Maciej Szwed 8a24e7115f test/nvme: Don't fail test for NVMe with no namespaces
Signed-off-by: Maciej Szwed <maciej.szwed@intel.com>
Change-Id: I02024611ee8717aaf796ad2e5809a6e3d2a36f97
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/461249
Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2019-07-12 07:36:21 +00:00

731 lines
16 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/barrier.h"
#include "spdk/fd.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
#include "spdk/histogram_data.h"
#if HAVE_LIBAIO
#include <libaio.h>
#endif
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct ctrlr_entry *next;
char name[1024];
};
enum entry_type {
ENTRY_TYPE_NVME_NS,
ENTRY_TYPE_AIO_FILE,
};
struct ns_entry {
enum entry_type type;
union {
struct {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
} nvme;
#if HAVE_LIBAIO
struct {
int fd;
struct io_event *events;
io_context_t ctx;
} aio;
#endif
} u;
uint32_t io_size_blocks;
uint64_t size_in_ios;
bool is_draining;
uint32_t current_queue_depth;
char name[1024];
struct ns_entry *next;
struct spdk_histogram_data *submit_histogram;
struct spdk_histogram_data *complete_histogram;
};
struct perf_task {
void *buf;
uint64_t submit_tsc;
#if HAVE_LIBAIO
struct iocb iocb;
#endif
};
static bool g_enable_histogram = false;
static struct ctrlr_entry *g_ctrlr = NULL;
static struct ns_entry *g_ns = NULL;
static uint64_t g_tsc_rate;
static uint32_t g_io_size_bytes;
static int g_time_in_sec;
static int g_aio_optind; /* Index of first AIO filename in argv */
struct perf_task *g_task;
uint64_t g_tsc_submit = 0;
uint64_t g_tsc_submit_min = UINT64_MAX;
uint64_t g_tsc_submit_max = 0;
uint64_t g_tsc_complete = 0;
uint64_t g_tsc_complete_min = UINT64_MAX;
uint64_t g_tsc_complete_max = 0;
uint64_t g_io_completed = 0;
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
if (spdk_nvme_ns_get_size(ns) < g_io_size_bytes ||
spdk_nvme_ns_get_sector_size(ns) > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
return;
}
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->type = ENTRY_TYPE_NVME_NS;
entry->u.nvme.ctrlr = ctrlr;
entry->u.nvme.ns = ns;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
entry->submit_histogram = spdk_histogram_data_alloc();
entry->complete_histogram = spdk_histogram_data_alloc();
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->next = g_ns;
g_ns = entry;
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int num_ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
entry->next = g_ctrlr;
g_ctrlr = entry;
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
/* Only register the first namespace. */
if (num_ns < 1) {
fprintf(stderr, "controller found with no namespaces\n");
return;
}
register_ns(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, 1));
}
#if HAVE_LIBAIO
static int
register_aio_file(const char *path)
{
struct ns_entry *entry;
int fd;
uint64_t size;
uint32_t blklen;
fd = open(path, O_RDWR | O_DIRECT);
if (fd < 0) {
fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno));
return -1;
}
size = spdk_fd_get_size(fd);
if (size == 0) {
fprintf(stderr, "Could not determine size of AIO device %s\n", path);
close(fd);
return -1;
}
blklen = spdk_fd_get_blocklen(fd);
if (blklen == 0) {
fprintf(stderr, "Could not determine block size of AIO device %s\n", path);
close(fd);
return -1;
}
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
close(fd);
perror("aio ns_entry malloc");
return -1;
}
entry->type = ENTRY_TYPE_AIO_FILE;
entry->u.aio.fd = fd;
entry->size_in_ios = size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / blklen;
entry->submit_histogram = spdk_histogram_data_alloc();
entry->complete_histogram = spdk_histogram_data_alloc();
snprintf(entry->name, sizeof(entry->name), "%s", path);
g_ns = entry;
return 0;
}
static int
aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, void *buf,
unsigned long nbytes, uint64_t offset, void *cb_ctx)
{
iocb->aio_fildes = fd;
iocb->aio_reqprio = 0;
iocb->aio_lio_opcode = cmd;
iocb->u.c.buf = buf;
iocb->u.c.nbytes = nbytes;
iocb->u.c.offset = offset;
iocb->data = cb_ctx;
if (io_submit(aio_ctx, 1, &iocb) < 0) {
printf("io_submit");
return -1;
}
return 0;
}
static void
aio_check_io(void)
{
int count, i;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
count = io_getevents(g_ns->u.aio.ctx, 1, 1, g_ns->u.aio.events, &timeout);
if (count < 0) {
fprintf(stderr, "io_getevents error\n");
exit(1);
}
for (i = 0; i < count; i++) {
g_ns->current_queue_depth--;
}
}
#endif /* HAVE_LIBAIO */
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(void)
{
uint64_t offset_in_ios;
uint64_t start;
int rc;
struct ns_entry *entry = g_ns;
uint64_t tsc_submit;
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
start = spdk_get_ticks();
spdk_rmb();
#if HAVE_LIBAIO
if (entry->type == ENTRY_TYPE_AIO_FILE) {
rc = aio_submit(g_ns->u.aio.ctx, &g_task->iocb, entry->u.aio.fd, IO_CMD_PREAD, g_task->buf,
g_io_size_bytes, offset_in_ios * g_io_size_bytes, g_task);
} else
#endif
{
rc = spdk_nvme_ns_cmd_read(entry->u.nvme.ns, g_ns->u.nvme.qpair, g_task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, g_task, 0);
}
spdk_rmb();
tsc_submit = spdk_get_ticks() - start;
g_tsc_submit += tsc_submit;
if (tsc_submit < g_tsc_submit_min) {
g_tsc_submit_min = tsc_submit;
}
if (tsc_submit > g_tsc_submit_max) {
g_tsc_submit_max = tsc_submit;
}
if (g_enable_histogram) {
spdk_histogram_data_tally(entry->submit_histogram, tsc_submit);
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
}
g_ns->current_queue_depth++;
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
g_ns->current_queue_depth--;
}
uint64_t g_complete_tsc_start;
static uint64_t
check_io(void)
{
uint64_t end, tsc_complete;
spdk_rmb();
#if HAVE_LIBAIO
if (g_ns->type == ENTRY_TYPE_AIO_FILE) {
aio_check_io();
} else
#endif
{
spdk_nvme_qpair_process_completions(g_ns->u.nvme.qpair, 0);
}
spdk_rmb();
end = spdk_get_ticks();
if (g_ns->current_queue_depth == 1) {
/*
* Account for race condition in AIO case where interrupt occurs
* after checking for queue depth. If the timestamp capture
* is too big compared to the last capture, assume that an
* interrupt fired, and do not bump the start tsc forward. This
* will ensure this extra time is accounted for next time through
* when we see current_queue_depth drop to 0.
*/
if (g_ns->type == ENTRY_TYPE_NVME_NS || (end - g_complete_tsc_start) < 500) {
g_complete_tsc_start = end;
}
} else {
tsc_complete = end - g_complete_tsc_start;
g_tsc_complete += tsc_complete;
if (tsc_complete < g_tsc_complete_min) {
g_tsc_complete_min = tsc_complete;
}
if (tsc_complete > g_tsc_complete_max) {
g_tsc_complete_max = tsc_complete;
}
if (g_enable_histogram) {
spdk_histogram_data_tally(g_ns->complete_histogram, tsc_complete);
}
g_io_completed++;
if (!g_ns->is_draining) {
submit_single_io();
}
end = g_complete_tsc_start = spdk_get_ticks();
}
return end;
}
static void
drain_io(void)
{
g_ns->is_draining = true;
while (g_ns->current_queue_depth > 0) {
check_io();
}
}
static int
init_ns_worker_ctx(void)
{
if (g_ns->type == ENTRY_TYPE_AIO_FILE) {
#ifdef HAVE_LIBAIO
g_ns->u.aio.events = calloc(1, sizeof(struct io_event));
if (!g_ns->u.aio.events) {
return -1;
}
g_ns->u.aio.ctx = 0;
if (io_setup(1, &g_ns->u.aio.ctx) < 0) {
free(g_ns->u.aio.events);
perror("io_setup");
return -1;
}
#endif
} else {
/*
* TODO: If a controller has multiple namespaces, they could all use the same queue.
* For now, give each namespace/thread combination its own queue.
*/
g_ns->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(g_ns->u.nvme.ctrlr, NULL, 0);
if (!g_ns->u.nvme.qpair) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return -1;
}
}
return 0;
}
static void
cleanup_ns_worker_ctx(void)
{
if (g_ns->type == ENTRY_TYPE_AIO_FILE) {
#ifdef HAVE_LIBAIO
io_destroy(g_ns->u.aio.ctx);
free(g_ns->u.aio.events);
#endif
} else {
spdk_nvme_ctrlr_free_io_qpair(g_ns->u.nvme.qpair);
}
}
static int
work_fn(void)
{
uint64_t tsc_end, current;
/* Allocate a queue pair for each namespace. */
if (init_ns_worker_ctx() != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
return 1;
}
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
/* Submit initial I/O for each namespace. */
submit_single_io();
g_complete_tsc_start = spdk_get_ticks();
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
current = check_io();
if (current > tsc_end) {
break;
}
}
drain_io();
cleanup_ns_worker_ctx();
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
#if HAVE_LIBAIO
printf(" [AIO device(s)]...");
#endif
printf("\n");
printf("\t[-s io size in bytes]\n");
printf("\t[-t time in seconds]\n");
printf("\t\t(default: 1)]\n");
printf("\t[-H enable histograms]\n");
}
static void
print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
if (count == 0) {
return;
}
so_far_pct = (double)so_far * 100 / total;
printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n",
(double)start * 1000 * 1000 / g_tsc_rate,
(double)end * 1000 * 1000 / g_tsc_rate,
so_far_pct, count);
}
static void
print_stats(void)
{
double divisor = (double)g_tsc_rate / (1000 * 1000 * 1000);
printf("submit (in ns) avg, min, max = %8.1f, %8.1f, %8.1f\n",
(double)g_tsc_submit / g_io_completed / divisor,
(double)g_tsc_submit_min / divisor,
(double)g_tsc_submit_max / divisor);
printf("complete (in ns) avg, min, max = %8.1f, %8.1f, %8.1f\n",
(double)g_tsc_complete / g_io_completed / divisor,
(double)g_tsc_complete_min / divisor,
(double)g_tsc_complete_max / divisor);
if (!g_enable_histogram) {
return;
}
printf("\n");
printf("Submit histogram\n");
printf("================\n");
printf(" Range in us Cumulative Count\n");
spdk_histogram_data_iterate(g_ns->submit_histogram, print_bucket, NULL);
printf("\n");
printf("Complete histogram\n");
printf("==================\n");
printf(" Range in us Cumulative Count\n");
spdk_histogram_data_iterate(g_ns->complete_histogram, print_bucket, NULL);
printf("\n");
}
static int
parse_args(int argc, char **argv)
{
int op;
long int val;
/* default value */
g_io_size_bytes = 0;
g_time_in_sec = 0;
while ((op = getopt(argc, argv, "hs:t:H")) != -1) {
switch (op) {
case 'h':
usage(argv[0]);
exit(0);
break;
case 's':
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Invalid io size\n");
return val;
}
g_io_size_bytes = (uint32_t)val;
break;
case 't':
g_time_in_sec = spdk_strtol(optarg, 10);
if (g_time_in_sec < 0) {
fprintf(stderr, "Invalid run time\n");
return g_time_in_sec;
}
break;
case 'H':
g_enable_histogram = true;
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
g_aio_optind = optind;
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
static uint32_t ctrlr_found = 0;
if (ctrlr_found == 1) {
fprintf(stderr, "only attaching to one controller, so skipping\n");
fprintf(stderr, " controller at PCI address %s\n",
trid->traddr);
return false;
}
ctrlr_found = 1;
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attached to %s\n", trid->traddr);
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
if (g_ns == NULL) {
fprintf(stderr, "no NVMe controller found - check that device is bound to uio/vfio\n");
return 1;
}
return 0;
}
static void
cleanup(void)
{
struct ns_entry *ns_entry = g_ns;
struct ctrlr_entry *ctrlr_entry = g_ctrlr;
while (ns_entry) {
struct ns_entry *next = ns_entry->next;
spdk_histogram_data_free(ns_entry->submit_histogram);
spdk_histogram_data_free(ns_entry->complete_histogram);
free(ns_entry);
ns_entry = next;
}
while (ctrlr_entry) {
struct ctrlr_entry *next = ctrlr_entry->next;
spdk_nvme_detach(ctrlr_entry->ctrlr);
free(ctrlr_entry);
ctrlr_entry = next;
}
}
int main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "overhead";
opts.core_mask = "0x1";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
g_task = spdk_zmalloc(sizeof(struct perf_task), 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (g_task == NULL) {
fprintf(stderr, "g_task alloc failed\n");
exit(1);
}
g_task->buf = spdk_zmalloc(g_io_size_bytes, 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (g_task->buf == NULL) {
fprintf(stderr, "g_task->buf spdk_zmalloc failed\n");
exit(1);
}
g_tsc_rate = spdk_get_ticks_hz();
#if HAVE_LIBAIO
if (g_aio_optind < argc) {
printf("Measuring overhead for AIO device %s.\n", argv[g_aio_optind]);
if (register_aio_file(argv[g_aio_optind]) != 0) {
cleanup();
return -1;
}
} else
#endif
{
if (register_controllers() != 0) {
cleanup();
return -1;
}
}
printf("Initialization complete. Launching workers.\n");
rc = work_fn();
print_stats();
cleanup();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}