numam-spdk/lib/nvme/nvme_ctrlr.c
Ben Walker 193f4f8392 nvme: Queue aborts beyond the abort command limit
Queue aborts that would exceed the abort command limit
in software as a convenience for the user.

Change-Id: I8c1f0380984cc6c0cdb453db961939a7f571b336
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
2017-04-12 13:11:01 -07:00

1714 lines
46 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
#include "spdk/env.h"
#include <signal.h>
static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_async_event_request *aer);
static int
nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
{
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
&cc->raw);
}
static int
nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
{
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
&csts->raw);
}
int
nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
{
return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
&cap->raw);
}
static int
nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
{
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
&vs->raw);
}
static int
nvme_ctrlr_set_cc(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cc_register *cc)
{
return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
cc->raw);
}
void
spdk_nvme_ctrlr_opts_set_defaults(struct spdk_nvme_ctrlr_opts *opts)
{
opts->num_io_queues = DEFAULT_MAX_IO_QUEUES;
opts->use_cmb_sqs = false;
opts->arb_mechanism = SPDK_NVME_CC_AMS_RR;
opts->keep_alive_timeout_ms = 10 * 1000;
opts->io_queue_size = DEFAULT_IO_QUEUE_SIZE;
strncpy(opts->hostnqn, DEFAULT_HOSTNQN, sizeof(opts->hostnqn));
}
/**
* This function will be called when the process allocates the IO qpair.
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr_process *active_proc;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
pid_t pid = getpid();
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
if (active_proc->pid == pid) {
TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair,
per_process_tailq);
break;
}
}
}
/**
* This function will be called when the process frees the IO qpair.
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr_process *active_proc;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_qpair *active_qpair, *tmp_qpair;
pid_t pid = getpid();
bool proc_found = false;
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
if (active_proc->pid == pid) {
proc_found = true;
break;
}
}
if (proc_found == false) {
return;
}
TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
per_process_tailq, tmp_qpair) {
if (active_qpair == qpair) {
TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
active_qpair, per_process_tailq);
break;
}
}
}
struct spdk_nvme_qpair *
spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
enum spdk_nvme_qprio qprio)
{
uint32_t qid;
struct spdk_nvme_qpair *qpair;
union spdk_nvme_cc_register cc;
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
SPDK_ERRLOG("get_cc failed\n");
return NULL;
}
/* Only the low 2 bits (values 0, 1, 2, 3) of QPRIO are valid. */
if ((qprio & 3) != qprio) {
return NULL;
}
/*
* Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
* default round robin arbitration method.
*/
if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (qprio != SPDK_NVME_QPRIO_URGENT)) {
SPDK_ERRLOG("invalid queue priority for default round robin arbitration method\n");
return NULL;
}
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
/*
* Get the first available I/O queue ID.
*/
qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
if (qid > ctrlr->opts.num_io_queues) {
SPDK_ERRLOG("No free I/O queue IDs\n");
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return NULL;
}
qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, qprio);
if (qpair == NULL) {
SPDK_ERRLOG("transport->ctrlr_create_io_qpair() failed\n");
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return NULL;
}
spdk_bit_array_clear(ctrlr->free_io_qids, qid);
TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
nvme_ctrlr_proc_add_io_qpair(qpair);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return qpair;
}
int
spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr;
if (qpair == NULL) {
return 0;
}
ctrlr = qpair->ctrlr;
if (qpair->in_completion_context) {
/*
* There are many cases where it is convenient to delete an io qpair in the context
* of that qpair's completion routine. To handle this properly, set a flag here
* so that the completion routine will perform an actual delete after the context
* unwinds.
*/
qpair->delete_after_completion_context = 1;
return 0;
}
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
nvme_ctrlr_proc_remove_io_qpair(qpair);
TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
if (nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair)) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return -1;
}
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return 0;
}
static void
nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_intel_log_page_directory *log_page_directory)
{
if (log_page_directory == NULL) {
return;
}
if (ctrlr->cdata.vid != SPDK_PCI_VID_INTEL) {
return;
}
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
if (log_page_directory->read_latency_log_len ||
(ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
}
if (log_page_directory->write_latency_log_len ||
(ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
}
if (log_page_directory->temperature_statistics_log_len) {
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
}
if (log_page_directory->smart_log_len) {
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
}
if (log_page_directory->marketing_description_log_len) {
ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
}
}
static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
{
uint64_t phys_addr = 0;
struct nvme_completion_poll_status status;
struct spdk_nvme_intel_log_page_directory *log_page_directory;
log_page_directory = spdk_zmalloc(sizeof(struct spdk_nvme_intel_log_page_directory),
64, &phys_addr);
if (log_page_directory == NULL) {
SPDK_ERRLOG("could not allocate log_page_directory\n");
return -ENXIO;
}
status.done = false;
spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY, SPDK_NVME_GLOBAL_NS_TAG,
log_page_directory, sizeof(struct spdk_nvme_intel_log_page_directory), 0,
nvme_completion_poll_cb,
&status);
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
spdk_free(log_page_directory);
SPDK_ERRLOG("nvme_ctrlr_cmd_get_log_page failed!\n");
return -ENXIO;
}
nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory);
spdk_free(log_page_directory);
return 0;
}
static void
nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
{
memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
/* Mandatory pages */
ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
if (ctrlr->cdata.lpa.celp) {
ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
}
if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
nvme_ctrlr_set_intel_support_log_pages(ctrlr);
}
}
static void
nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
{
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
}
static void
nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
{
memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
/* Mandatory features */
ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
/* Optional features */
if (ctrlr->cdata.vwc.present) {
ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
}
if (ctrlr->cdata.apsta.supported) {
ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
}
if (ctrlr->cdata.hmpre) {
ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
}
if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
nvme_ctrlr_set_intel_supported_features(ctrlr);
}
}
void
nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
{
/*
* Set the flag here and leave the work failure of qpairs to
* spdk_nvme_qpair_process_completions().
*/
if (hot_remove) {
ctrlr->is_removed = true;
}
ctrlr->is_failed = true;
}
static void
nvme_ctrlr_shutdown(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_cc_register cc;
union spdk_nvme_csts_register csts;
int ms_waited = 0;
if (ctrlr->is_removed) {
return;
}
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
SPDK_ERRLOG("get_cc() failed\n");
return;
}
cc.bits.shn = SPDK_NVME_SHN_NORMAL;
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
SPDK_ERRLOG("set_cc() failed\n");
return;
}
/*
* The NVMe spec does not define a timeout period
* for shutdown notification, so we just pick
* 5 seconds as a reasonable amount of time to
* wait before proceeding.
*/
do {
if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
SPDK_ERRLOG("get_csts() failed\n");
return;
}
if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "shutdown complete\n");
return;
}
nvme_delay(1000);
ms_waited++;
} while (ms_waited < 5000);
SPDK_ERRLOG("did not shutdown within 5 seconds\n");
}
static int
nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_cc_register cc;
int rc;
rc = nvme_transport_ctrlr_enable(ctrlr);
if (rc != 0) {
SPDK_ERRLOG("transport ctrlr_enable failed\n");
return rc;
}
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
SPDK_ERRLOG("get_cc() failed\n");
return -EIO;
}
if (cc.bits.en != 0) {
SPDK_ERRLOG("%s called with CC.EN = 1\n", __func__);
return -EINVAL;
}
cc.bits.en = 1;
cc.bits.css = 0;
cc.bits.shn = 0;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
/* Page size is 2 ^ (12 + mps). */
cc.bits.mps = spdk_u32log2(PAGE_SIZE) - 12;
switch (ctrlr->opts.arb_mechanism) {
case SPDK_NVME_CC_AMS_RR:
break;
case SPDK_NVME_CC_AMS_WRR:
if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
break;
}
return -EINVAL;
case SPDK_NVME_CC_AMS_VS:
if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
break;
}
return -EINVAL;
default:
return -EINVAL;
}
cc.bits.ams = ctrlr->opts.arb_mechanism;
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
SPDK_ERRLOG("set_cc() failed\n");
return -EIO;
}
return 0;
}
#ifdef DEBUG
static const char *
nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
{
switch (state) {
case NVME_CTRLR_STATE_INIT:
return "init";
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
return "disable and wait for CSTS.RDY = 1";
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
return "disable and wait for CSTS.RDY = 0";
case NVME_CTRLR_STATE_ENABLE:
return "enable controller by writing CC.EN = 1";
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
return "wait for CSTS.RDY = 1";
case NVME_CTRLR_STATE_READY:
return "ready";
}
return "unknown";
};
#endif /* DEBUG */
static void
nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
uint64_t timeout_in_ms)
{
ctrlr->state = state;
if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "setting state to %s (no timeout)\n",
nvme_ctrlr_state_string(ctrlr->state));
ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
} else {
SPDK_TRACELOG(SPDK_TRACE_NVME, "setting state to %s (timeout %" PRIu64 " ms)\n",
nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
ctrlr->state_timeout_tsc = spdk_get_ticks() + (timeout_in_ms * spdk_get_ticks_hz()) / 1000;
}
}
int
spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
{
int rc = 0;
struct spdk_nvme_qpair *qpair;
struct nvme_request *req, *tmp;
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
if (ctrlr->is_resetting || ctrlr->is_failed) {
/*
* Controller is already resetting or has failed. Return
* immediately since there is no need to kick off another
* reset in these cases.
*/
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return 0;
}
ctrlr->is_resetting = true;
SPDK_NOTICELOG("resetting controller\n");
/* Free all of the queued abort requests */
STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
nvme_free_request(req);
ctrlr->outstanding_aborts--;
}
/* Disable all queues before disabling the controller hardware. */
nvme_qpair_disable(ctrlr->adminq);
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
nvme_qpair_disable(qpair);
}
/* Set the state back to INIT to cause a full hardware reset. */
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
while (ctrlr->state != NVME_CTRLR_STATE_READY) {
if (nvme_ctrlr_process_init(ctrlr) != 0) {
SPDK_ERRLOG("%s: controller reinitialization failed\n", __func__);
nvme_ctrlr_fail(ctrlr, false);
rc = -1;
break;
}
}
if (!ctrlr->is_failed) {
/* Reinitialize qpairs */
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
if (nvme_transport_ctrlr_reinit_io_qpair(ctrlr, qpair) != 0) {
nvme_ctrlr_fail(ctrlr, false);
rc = -1;
}
}
}
ctrlr->is_resetting = false;
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return rc;
}
static int
nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_completion_poll_status status;
int rc;
status.done = false;
rc = nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_identify_controller failed!\n");
return -ENXIO;
}
/*
* Use MDTS to ensure our default max_xfer_size doesn't exceed what the
* controller supports.
*/
ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
SPDK_TRACELOG(SPDK_TRACE_NVME, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
if (ctrlr->cdata.mdts > 0) {
ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
SPDK_TRACELOG(SPDK_TRACE_NVME, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
}
return 0;
}
static int
nvme_ctrlr_set_num_qpairs(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_completion_poll_status status;
int cq_allocated, sq_allocated;
int rc;
uint32_t i;
status.done = false;
if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
SPDK_NOTICELOG("Limiting requested num_io_queues %u to max %d\n",
ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
} else if (ctrlr->opts.num_io_queues < 1) {
SPDK_NOTICELOG("Requested num_io_queues 0, increasing to 1\n");
ctrlr->opts.num_io_queues = 1;
}
rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_set_num_queues failed!\n");
return -ENXIO;
}
/*
* Data in cdw0 is 0-based.
* Lower 16-bits indicate number of submission queues allocated.
* Upper 16-bits indicate number of completion queues allocated.
*/
sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
cq_allocated = (status.cpl.cdw0 >> 16) + 1;
ctrlr->opts.num_io_queues = spdk_min(sq_allocated, cq_allocated);
ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
if (ctrlr->free_io_qids == NULL) {
return -ENOMEM;
}
/* Initialize list of free I/O queue IDs. QID 0 is the admin queue. */
spdk_bit_array_clear(ctrlr->free_io_qids, 0);
for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
spdk_bit_array_set(ctrlr->free_io_qids, i);
}
return 0;
}
static int
nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_completion_poll_status status;
uint32_t keep_alive_interval_ms;
int rc;
if (ctrlr->opts.keep_alive_timeout_ms == 0) {
return 0;
}
if (ctrlr->cdata.kas == 0) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "Controller KAS is 0 - not enabling Keep Alive\n");
ctrlr->opts.keep_alive_timeout_ms = 0;
return 0;
}
/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
status.done = false;
rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
nvme_completion_poll_cb, &status);
if (rc != 0) {
SPDK_ERRLOG("Keep alive timeout Get Feature failed: %d\n", rc);
ctrlr->opts.keep_alive_timeout_ms = 0;
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("Keep alive timeout Get Feature failed: SC %x SCT %x\n",
status.cpl.status.sc, status.cpl.status.sct);
ctrlr->opts.keep_alive_timeout_ms = 0;
return -ENXIO;
}
if (ctrlr->opts.keep_alive_timeout_ms != status.cpl.cdw0) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "Controller adjusted keep alive timeout to %u ms\n",
status.cpl.cdw0);
}
ctrlr->opts.keep_alive_timeout_ms = status.cpl.cdw0;
keep_alive_interval_ms = ctrlr->opts.keep_alive_timeout_ms / 2;
if (keep_alive_interval_ms == 0) {
keep_alive_interval_ms = 1;
}
SPDK_TRACELOG(SPDK_TRACE_NVME, "Sending keep alive every %u ms\n", keep_alive_interval_ms);
ctrlr->keep_alive_interval_ticks = (keep_alive_interval_ms * spdk_get_ticks_hz()) / UINT64_C(1000);
/* Schedule the first Keep Alive to be sent as soon as possible. */
ctrlr->next_keep_alive_tick = spdk_get_ticks();
return 0;
}
static void
nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
{
if (ctrlr->ns) {
uint32_t i, num_ns = ctrlr->num_ns;
for (i = 0; i < num_ns; i++) {
nvme_ns_destruct(&ctrlr->ns[i]);
}
spdk_free(ctrlr->ns);
ctrlr->ns = NULL;
ctrlr->num_ns = 0;
}
if (ctrlr->nsdata) {
spdk_free(ctrlr->nsdata);
ctrlr->nsdata = NULL;
}
}
static int
nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
{
uint32_t i, nn = ctrlr->cdata.nn;
uint64_t phys_addr = 0;
if (nn == 0) {
SPDK_ERRLOG("controller has 0 namespaces\n");
return -1;
}
/* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset),
* so check if we need to reallocate.
*/
if (nn != ctrlr->num_ns) {
nvme_ctrlr_destruct_namespaces(ctrlr);
ctrlr->ns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64,
&phys_addr);
if (ctrlr->ns == NULL) {
goto fail;
}
ctrlr->nsdata = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns_data), 64,
&phys_addr);
if (ctrlr->nsdata == NULL) {
goto fail;
}
ctrlr->num_ns = nn;
}
for (i = 0; i < nn; i++) {
struct spdk_nvme_ns *ns = &ctrlr->ns[i];
uint32_t nsid = i + 1;
if (nvme_ns_construct(ns, nsid, ctrlr) != 0) {
goto fail;
}
}
return 0;
fail:
nvme_ctrlr_destruct_namespaces(ctrlr);
return -1;
}
static void
nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_async_event_request *aer = arg;
struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr;
if (cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
/*
* This is simulated when controller is being shut down, to
* effectively abort outstanding asynchronous event requests
* and make sure all memory is freed. Do not repost the
* request in this case.
*/
return;
}
if (ctrlr->aer_cb_fn != NULL) {
ctrlr->aer_cb_fn(ctrlr->aer_cb_arg, cpl);
}
/*
* Repost another asynchronous event request to replace the one
* that just completed.
*/
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
/*
* We can't do anything to recover from a failure here,
* so just print a warning message and leave the AER unsubmitted.
*/
SPDK_ERRLOG("resubmitting AER failed!\n");
}
}
static int
nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_async_event_request *aer)
{
struct nvme_request *req;
aer->ctrlr = ctrlr;
req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
aer->req = req;
if (req == NULL) {
return -1;
}
req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_critical_warning_state state;
struct nvme_async_event_request *aer;
uint32_t i;
struct nvme_completion_poll_status status;
int rc;
status.done = false;
state.raw = 0xFF;
state.bits.reserved = 0;
rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_ctrlr_cmd_set_async_event_config failed!\n");
return 0;
}
/* aerl is a zero-based value, so we need to add 1 here. */
ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
for (i = 0; i < ctrlr->num_aers; i++) {
aer = &ctrlr->aer[i];
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
SPDK_ERRLOG("nvme_ctrlr_construct_and_submit_aer failed!\n");
return -1;
}
}
return 0;
}
/**
* This function will be called when a process is using the controller.
* 1. For the primary process, it is called when constructing the controller.
* 2. For the secondary process, it is called at probing the controller.
* Note: will check whether the process is already added for the same process.
*/
int
nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
{
struct spdk_nvme_ctrlr_process *ctrlr_proc, *active_proc;
pid_t pid = getpid();
/* Check whether the process is already added or not */
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
if (active_proc->pid == pid) {
return 0;
}
}
/* Initialize the per process properties for this ctrlr */
ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process), 64, NULL);
if (ctrlr_proc == NULL) {
SPDK_ERRLOG("failed to allocate memory to track the process props\n");
return -1;
}
ctrlr_proc->is_primary = spdk_process_is_primary();
ctrlr_proc->pid = pid;
STAILQ_INIT(&ctrlr_proc->active_reqs);
ctrlr_proc->devhandle = devhandle;
ctrlr_proc->ref = 0;
TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
return 0;
}
/**
* This function will be called when the process detaches the controller.
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_ctrlr_process *proc)
{
struct spdk_nvme_qpair *qpair, *tmp_qpair;
assert(STAILQ_EMPTY(&proc->active_reqs));
TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
spdk_nvme_ctrlr_free_io_qpair(qpair);
}
TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
spdk_free(proc);
}
/**
* This function will be called when the process exited unexpectedly
* in order to free any incomplete nvme request, allocated IO qpairs
* and allocated memory.
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
{
struct nvme_request *req, *tmp_req;
struct spdk_nvme_qpair *qpair, *tmp_qpair;
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
assert(req->pid == proc->pid);
nvme_free_request(req);
}
TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
/*
* The process may have been killed while some qpairs were in their
* completion context. Clear that flag here to allow these IO
* qpairs to be deleted.
*/
qpair->in_completion_context = 0;
spdk_nvme_ctrlr_free_io_qpair(qpair);
}
spdk_free(proc);
}
/**
* This function will be called when destructing the controller.
* 1. There is no more admin request on this controller.
* 2. Clean up any left resource allocation when its associated process is gone.
*/
void
nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
{
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
/* Free all the processes' properties and make sure no pending admin IOs */
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
assert(STAILQ_EMPTY(&active_proc->active_reqs));
spdk_free(active_proc);
}
}
/**
* This function will be called when any other process attaches or
* detaches the controller in order to cleanup those unexpectedly
* terminated processes.
* Note: the ctrlr_lock must be held when calling this function.
*/
static int
nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
{
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
int active_proc_count = 0;
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
SPDK_ERRLOG("process %d terminated unexpected\n", active_proc->pid);
TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
nvme_ctrlr_cleanup_process(active_proc);
} else {
active_proc_count++;
}
}
return active_proc_count;
}
void
nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
{
struct spdk_nvme_ctrlr_process *active_proc;
pid_t pid = getpid();
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
nvme_ctrlr_remove_inactive_proc(ctrlr);
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
if (active_proc->pid == pid) {
active_proc->ref++;
break;
}
}
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
void
nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
{
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
pid_t pid = getpid();
int proc_count;
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
if (active_proc->pid == pid) {
active_proc->ref--;
assert(active_proc->ref >= 0);
/*
* The last active process will be removed at the end of
* the destruction of the controller.
*/
if (active_proc->ref == 0 && proc_count != 1) {
nvme_ctrlr_remove_process(ctrlr, active_proc);
}
break;
}
}
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
int
nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
{
struct spdk_nvme_ctrlr_process *active_proc;
int ref = 0;
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
nvme_ctrlr_remove_inactive_proc(ctrlr);
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
ref += active_proc->ref;
}
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return ref;
}
/**
* This function will be called repeatedly during initialization until the controller is ready.
*/
int
nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_cc_register cc;
union spdk_nvme_csts_register csts;
uint32_t ready_timeout_in_ms;
int rc;
/*
* May need to avoid accessing any register on the target controller
* for a while. Return early without touching the FSM.
* Check sleep_timeout_tsc > 0 for unit test.
*/
if ((ctrlr->sleep_timeout_tsc > 0) &&
(spdk_get_ticks() <= ctrlr->sleep_timeout_tsc)) {
return 0;
}
ctrlr->sleep_timeout_tsc = 0;
if (nvme_ctrlr_get_cc(ctrlr, &cc) ||
nvme_ctrlr_get_csts(ctrlr, &csts)) {
if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
/* While a device is resetting, it may be unable to service MMIO reads
* temporarily. Allow for this case.
*/
SPDK_TRACELOG(SPDK_TRACE_NVME, "Get registers failed while waiting for CSTS.RDY == 0\n");
goto init_timeout;
}
SPDK_ERRLOG("Failed to read CC and CSTS in state %d\n", ctrlr->state);
nvme_ctrlr_fail(ctrlr, false);
return -EIO;
}
ready_timeout_in_ms = 500 * ctrlr->cap.bits.to;
/*
* Check if the current initialization step is done or has timed out.
*/
switch (ctrlr->state) {
case NVME_CTRLR_STATE_INIT:
/* Begin the hardware initialization by making sure the controller is disabled. */
if (cc.bits.en) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1\n");
/*
* Controller is currently enabled. We need to disable it to cause a reset.
*
* If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
* Wait for the ready bit to be 1 before disabling the controller.
*/
if (csts.bits.rdy == 0) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
return 0;
}
/* CC.EN = 1 && CSTS.RDY == 1, so we can immediately disable the controller. */
SPDK_TRACELOG(SPDK_TRACE_NVME, "Setting CC.EN = 0\n");
cc.bits.en = 0;
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
SPDK_ERRLOG("set_cc() failed\n");
nvme_ctrlr_fail(ctrlr, false);
return -EIO;
}
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
/*
* Wait 2 secsonds before accessing PCI registers.
* Not using sleep() to avoid blocking other controller's initialization.
*/
if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "Applying quirk: delay 2 seconds before reading registers\n");
ctrlr->sleep_timeout_tsc = spdk_get_ticks() + 2 * spdk_get_ticks_hz();
}
return 0;
} else {
if (csts.bits.rdy == 1) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 0 && CSTS.RDY = 1 - waiting for shutdown to complete\n");
}
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
return 0;
}
break;
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
if (csts.bits.rdy == 1) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1 && CSTS.RDY = 1 - disabling controller\n");
/* CC.EN = 1 && CSTS.RDY = 1, so we can set CC.EN = 0 now. */
SPDK_TRACELOG(SPDK_TRACE_NVME, "Setting CC.EN = 0\n");
cc.bits.en = 0;
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
SPDK_ERRLOG("set_cc() failed\n");
nvme_ctrlr_fail(ctrlr, false);
return -EIO;
}
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
return 0;
}
break;
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
if (csts.bits.rdy == 0) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 0 && CSTS.RDY = 0\n");
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_ENABLE) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "Applying quirk: Delay 100us before enabling.\n");
ctrlr->sleep_timeout_tsc = spdk_get_ticks() + spdk_get_ticks_hz() / 10000;
}
return 0;
}
break;
case NVME_CTRLR_STATE_ENABLE:
SPDK_TRACELOG(SPDK_TRACE_NVME, "Setting CC.EN = 1\n");
rc = nvme_ctrlr_enable(ctrlr);
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
return rc;
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
if (csts.bits.rdy == 1) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
/*
* The controller has been enabled.
* Perform the rest of initialization in nvme_ctrlr_start() serially.
*/
rc = nvme_ctrlr_start(ctrlr);
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
return rc;
}
break;
default:
assert(0);
nvme_ctrlr_fail(ctrlr, false);
return -1;
}
init_timeout:
if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
spdk_get_ticks() > ctrlr->state_timeout_tsc) {
SPDK_ERRLOG("Initialization timed out in state %d\n", ctrlr->state);
nvme_ctrlr_fail(ctrlr, false);
return -1;
}
return 0;
}
int
nvme_ctrlr_start(struct spdk_nvme_ctrlr *ctrlr)
{
nvme_transport_qpair_reset(ctrlr->adminq);
nvme_qpair_enable(ctrlr->adminq);
if (nvme_ctrlr_identify(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_configure_aer(ctrlr) != 0) {
return -1;
}
nvme_ctrlr_set_supported_log_pages(ctrlr);
nvme_ctrlr_set_supported_features(ctrlr);
if (ctrlr->cdata.sgls.supported) {
ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
}
if (nvme_ctrlr_set_keep_alive_timeout(ctrlr) != 0) {
SPDK_ERRLOG("Setting keep alive timeout failed\n");
return -1;
}
return 0;
}
int
nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
{
pthread_mutexattr_t attr;
int rc = 0;
if (pthread_mutexattr_init(&attr)) {
return -1;
}
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
#ifndef __FreeBSD__
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
#endif
pthread_mutex_init(mtx, &attr)) {
rc = -1;
}
pthread_mutexattr_destroy(&attr);
return rc;
}
int
nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
{
int rc;
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
ctrlr->flags = 0;
ctrlr->free_io_qids = NULL;
ctrlr->is_resetting = false;
ctrlr->is_failed = false;
TAILQ_INIT(&ctrlr->active_io_qpairs);
STAILQ_INIT(&ctrlr->queued_aborts);
ctrlr->outstanding_aborts = 0;
rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
if (rc != 0) {
return rc;
}
TAILQ_INIT(&ctrlr->active_procs);
ctrlr->timeout_cb_fn = NULL;
ctrlr->timeout_cb_arg = NULL;
ctrlr->timeout_ticks = 0;
return rc;
}
/* This function should be called once at ctrlr initialization to set up constant properties. */
void
nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap)
{
uint32_t max_io_queue_size = nvme_transport_ctrlr_get_max_io_queue_size(ctrlr);
ctrlr->cap = *cap;
ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, max_io_queue_size);
}
void
nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
while (!TAILQ_EMPTY(&ctrlr->active_io_qpairs)) {
struct spdk_nvme_qpair *qpair = TAILQ_FIRST(&ctrlr->active_io_qpairs);
spdk_nvme_ctrlr_free_io_qpair(qpair);
}
nvme_ctrlr_shutdown(ctrlr);
nvme_ctrlr_destruct_namespaces(ctrlr);
spdk_bit_array_free(&ctrlr->free_io_qids);
pthread_mutex_destroy(&ctrlr->ctrlr_lock);
nvme_transport_ctrlr_destruct(ctrlr);
}
int
nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_request *req)
{
return nvme_qpair_submit_request(ctrlr->adminq, req);
}
static void
nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
{
/* Do nothing */
}
/*
* Check if we need to send a Keep Alive command.
* Caller must hold ctrlr->ctrlr_lock.
*/
static void
nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
{
uint64_t now;
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
int rc;
now = spdk_get_ticks();
if (now < ctrlr->next_keep_alive_tick) {
return;
}
req = nvme_allocate_request_null(nvme_keep_alive_completion, NULL);
if (req == NULL) {
return;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
if (rc != 0) {
SPDK_ERRLOG("Submitting Keep Alive failed\n");
}
ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
}
int32_t
spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
{
int32_t num_completions;
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
if (ctrlr->keep_alive_interval_ticks) {
nvme_ctrlr_keep_alive(ctrlr);
}
num_completions = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
return num_completions;
}
const struct spdk_nvme_ctrlr_data *
spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
{
return &ctrlr->cdata;
}
union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_csts_register csts;
if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
csts.raw = 0;
}
return csts;
}
union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
{
return ctrlr->cap;
}
union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_vs_register vs;
if (nvme_ctrlr_get_vs(ctrlr, &vs)) {
vs.raw = 0;
}
return vs;
}
uint32_t
spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
{
return ctrlr->num_ns;
}
struct spdk_nvme_ns *
spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t ns_id)
{
if (ns_id < 1 || ns_id > ctrlr->num_ns) {
return NULL;
}
return &ctrlr->ns[ns_id - 1];
}
void
spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
spdk_nvme_aer_cb aer_cb_fn,
void *aer_cb_arg)
{
ctrlr->aer_cb_fn = aer_cb_fn;
ctrlr->aer_cb_arg = aer_cb_arg;
}
void
spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
uint32_t nvme_timeout, spdk_nvme_timeout_cb cb_fn, void *cb_arg)
{
ctrlr->timeout_ticks = nvme_timeout * spdk_get_ticks_hz();
ctrlr->timeout_cb_fn = cb_fn;
ctrlr->timeout_cb_arg = cb_arg;
}
bool
spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
{
/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
return ctrlr->log_page_supported[log_page];
}
bool
spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
{
/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
return ctrlr->feature_supported[feature_code];
}
int
spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload)
{
struct nvme_completion_poll_status status;
int res;
status.done = false;
res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
nvme_completion_poll_cb, &status);
if (res)
return res;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_attach_ns failed!\n");
return -ENXIO;
}
return spdk_nvme_ctrlr_reset(ctrlr);
}
int
spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload)
{
struct nvme_completion_poll_status status;
int res;
status.done = false;
res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
nvme_completion_poll_cb, &status);
if (res)
return res;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_detach_ns failed!\n");
return -ENXIO;
}
return spdk_nvme_ctrlr_reset(ctrlr);
}
uint32_t
spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
{
struct nvme_completion_poll_status status;
int res;
status.done = false;
res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, &status);
if (res)
return 0;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_create_ns failed!\n");
return 0;
}
res = spdk_nvme_ctrlr_reset(ctrlr);
if (res) {
return 0;
}
/* Return the namespace ID that was created */
return status.cpl.cdw0;
}
int
spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
{
struct nvme_completion_poll_status status;
int res;
status.done = false;
res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, &status);
if (res)
return res;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_delete_ns failed!\n");
return -ENXIO;
}
return spdk_nvme_ctrlr_reset(ctrlr);
}
int
spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_format *format)
{
struct nvme_completion_poll_status status;
int res;
status.done = false;
res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
&status);
if (res)
return res;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_format failed!\n");
return -ENXIO;
}
return spdk_nvme_ctrlr_reset(ctrlr);
}
int
spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
int slot)
{
struct spdk_nvme_fw_commit fw_commit;
struct nvme_completion_poll_status status;
int res;
unsigned int size_remaining;
unsigned int offset;
unsigned int transfer;
void *p;
if (size % 4) {
SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid size!\n");
return -1;
}
/* Firmware download */
size_remaining = size;
offset = 0;
p = payload;
while (size_remaining > 0) {
transfer = spdk_min(size_remaining, ctrlr->min_page_size);
status.done = false;
res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
nvme_completion_poll_cb,
&status);
if (res)
return res;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_fw_image_download failed!\n");
return -ENXIO;
}
p += transfer;
offset += transfer;
size_remaining -= transfer;
}
/* Firmware commit */
memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
fw_commit.fs = slot;
fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_IMG;
status.done = false;
res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
&status);
if (res)
return res;
while (status.done == false) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_ctrlr_cmd_fw_commit failed!\n");
return -ENXIO;
}
return spdk_nvme_ctrlr_reset(ctrlr);
}