Shuhei Matsumoto 0f9dc2af87 example/nvme: Improve error check of input parsing by spdk_strtol
Change-Id: Ied40ba8d3e342f2374c7c8c8b46ac11e9502db4f
Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-on: https://review.gerrithub.io/c/441630
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: wuzhouhui <wuzhouhui@kingsoft.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
2019-01-29 17:39:18 +00:00

1917 lines
46 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/fd.h"
#include "spdk/nvme.h"
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
#include "spdk/histogram_data.h"
#include "spdk/endian.h"
#include "spdk/dif.h"
#if HAVE_LIBAIO
#include <libaio.h>
#endif
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
enum spdk_nvme_transport_type trtype;
struct spdk_nvme_intel_rw_latency_page *latency_page;
struct ctrlr_entry *next;
char name[1024];
};
enum entry_type {
ENTRY_TYPE_NVME_NS,
ENTRY_TYPE_AIO_FILE,
};
struct ns_fn_table;
struct ns_entry {
enum entry_type type;
const struct ns_fn_table *fn_table;
union {
struct {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
} nvme;
#if HAVE_LIBAIO
struct {
int fd;
} aio;
#endif
} u;
struct ns_entry *next;
uint32_t io_size_blocks;
uint32_t num_io_requests;
uint64_t size_in_ios;
uint32_t block_size;
uint32_t md_size;
bool md_interleave;
bool pi_loc;
enum spdk_nvme_pi_type pi_type;
uint32_t io_flags;
char name[1024];
};
static const double g_latency_cutoffs[] = {
0.01,
0.10,
0.25,
0.50,
0.75,
0.90,
0.95,
0.98,
0.99,
0.995,
0.999,
0.9999,
0.99999,
0.999999,
0.9999999,
-1,
};
struct ns_worker_ctx {
struct ns_entry *entry;
uint64_t io_completed;
uint64_t total_tsc;
uint64_t min_tsc;
uint64_t max_tsc;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
union {
struct {
struct spdk_nvme_qpair *qpair;
} nvme;
#if HAVE_LIBAIO
struct {
struct io_event *events;
io_context_t ctx;
} aio;
#endif
} u;
struct ns_worker_ctx *next;
struct spdk_histogram_data *histogram;
};
struct perf_task {
struct ns_worker_ctx *ns_ctx;
struct iovec iov;
struct iovec md_iov;
uint64_t submit_tsc;
bool is_read;
struct spdk_dif_ctx dif_ctx;
#if HAVE_LIBAIO
struct iocb iocb;
#endif
};
struct worker_thread {
struct ns_worker_ctx *ns_ctx;
struct worker_thread *next;
unsigned lcore;
};
struct ns_fn_table {
void (*setup_payload)(struct perf_task *task, uint8_t pattern);
int (*submit_io)(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios);
void (*check_io)(struct ns_worker_ctx *ns_ctx);
void (*verify_io)(struct perf_task *task, struct ns_entry *entry);
int (*init_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx);
void (*cleanup_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx);
};
static int g_outstanding_commands;
static bool g_latency_ssd_tracking_enable = false;
static int g_latency_sw_tracking_level = 0;
static struct ctrlr_entry *g_controllers = NULL;
static int g_controllers_found = 0;
static struct ns_entry *g_namespaces = NULL;
static int g_num_namespaces = 0;
static struct worker_thread *g_workers = NULL;
static int g_num_workers = 0;
static uint64_t g_tsc_rate;
static uint32_t g_io_align = 0x200;
static uint32_t g_io_size_bytes;
static uint32_t g_max_io_md_size;
static uint32_t g_max_io_size_blocks;
static uint32_t g_metacfg_pract_flag;
static uint32_t g_metacfg_prchk_flags;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
static uint32_t g_max_completions;
static int g_dpdk_mem;
static int g_shm_id = -1;
static uint32_t g_disable_sq_cmb;
static bool g_no_pci;
static bool g_warn;
static bool g_header_digest;
static bool g_data_digest;
static const char *g_core_mask;
struct trid_entry {
struct spdk_nvme_transport_id trid;
uint16_t nsid;
TAILQ_ENTRY(trid_entry) tailq;
};
static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
static int g_aio_optind; /* Index of first AIO filename in argv */
static void
task_complete(struct perf_task *task);
#if HAVE_LIBAIO
static void
aio_setup_payload(struct perf_task *task, uint8_t pattern)
{
task->iov.iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
task->iov.iov_len = g_io_size_bytes;
if (task->iov.iov_base == NULL) {
fprintf(stderr, "spdk_dma_zmalloc() for task->buf failed\n");
exit(1);
}
memset(task->iov.iov_base, pattern, task->iov.iov_len);
}
static int
aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd,
struct iovec *iov, uint64_t offset, void *cb_ctx)
{
iocb->aio_fildes = fd;
iocb->aio_reqprio = 0;
iocb->aio_lio_opcode = cmd;
iocb->u.c.buf = iov->iov_base;
iocb->u.c.nbytes = iov->iov_len;
iocb->u.c.offset = offset * iov->iov_len;
iocb->data = cb_ctx;
if (io_submit(aio_ctx, 1, &iocb) < 0) {
printf("io_submit");
return -1;
}
return 0;
}
static int
aio_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios)
{
if (task->is_read) {
return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD,
&task->iov, offset_in_ios, task);
} else {
return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE,
&task->iov, offset_in_ios, task);
}
}
static void
aio_check_io(struct ns_worker_ctx *ns_ctx)
{
int count, i;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
count = io_getevents(ns_ctx->u.aio.ctx, 1, g_queue_depth, ns_ctx->u.aio.events, &timeout);
if (count < 0) {
fprintf(stderr, "io_getevents error\n");
exit(1);
}
for (i = 0; i < count; i++) {
task_complete(ns_ctx->u.aio.events[i].data);
}
}
static void
aio_verify_io(struct perf_task *task, struct ns_entry *entry)
{
}
static int
aio_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event));
if (!ns_ctx->u.aio.events) {
return -1;
}
ns_ctx->u.aio.ctx = 0;
if (io_setup(g_queue_depth, &ns_ctx->u.aio.ctx) < 0) {
free(ns_ctx->u.aio.events);
perror("io_setup");
return -1;
}
return 0;
}
static void
aio_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
io_destroy(ns_ctx->u.aio.ctx);
free(ns_ctx->u.aio.events);
}
static const struct ns_fn_table aio_fn_table = {
.setup_payload = aio_setup_payload,
.submit_io = aio_submit_io,
.check_io = aio_check_io,
.verify_io = aio_verify_io,
.init_ns_worker_ctx = aio_init_ns_worker_ctx,
.cleanup_ns_worker_ctx = aio_cleanup_ns_worker_ctx,
};
static int
register_aio_file(const char *path)
{
struct ns_entry *entry;
int flags, fd;
uint64_t size;
uint32_t blklen;
if (g_rw_percentage == 100) {
flags = O_RDONLY;
} else if (g_rw_percentage == 0) {
flags = O_WRONLY;
} else {
flags = O_RDWR;
}
flags |= O_DIRECT;
fd = open(path, flags);
if (fd < 0) {
fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno));
return -1;
}
size = spdk_fd_get_size(fd);
if (size == 0) {
fprintf(stderr, "Could not determine size of AIO device %s\n", path);
close(fd);
return -1;
}
blklen = spdk_fd_get_blocklen(fd);
if (blklen == 0) {
fprintf(stderr, "Could not determine block size of AIO device %s\n", path);
close(fd);
return -1;
}
/*
* TODO: This should really calculate the LCM of the current g_io_align and blklen.
* For now, it's fairly safe to just assume all block sizes are powers of 2.
*/
if (g_io_align < blklen) {
g_io_align = blklen;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
close(fd);
perror("aio ns_entry malloc");
return -1;
}
entry->type = ENTRY_TYPE_AIO_FILE;
entry->fn_table = &aio_fn_table;
entry->u.aio.fd = fd;
entry->size_in_ios = size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / blklen;
snprintf(entry->name, sizeof(entry->name), "%s", path);
g_num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
return 0;
}
static int
register_aio_files(int argc, char **argv)
{
int i;
/* Treat everything after the options as files for AIO */
for (i = g_aio_optind; i < argc; i++) {
if (register_aio_file(argv[i]) != 0) {
return 1;
}
}
return 0;
}
#endif /* HAVE_LIBAIO */
static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
static void
nvme_setup_payload(struct perf_task *task, uint8_t pattern)
{
uint32_t max_io_size_bytes, max_io_md_size;
/* maximum extended lba format size from all active namespace,
* it's same with g_io_size_bytes for namespace without metadata.
*/
max_io_size_bytes = g_io_size_bytes + g_max_io_md_size * g_max_io_size_blocks;
task->iov.iov_base = spdk_dma_zmalloc(max_io_size_bytes, g_io_align, NULL);
task->iov.iov_len = max_io_size_bytes;
if (task->iov.iov_base == NULL) {
fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
exit(1);
}
memset(task->iov.iov_base, pattern, task->iov.iov_len);
max_io_md_size = g_max_io_md_size * g_max_io_size_blocks;
if (max_io_md_size != 0) {
task->md_iov.iov_base = spdk_dma_zmalloc(max_io_md_size, g_io_align, NULL);
task->md_iov.iov_len = max_io_md_size;
if (task->md_iov.iov_base == NULL) {
fprintf(stderr, "task->md_buf spdk_dma_zmalloc failed\n");
spdk_dma_free(task->iov.iov_base);
exit(1);
}
}
}
static int
nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios)
{
uint64_t lba;
int rc;
enum dif_mode {
DIF_MODE_NONE = 0,
DIF_MODE_DIF = 1,
DIF_MODE_DIX = 2,
} mode = DIF_MODE_NONE;
lba = offset_in_ios * entry->io_size_blocks;
if (entry->md_size != 0 && !(entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) {
if (entry->md_interleave) {
mode = DIF_MODE_DIF;
} else {
mode = DIF_MODE_DIX;
}
}
if (mode != DIF_MODE_NONE) {
rc = spdk_dif_ctx_init(&task->dif_ctx, entry->block_size, entry->md_size,
entry->md_interleave, entry->pi_loc,
(enum spdk_dif_type)entry->pi_type, entry->io_flags,
lba, 0xFFFF, (uint16_t)entry->io_size_blocks);
if (rc != 0) {
fprintf(stderr, "Initialization of DIF context failed\n");
exit(1);
}
}
if (task->is_read) {
return spdk_nvme_ns_cmd_read_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair,
task->iov.iov_base, task->md_iov.iov_base,
lba,
entry->io_size_blocks, io_complete,
task, entry->io_flags,
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
} else {
switch (mode) {
case DIF_MODE_DIF:
rc = spdk_dif_generate(&task->iov, 1, entry->io_size_blocks, &task->dif_ctx);
if (rc != 0) {
fprintf(stderr, "Generation of DIF failed\n");
return rc;
}
break;
case DIF_MODE_DIX:
rc = spdk_dix_generate(&task->iov, 1, &task->md_iov, entry->io_size_blocks,
&task->dif_ctx);
if (rc != 0) {
fprintf(stderr, "Generation of DIX failed\n");
return rc;
}
break;
default:
break;
}
return spdk_nvme_ns_cmd_write_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair,
task->iov.iov_base, task->md_iov.iov_base,
lba,
entry->io_size_blocks, io_complete,
task, entry->io_flags,
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
}
}
static void
nvme_check_io(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_qpair_process_completions(ns_ctx->u.nvme.qpair, g_max_completions);
}
static void
nvme_verify_io(struct perf_task *task, struct ns_entry *entry)
{
struct spdk_dif_error err_blk = {};
int rc;
if (!task->is_read || entry->md_size == 0 ||
(entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) {
return;
}
if (entry->md_interleave) {
rc = spdk_dif_verify(&task->iov, 1, entry->io_size_blocks, &task->dif_ctx,
&err_blk);
if (rc != 0) {
fprintf(stderr, "DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
}
} else {
rc = spdk_dix_verify(&task->iov, 1, &task->md_iov, entry->io_size_blocks,
&task->dif_ctx, &err_blk);
if (rc != 0) {
fprintf(stderr, "DIX error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
}
}
}
/*
* TODO: If a controller has multiple namespaces, they could all use the same queue.
* For now, give each namespace/thread combination its own queue.
*/
static int
nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
struct spdk_nvme_io_qpair_opts opts;
struct ns_entry *entry = ns_ctx->entry;
spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->u.nvme.ctrlr, &opts, sizeof(opts));
if (opts.io_queue_requests < entry->num_io_requests) {
opts.io_queue_requests = entry->num_io_requests;
}
ns_ctx->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(entry->u.nvme.ctrlr, &opts,
sizeof(opts));
if (!ns_ctx->u.nvme.qpair) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return -1;
}
return 0;
}
static void
nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair);
}
static const struct ns_fn_table nvme_fn_table = {
.setup_payload = nvme_setup_payload,
.submit_io = nvme_submit_io,
.check_io = nvme_check_io,
.verify_io = nvme_verify_io,
.init_ns_worker_ctx = nvme_init_ns_worker_ctx,
.cleanup_ns_worker_ctx = nvme_cleanup_ns_worker_ctx,
};
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t max_xfer_size, entries, ns_size, sector_size;
struct spdk_nvme_io_qpair_opts opts;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
g_warn = true;
return;
}
ns_size = spdk_nvme_ns_get_size(ns);
sector_size = spdk_nvme_ns_get_sector_size(ns);
if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %u / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
g_warn = true;
return;
}
max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
/* NVMe driver may add additional entries based on
* stripe size and maximum transfer size, we assume
* 1 more entry be used for stripe.
*/
entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
if ((g_queue_depth * entries) > opts.io_queue_size) {
printf("controller IO queue size %u less than required\n",
opts.io_queue_size);
printf("Consider using lower queue depth or small IO size because "
"IO requests may be queued at the NVMe driver.\n");
g_warn = true;
}
/* For requests which have children requests, parent request itself
* will also occupy 1 entry.
*/
entries += 1;
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->type = ENTRY_TYPE_NVME_NS;
entry->fn_table = &nvme_fn_table;
entry->u.nvme.ctrlr = ctrlr;
entry->u.nvme.ns = ns;
entry->num_io_requests = g_queue_depth * entries;
entry->size_in_ios = ns_size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / sector_size;
entry->block_size = spdk_nvme_ns_get_extended_sector_size(ns);
entry->md_size = spdk_nvme_ns_get_md_size(ns);
entry->md_interleave = spdk_nvme_ns_supports_extended_lba(ns);
entry->pi_loc = spdk_nvme_ns_get_data(ns)->dps.md_start;
entry->pi_type = spdk_nvme_ns_get_pi_type(ns);
if (spdk_nvme_ns_get_flags(ns) & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
entry->io_flags = g_metacfg_pract_flag | g_metacfg_prchk_flags;
}
if (g_max_io_md_size < entry->md_size) {
g_max_io_md_size = entry->md_size;
}
if (g_max_io_size_blocks < entry->io_size_blocks) {
g_max_io_size_blocks = entry->io_size_blocks;
}
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
}
static void
unregister_namespaces(void)
{
struct ns_entry *entry = g_namespaces;
while (entry) {
struct ns_entry *next = entry->next;
free(entry);
entry = next;
}
}
static void
enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
printf("enable_latency_tracking_complete failed\n");
}
g_outstanding_commands--;
}
static void
set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable)
{
int res;
union spdk_nvme_intel_feat_latency_tracking latency_tracking;
if (enable) {
latency_tracking.bits.enable = 0x01;
} else {
latency_tracking.bits.enable = 0x00;
}
res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING,
latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL);
if (res) {
printf("fail to allocate nvme request.\n");
return;
}
g_outstanding_commands++;
while (g_outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
{
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
uint32_t nsid;
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->latency_page = spdk_dma_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page),
4096, NULL);
if (entry->latency_page == NULL) {
printf("Allocation error (latency page)\n");
exit(1);
}
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
entry->trtype = trid_entry->trid.trtype;
entry->next = g_controllers;
g_controllers = entry;
if (g_latency_ssd_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) {
set_latency_tracking_feature(ctrlr, true);
}
if (trid_entry->nsid == 0) {
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
} else {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid);
if (!ns) {
perror("Namespace does not exist.");
exit(1);
}
register_ns(ctrlr, ns);
}
}
static __thread unsigned int seed = 0;
static void
submit_single_io(struct perf_task *task)
{
uint64_t offset_in_ios;
int rc;
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
struct ns_entry *entry = ns_ctx->entry;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
task->submit_tsc = spdk_get_ticks();
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
task->is_read = true;
} else {
task->is_read = false;
}
rc = entry->fn_table->submit_io(task, ns_ctx, entry, offset_in_ios);
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
} else {
ns_ctx->current_queue_depth++;
}
}
static void
task_complete(struct perf_task *task)
{
struct ns_worker_ctx *ns_ctx;
uint64_t tsc_diff;
struct ns_entry *entry;
ns_ctx = task->ns_ctx;
entry = ns_ctx->entry;
ns_ctx->current_queue_depth--;
ns_ctx->io_completed++;
tsc_diff = spdk_get_ticks() - task->submit_tsc;
ns_ctx->total_tsc += tsc_diff;
if (ns_ctx->min_tsc > tsc_diff) {
ns_ctx->min_tsc = tsc_diff;
}
if (ns_ctx->max_tsc < tsc_diff) {
ns_ctx->max_tsc = tsc_diff;
}
if (g_latency_sw_tracking_level > 0) {
spdk_histogram_data_tally(ns_ctx->histogram, tsc_diff);
}
/* add application level verification for end-to-end data protection */
entry->fn_table->verify_io(task, entry);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (ns_ctx->is_draining) {
spdk_dma_free(task->iov.iov_base);
spdk_dma_free(task->md_iov.iov_base);
free(task);
} else {
submit_single_io(task);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct perf_task *task = ctx;
if (spdk_nvme_cpl_is_error(cpl)) {
fprintf(stderr, "%s completed with error (sct=%d, sc=%d)\n",
task->is_read ? "Read" : "Write",
cpl->status.sct, cpl->status.sc);
}
task_complete(task);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->entry->fn_table->check_io(ns_ctx);
}
static struct perf_task *
allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
task = calloc(1, sizeof(*task));
if (task == NULL) {
fprintf(stderr, "Out of memory allocating tasks\n");
exit(1);
}
ns_ctx->entry->fn_table->setup_payload(task, queue_depth % 8 + 1);
task->ns_ctx = ns_ctx;
return task;
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
while (queue_depth-- > 0) {
task = allocate_task(ns_ctx, queue_depth);
submit_single_io(task);
}
}
static int
init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
return ns_ctx->entry->fn_table->init_ns_worker_ctx(ns_ctx);
}
static void
cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->entry->fn_table->cleanup_ns_worker_ctx(ns_ctx);
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
uint32_t unfinished_ns_ctx;
printf("Starting thread on core %u\n", worker->lcore);
/* Allocate a queue pair for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
if (init_ns_worker_ctx(ns_ctx) != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
return 1;
}
ns_ctx = ns_ctx->next;
}
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
/* Submit initial I/O for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
submit_io(ns_ctx, g_queue_depth);
ns_ctx = ns_ctx->next;
}
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
check_io(ns_ctx);
ns_ctx = ns_ctx->next;
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
/* drain the io of each ns_ctx in round robin to make the fairness */
do {
unfinished_ns_ctx = 0;
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
/* first time will enter into this if case */
if (!ns_ctx->is_draining) {
ns_ctx->is_draining = true;
}
if (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
if (ns_ctx->current_queue_depth == 0) {
cleanup_ns_worker_ctx(ns_ctx);
} else {
unfinished_ns_ctx++;
}
}
ns_ctx = ns_ctx->next;
}
} while (unfinished_ns_ctx > 0);
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
#if HAVE_LIBAIO
printf(" [AIO device(s)]...");
#endif
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-o io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-L enable latency tracking via sw, default: disabled]\n");
printf("\t\t-L for latency summary, -LL for detailed histogram\n");
printf("\t[-l enable latency tracking via ssd (if supported), default: disabled]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-c core mask for I/O submission/completion.]\n");
printf("\t\t(default: 1)\n");
printf("\t[-D disable submission queue in controller memory buffer, default: enabled]\n");
printf("\t[-H enable header digest for TCP transport, default: disabled]\n");
printf("\t[-I enable data digest for TCP transport, default: disabled]\n");
printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n");
printf("\t Format: 'key:value [key:value] ...'\n");
printf("\t Keys:\n");
printf("\t trtype Transport type (e.g. PCIe, RDMA)\n");
printf("\t adrfam Address family (e.g. IPv4, IPv6)\n");
printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n");
printf("\t trsvcid Transport service identifier (e.g. 4420)\n");
printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n");
printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
printf("\t[-e metadata configuration]\n");
printf("\t Keys:\n");
printf("\t PRACT Protection Information Action bit (PRACT=1 or PRACT=0)\n");
printf("\t PRCHK Control of Protection Information Checking (PRCHK=GUARD|REFTAG|APPTAG)\n");
printf("\t Example: -e 'PRACT=0,PRCHK=GUARD|REFTAG|APPTAG'\n");
printf("\t -e 'PRACT=1,PRCHK=GUARD'\n");
printf("\t[-s DPDK huge memory size in MB.]\n");
printf("\t[-m max completions per poll]\n");
printf("\t\t(default: 0 - unlimited)\n");
printf("\t[-i shared memory group ID]\n");
}
static void
check_cutoff(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
double **cutoff = ctx;
if (count == 0) {
return;
}
so_far_pct = (double)so_far / total;
while (so_far_pct >= **cutoff && **cutoff > 0) {
printf("%9.5f%% : %9.3fus\n", **cutoff * 100, (double)end * 1000 * 1000 / g_tsc_rate);
(*cutoff)++;
}
}
static void
print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
if (count == 0) {
return;
}
so_far_pct = (double)so_far * 100 / total;
printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n",
(double)start * 1000 * 1000 / g_tsc_rate,
(double)end * 1000 * 1000 / g_tsc_rate,
so_far_pct, count);
}
static void
print_performance(void)
{
uint64_t total_io_completed, total_io_tsc;
double io_per_second, mb_per_second, average_latency, min_latency, max_latency;
double sum_ave_latency, min_latency_so_far, max_latency_so_far;
double total_io_per_second, total_mb_per_second;
int ns_count;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
total_io_per_second = 0;
total_mb_per_second = 0;
total_io_completed = 0;
total_io_tsc = 0;
min_latency_so_far = (double)UINT64_MAX;
max_latency_so_far = 0;
ns_count = 0;
printf("========================================================\n");
printf("%103s\n", "Latency(us)");
printf("%-55s: %10s %10s %10s %10s %10s\n",
"Device Information", "IOPS", "MB/s", "Average", "min", "max");
worker = g_workers;
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
if (ns_ctx->io_completed != 0) {
io_per_second = (double)ns_ctx->io_completed / g_time_in_sec;
mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024);
average_latency = ((double)ns_ctx->total_tsc / ns_ctx->io_completed) * 1000 * 1000 / g_tsc_rate;
min_latency = (double)ns_ctx->min_tsc * 1000 * 1000 / g_tsc_rate;
if (min_latency < min_latency_so_far) {
min_latency_so_far = min_latency;
}
max_latency = (double)ns_ctx->max_tsc * 1000 * 1000 / g_tsc_rate;
if (max_latency > max_latency_so_far) {
max_latency_so_far = max_latency;
}
printf("%-43.43s from core %u: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
ns_ctx->entry->name, worker->lcore,
io_per_second, mb_per_second,
average_latency, min_latency, max_latency);
total_io_per_second += io_per_second;
total_mb_per_second += mb_per_second;
total_io_completed += ns_ctx->io_completed;
total_io_tsc += ns_ctx->total_tsc;
ns_count++;
}
ns_ctx = ns_ctx->next;
}
worker = worker->next;
}
if (ns_count != 0 && total_io_completed) {
sum_ave_latency = ((double)total_io_tsc / total_io_completed) * 1000 * 1000 / g_tsc_rate;
printf("========================================================\n");
printf("%-55s: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
"Total", total_io_per_second, total_mb_per_second,
sum_ave_latency, min_latency_so_far, max_latency_so_far);
printf("\n");
}
if (g_latency_sw_tracking_level == 0 || total_io_completed == 0) {
return;
}
worker = g_workers;
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
const double *cutoff = g_latency_cutoffs;
printf("Summary latency data for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
printf("=================================================================================\n");
spdk_histogram_data_iterate(ns_ctx->histogram, check_cutoff, &cutoff);
printf("\n");
ns_ctx = ns_ctx->next;
}
worker = worker->next;
}
if (g_latency_sw_tracking_level == 1) {
return;
}
worker = g_workers;
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
printf("Latency histogram for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
printf("==============================================================================\n");
printf(" Range in us Cumulative IO count\n");
spdk_histogram_data_iterate(ns_ctx->histogram, print_bucket, NULL);
printf("\n");
ns_ctx = ns_ctx->next;
}
worker = worker->next;
}
}
static void
print_latency_page(struct ctrlr_entry *entry)
{
int i;
printf("\n");
printf("%s\n", entry->name);
printf("--------------------------------------------------------\n");
for (i = 0; i < 32; i++) {
if (entry->latency_page->buckets_32us[i]) {
printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]);
}
}
for (i = 0; i < 31; i++) {
if (entry->latency_page->buckets_1ms[i]) {
printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]);
}
}
for (i = 0; i < 31; i++) {
if (entry->latency_page->buckets_32ms[i])
printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32,
entry->latency_page->buckets_32ms[i]);
}
}
static void
print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page)
{
struct ctrlr_entry *ctrlr;
printf("%s Latency Statistics:\n", op_name);
printf("========================================================\n");
ctrlr = g_controllers;
while (ctrlr) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG,
ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), 0,
enable_latency_tracking_complete,
NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
g_outstanding_commands++;
} else {
printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name);
}
ctrlr = ctrlr->next;
}
while (g_outstanding_commands) {
ctrlr = g_controllers;
while (ctrlr) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr);
ctrlr = ctrlr->next;
}
}
ctrlr = g_controllers;
while (ctrlr) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
print_latency_page(ctrlr);
}
ctrlr = ctrlr->next;
}
printf("\n");
}
static void
print_stats(void)
{
print_performance();
if (g_latency_ssd_tracking_enable) {
if (g_rw_percentage != 0) {
print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
}
if (g_rw_percentage != 100) {
print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY);
}
}
}
static void
unregister_trids(void)
{
struct trid_entry *trid_entry, *tmp;
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
free(trid_entry);
}
}
static int
add_trid(const char *trid_str)
{
struct trid_entry *trid_entry;
struct spdk_nvme_transport_id *trid;
char *ns;
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
return -1;
}
trid = &trid_entry->trid;
trid->trtype = SPDK_NVME_TRANSPORT_PCIE;
snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
free(trid_entry);
return 1;
}
ns = strcasestr(trid_str, "ns:");
if (ns) {
char nsid_str[6]; /* 5 digits maximum in an nsid */
int len;
int nsid;
ns += 3;
len = strcspn(ns, " \t\n");
if (len > 5) {
fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n");
free(trid_entry);
return 1;
}
memcpy(nsid_str, ns, len);
nsid_str[len] = '\0';
nsid = spdk_strtol(nsid_str, 10);
if (nsid <= 0 || nsid > 65535) {
fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n");
free(trid_entry);
return 1;
}
trid_entry->nsid = (uint16_t)nsid;
}
TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
return 0;
}
static size_t
parse_next_key(const char **str, char *key, char *val, size_t key_buf_size,
size_t val_buf_size)
{
const char *sep;
const char *separator = ", \t\n";
size_t key_len, val_len;
*str += strspn(*str, separator);
sep = strchr(*str, '=');
if (!sep) {
fprintf(stderr, "Key without '=' separator\n");
return 0;
}
key_len = sep - *str;
if (key_len >= key_buf_size) {
fprintf(stderr, "Key length %zu is greater than maximum allowed %zu\n",
key_len, key_buf_size - 1);
return 0;
}
memcpy(key, *str, key_len);
key[key_len] = '\0';
*str += key_len + 1; /* Skip key */
val_len = strcspn(*str, separator);
if (val_len == 0) {
fprintf(stderr, "Key without value\n");
return 0;
}
if (val_len >= val_buf_size) {
fprintf(stderr, "Value length %zu is greater than maximum allowed %zu\n",
val_len, val_buf_size - 1);
return 0;
}
memcpy(val, *str, val_len);
val[val_len] = '\0';
*str += val_len;
return val_len;
}
static int
parse_metadata(const char *metacfg_str)
{
const char *str;
size_t val_len;
char key[32];
char val[1024];
if (metacfg_str == NULL) {
return -EINVAL;
}
str = metacfg_str;
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
if (val_len == 0) {
fprintf(stderr, "Failed to parse metadata\n");
return -EINVAL;
}
if (strcmp(key, "PRACT") == 0) {
if (*val == '1') {
g_metacfg_prchk_flags = SPDK_NVME_IO_FLAGS_PRACT;
}
} else if (strcmp(key, "PRCHK") == 0) {
if (strstr(val, "GUARD") != NULL) {
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
}
if (strstr(val, "REFTAG") != NULL) {
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
}
if (strstr(val, "APPTAG") != NULL) {
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_APPTAG;
}
} else {
fprintf(stderr, "Unknown key '%s'\n", key);
}
}
return 0;
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type;
int op;
bool mix_specified = false;
long int val;
/* default value */
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
g_core_mask = NULL;
g_max_completions = 0;
while ((op = getopt(argc, argv, "c:e:i:lm:o:q:r:s:t:w:DHILM:")) != -1) {
switch (op) {
case 'i':
case 'm':
case 'o':
case 'q':
case 's':
case 't':
case 'M':
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Converting a string to integer failed\n");
return val;
}
switch (op) {
case 'i':
g_shm_id = val;
break;
case 'm':
g_max_completions = val;
break;
case 'o':
g_io_size_bytes = val;
break;
case 'q':
g_queue_depth = val;
break;
case 's':
g_dpdk_mem = val;
break;
case 't':
g_time_in_sec = val;
break;
case 'M':
g_rw_percentage = val;
mix_specified = true;
break;
}
break;
case 'c':
g_core_mask = optarg;
break;
case 'e':
if (parse_metadata(optarg)) {
usage(argv[0]);
return 1;
}
break;
case 'l':
g_latency_ssd_tracking_enable = true;
break;
case 'r':
if (add_trid(optarg)) {
usage(argv[0]);
return 1;
}
break;
case 'w':
workload_type = optarg;
break;
case 'D':
g_disable_sq_cmb = 1;
break;
case 'H':
g_header_digest = 1;
break;
case 'I':
g_data_digest = 1;
break;
case 'L':
g_latency_sw_tracking_level++;
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
if (TAILQ_EMPTY(&g_trid_list)) {
/* If no transport IDs specified, default to enumerating all local PCIe devices */
add_trid("trtype:PCIe");
} else {
struct trid_entry *trid_entry, *trid_entry_tmp;
g_no_pci = true;
/* check whether there is local PCIe type */
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
g_no_pci = false;
break;
}
}
}
g_aio_optind = optind;
return 0;
}
static int
register_workers(void)
{
uint32_t i;
struct worker_thread *worker;
g_workers = NULL;
g_num_workers = 0;
SPDK_ENV_FOREACH_CORE(i) {
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return -1;
}
worker->lcore = i;
worker->next = g_workers;
g_workers = worker;
g_num_workers++;
}
return 0;
}
static void
unregister_workers(void)
{
struct worker_thread *worker = g_workers;
/* Free namespace context and worker thread */
while (worker) {
struct worker_thread *next_worker = worker->next;
struct ns_worker_ctx *ns_ctx = worker->ns_ctx;
while (ns_ctx) {
struct ns_worker_ctx *next_ns_ctx = ns_ctx->next;
spdk_histogram_data_free(ns_ctx->histogram);
free(ns_ctx);
ns_ctx = next_ns_ctx;
}
free(worker);
worker = next_worker;
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid,
trid->subnqn);
} else {
if (g_disable_sq_cmb) {
opts->use_cmb_sqs = false;
}
printf("Attaching to NVMe Controller at %s\n",
trid->traddr);
}
/* Set io_queue_size to UINT16_MAX, NVMe driver
* will then reduce this to MQES to maximize
* the io_queue_size as much as possible.
*/
opts->io_queue_size = UINT16_MAX;
/* Set the header and data_digest */
opts->header_digest = g_header_digest;
opts->data_digest = g_data_digest;
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct trid_entry *trid_entry = cb_ctx;
struct spdk_pci_addr pci_addr;
struct spdk_pci_device *pci_dev;
struct spdk_pci_id pci_id;
g_controllers_found++;
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid,
trid->subnqn);
} else {
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
return;
}
pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
if (!pci_dev) {
return;
}
pci_id = spdk_pci_device_get_id(pci_dev);
printf("Attached to NVMe Controller at %s [%04x:%04x]\n",
trid->traddr,
pci_id.vendor_id, pci_id.device_id);
}
register_ctrlr(ctrlr, trid_entry);
}
static int
register_controllers(void)
{
struct trid_entry *trid_entry;
printf("Initializing NVMe Controllers\n");
TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
trid_entry->trid.traddr);
return -1;
}
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry = g_controllers;
while (entry) {
struct ctrlr_entry *next = entry->next;
spdk_dma_free(entry->latency_page);
if (g_latency_ssd_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) {
set_latency_tracking_feature(entry->ctrlr, false);
}
spdk_nvme_detach(entry->ctrlr);
free(entry);
entry = next;
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = g_namespaces;
struct worker_thread *worker = g_workers;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->min_tsc = UINT64_MAX;
ns_ctx->entry = entry;
ns_ctx->next = worker->ns_ctx;
ns_ctx->histogram = spdk_histogram_data_alloc();
worker->ns_ctx = ns_ctx;
worker = worker->next;
if (worker == NULL) {
worker = g_workers;
}
entry = entry->next;
if (entry == NULL) {
entry = g_namespaces;
}
}
return 0;
}
static void *
nvme_poll_ctrlrs(void *arg)
{
struct ctrlr_entry *entry;
int oldstate;
spdk_unaffinitize_thread();
while (true) {
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
entry = g_controllers;
while (entry) {
if (entry->trtype != SPDK_NVME_TRANSPORT_PCIE) {
spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr);
}
entry = entry->next;
}
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
/* This is a pthread cancellation point and cannot be removed. */
sleep(1);
}
return NULL;
}
int main(int argc, char **argv)
{
int rc;
struct worker_thread *worker, *master_worker;
unsigned master_core;
struct spdk_env_opts opts;
pthread_t thread_id = 0;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "perf";
opts.shm_id = g_shm_id;
if (g_core_mask) {
opts.core_mask = g_core_mask;
}
if (g_dpdk_mem) {
opts.mem_size = g_dpdk_mem;
}
if (g_no_pci) {
opts.no_pci = g_no_pci;
}
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
rc = -1;
goto cleanup;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
rc = -1;
goto cleanup;
}
#if HAVE_LIBAIO
if (register_aio_files(argc, argv) != 0) {
rc = -1;
goto cleanup;
}
#endif
if (register_controllers() != 0) {
rc = -1;
goto cleanup;
}
if (g_warn) {
printf("WARNING: Some requested NVMe devices were skipped\n");
}
if (g_num_namespaces == 0) {
fprintf(stderr, "No valid NVMe controllers or AIO devices found\n");
return 0;
}
rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL);
if (rc != 0) {
fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n");
goto cleanup;
}
if (associate_workers_with_ns() != 0) {
rc = -1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
/* Launch all of the slave workers */
master_core = spdk_env_get_current_core();
master_worker = NULL;
worker = g_workers;
while (worker != NULL) {
if (worker->lcore != master_core) {
spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
} else {
assert(master_worker == NULL);
master_worker = worker;
}
worker = worker->next;
}
assert(master_worker != NULL);
rc = work_fn(master_worker);
spdk_env_thread_wait_all();
print_stats();
cleanup:
if (pthread_cancel(thread_id) == 0) {
pthread_join(thread_id, NULL);
}
unregister_trids();
unregister_namespaces();
unregister_controllers();
unregister_workers();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}