tmp;
|
|
|
|
g_no_pci = true;
|
|
/* check whether there is local PCIe type */
|
|
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
|
|
if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
g_no_pci = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_aio_optind = optind;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
register_workers(void)
|
|
{
|
|
uint32_t i;
|
|
struct worker_thread *worker;
|
|
|
|
g_workers = NULL;
|
|
g_num_workers = 0;
|
|
|
|
SPDK_ENV_FOREACH_CORE(i) {
|
|
worker = calloc(1, sizeof(*worker));
|
|
if (worker == NULL) {
|
|
fprintf(stderr, "Unable to allocate worker\n");
|
|
return -1;
|
|
}
|
|
|
|
worker->lcore = i;
|
|
worker->next = g_workers;
|
|
g_workers = worker;
|
|
g_num_workers++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
unregister_workers(void)
|
|
{
|
|
struct worker_thread *worker = g_workers;
|
|
|
|
/* Free namespace context and worker thread */
|
|
while (worker) {
|
|
struct worker_thread *next_worker = worker->next;
|
|
struct ns_worker_ctx *ns_ctx = worker->ns_ctx;
|
|
|
|
while (ns_ctx) {
|
|
struct ns_worker_ctx *next_ns_ctx = ns_ctx->next;
|
|
spdk_histogram_data_free(ns_ctx->histogram);
|
|
free(ns_ctx);
|
|
ns_ctx = next_ns_ctx;
|
|
}
|
|
|
|
free(worker);
|
|
worker = next_worker;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n",
|
|
trid->traddr, trid->trsvcid,
|
|
trid->subnqn);
|
|
} else {
|
|
if (g_disable_sq_cmb) {
|
|
opts->use_cmb_sqs = false;
|
|
}
|
|
|
|
printf("Attaching to NVMe Controller at %s\n",
|
|
trid->traddr);
|
|
}
|
|
|
|
/* Set io_queue_size to UINT16_MAX, NVMe driver
|
|
* will then reduce this to MQES to maximize
|
|
* the io_queue_size as much as possible.
|
|
*/
|
|
opts->io_queue_size = UINT16_MAX;
|
|
|
|
/* Set the header and data_digest */
|
|
opts->header_digest = g_header_digest;
|
|
opts->data_digest = g_data_digest;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct trid_entry *trid_entry = cb_ctx;
|
|
struct spdk_pci_addr pci_addr;
|
|
struct spdk_pci_device *pci_dev;
|
|
struct spdk_pci_id pci_id;
|
|
|
|
g_controllers_found++;
|
|
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
|
|
trid->traddr, trid->trsvcid,
|
|
trid->subnqn);
|
|
} else {
|
|
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
|
|
return;
|
|
}
|
|
|
|
pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
|
|
if (!pci_dev) {
|
|
return;
|
|
}
|
|
|
|
pci_id = spdk_pci_device_get_id(pci_dev);
|
|
|
|
printf("Attached to NVMe Controller at %s [%04x:%04x]\n",
|
|
trid->traddr,
|
|
pci_id.vendor_id, pci_id.device_id);
|
|
}
|
|
|
|
register_ctrlr(ctrlr, trid_entry);
|
|
}
|
|
|
|
static int
|
|
register_controllers(void)
|
|
{
|
|
struct trid_entry *trid_entry;
|
|
|
|
printf("Initializing NVMe Controllers\n");
|
|
|
|
TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
|
|
if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
|
|
fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
|
|
trid_entry->trid.traddr);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
unregister_controllers(void)
|
|
{
|
|
struct ctrlr_entry *entry = g_controllers;
|
|
|
|
while (entry) {
|
|
struct ctrlr_entry *next = entry->next;
|
|
spdk_dma_free(entry->latency_page);
|
|
if (g_latency_ssd_tracking_enable &&
|
|
spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) {
|
|
set_latency_tracking_feature(entry->ctrlr, false);
|
|
}
|
|
spdk_nvme_detach(entry->ctrlr);
|
|
free(entry);
|
|
entry = next;
|
|
}
|
|
}
|
|
|
|
static int
|
|
associate_workers_with_ns(void)
|
|
{
|
|
struct ns_entry *entry = g_namespaces;
|
|
struct worker_thread *worker = g_workers;
|
|
struct ns_worker_ctx *ns_ctx;
|
|
int i, count;
|
|
|
|
count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (entry == NULL) {
|
|
break;
|
|
}
|
|
|
|
ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
|
|
if (!ns_ctx) {
|
|
return -1;
|
|
}
|
|
|
|
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
|
|
ns_ctx->min_tsc = UINT64_MAX;
|
|
ns_ctx->entry = entry;
|
|
ns_ctx->next = worker->ns_ctx;
|
|
ns_ctx->histogram = spdk_histogram_data_alloc();
|
|
worker->ns_ctx = ns_ctx;
|
|
|
|
worker = worker->next;
|
|
if (worker == NULL) {
|
|
worker = g_workers;
|
|
}
|
|
|
|
entry = entry->next;
|
|
if (entry == NULL) {
|
|
entry = g_namespaces;
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
nvme_poll_ctrlrs(void *arg)
|
|
{
|
|
struct ctrlr_entry *entry;
|
|
int oldstate;
|
|
|
|
spdk_unaffinitize_thread();
|
|
|
|
while (true) {
|
|
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
|
|
|
|
entry = g_controllers;
|
|
while (entry) {
|
|
if (entry->trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr);
|
|
}
|
|
entry = entry->next;
|
|
}
|
|
|
|
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
|
|
|
|
/* This is a pthread cancellation point and cannot be removed. */
|
|
sleep(1);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int rc;
|
|
struct worker_thread *worker, *master_worker;
|
|
unsigned master_core;
|
|
struct spdk_env_opts opts;
|
|
pthread_t thread_id = 0;
|
|
|
|
rc = parse_args(argc, argv);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
spdk_env_opts_init(&opts);
|
|
opts.name = "perf";
|
|
opts.shm_id = g_shm_id;
|
|
if (g_core_mask) {
|
|
opts.core_mask = g_core_mask;
|
|
}
|
|
|
|
if (g_dpdk_mem) {
|
|
opts.mem_size = g_dpdk_mem;
|
|
}
|
|
if (g_no_pci) {
|
|
opts.no_pci = g_no_pci;
|
|
}
|
|
if (spdk_env_init(&opts) < 0) {
|
|
fprintf(stderr, "Unable to initialize SPDK env\n");
|
|
rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
g_tsc_rate = spdk_get_ticks_hz();
|
|
|
|
if (register_workers() != 0) {
|
|
rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
#if HAVE_LIBAIO
|
|
if (register_aio_files(argc, argv) != 0) {
|
|
rc = -1;
|
|
goto cleanup;
|
|
}
|
|
#endif
|
|
|
|
if (register_controllers() != 0) {
|
|
rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (g_warn) {
|
|
printf("WARNING: Some requested NVMe devices were skipped\n");
|
|
}
|
|
|
|
if (g_num_namespaces == 0) {
|
|
fprintf(stderr, "No valid NVMe controllers or AIO devices found\n");
|
|
return 0;
|
|
}
|
|
|
|
rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL);
|
|
if (rc != 0) {
|
|
fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
if (associate_workers_with_ns() != 0) {
|
|
rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
printf("Initialization complete. Launching workers.\n");
|
|
|
|
/* Launch all of the slave workers */
|
|
master_core = spdk_env_get_current_core();
|
|
master_worker = NULL;
|
|
worker = g_workers;
|
|
while (worker != NULL) {
|
|
if (worker->lcore != master_core) {
|
|
spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
|
|
} else {
|
|
assert(master_worker == NULL);
|
|
master_worker = worker;
|
|
}
|
|
worker = worker->next;
|
|
}
|
|
|
|
assert(master_worker != NULL);
|
|
rc = work_fn(master_worker);
|
|
|
|
spdk_env_thread_wait_all();
|
|
|
|
print_stats();
|
|
|
|
cleanup:
|
|
if (pthread_cancel(thread_id) == 0) {
|
|
pthread_join(thread_id, NULL);
|
|
}
|
|
unregister_trids();
|
|
unregister_namespaces();
|
|
unregister_controllers();
|
|
unregister_workers();
|
|
|
|
if (rc != 0) {
|
|
fprintf(stderr, "%s: errors occured\n", argv[0]);
|
|
}
|
|
|
|
return rc;
|
|
}
|