numam-spdk/lib/bdev/nvme/bdev_nvme.c
Jim Harris 5b900148e5 nvme: add spdk_nvme_ns_get_extended_sector_size
spdk_nvme_ns_get_sector_size returns the sector
size of the data only.  This new function adds
in the metadata size, if any.

While here, modify the bdev/nvme driver to use this
function - this is needed for ongoing extended sector
size work through the bdev layer.

Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: Ic8070a7f8d29b0b2ac2a2d65e0df5f4736488351

Reviewed-on: https://review.gerrithub.io/422445
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2018-08-16 04:38:10 +00:00

1827 lines
48 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "bdev_nvme.h"
#include "spdk/conf.h"
#include "spdk/endian.h"
#include "spdk/bdev.h"
#include "spdk/json.h"
#include "spdk/nvme.h"
#include "spdk/thread.h"
#include "spdk/string.h"
#include "spdk/likely.h"
#include "spdk/util.h"
#include "spdk/bdev_module.h"
#include "spdk_internal/log.h"
static void bdev_nvme_get_spdk_running_config(FILE *fp);
static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
struct nvme_io_channel {
struct spdk_nvme_qpair *qpair;
struct spdk_poller *poller;
bool collect_spin_stat;
uint64_t spin_ticks;
uint64_t start_ticks;
uint64_t end_ticks;
};
struct nvme_bdev_io {
/** array of iovecs to transfer. */
struct iovec *iovs;
/** Number of iovecs in iovs array. */
int iovcnt;
/** Current iovec position. */
int iovpos;
/** Offset in current iovec. */
uint32_t iov_offset;
/** Saved status for admin passthru completion event. */
struct spdk_nvme_cpl cpl;
/** Originating thread */
struct spdk_thread *orig_thread;
};
enum data_direction {
BDEV_DISK_READ = 0,
BDEV_DISK_WRITE = 1
};
struct nvme_probe_ctx {
size_t count;
struct spdk_nvme_transport_id trids[NVME_MAX_CONTROLLERS];
const char *names[NVME_MAX_CONTROLLERS];
const char *hostnqn;
};
static struct spdk_bdev_nvme_opts g_opts = {
.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
.timeout_us = 0,
.retry_count = SPDK_NVME_DEFAULT_RETRY_COUNT,
.nvme_adminq_poll_period_us = 1000000ULL,
};
#define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL
#define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL
static int g_hot_insert_nvme_controller_index = 0;
static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
static bool g_nvme_hotplug_enabled = false;
static struct spdk_thread *g_bdev_nvme_init_thread;
static struct spdk_poller *g_hotplug_poller;
static char *g_nvme_hostnqn = NULL;
static pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, nvme_ctrlr) g_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_ctrlrs);
static int nvme_ctrlr_create_bdevs(struct nvme_ctrlr *nvme_ctrlr);
static int bdev_nvme_library_init(void);
static void bdev_nvme_library_fini(void);
static int bdev_nvme_queue_cmd(struct nvme_bdev *bdev, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
int direction, struct iovec *iov, int iovcnt, uint64_t lba_count,
uint64_t lba);
static int bdev_nvme_admin_passthru(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru_md(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len);
static int nvme_ctrlr_create_bdev(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid);
static int
bdev_nvme_get_ctx_size(void)
{
return sizeof(struct nvme_bdev_io);
}
static struct spdk_bdev_module nvme_if = {
.name = "nvme",
.module_init = bdev_nvme_library_init,
.module_fini = bdev_nvme_library_fini,
.config_text = bdev_nvme_get_spdk_running_config,
.config_json = bdev_nvme_config_json,
.get_ctx_size = bdev_nvme_get_ctx_size,
};
SPDK_BDEV_MODULE_REGISTER(&nvme_if)
static int
bdev_nvme_readv(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, uint64_t lba_count, uint64_t lba)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "read %lu blocks with offset %#lx\n",
lba_count, lba);
return bdev_nvme_queue_cmd(nbdev, nvme_ch->qpair, bio, BDEV_DISK_READ,
iov, iovcnt, lba_count, lba);
}
static int
bdev_nvme_writev(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, uint64_t lba_count, uint64_t lba)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "write %lu blocks with offset %#lx\n",
lba_count, lba);
return bdev_nvme_queue_cmd(nbdev, nvme_ch->qpair, bio, BDEV_DISK_WRITE,
iov, iovcnt, lba_count, lba);
}
static int
bdev_nvme_poll(void *arg)
{
struct nvme_io_channel *ch = arg;
int32_t num_completions;
if (ch->qpair == NULL) {
return -1;
}
if (ch->collect_spin_stat && ch->start_ticks == 0) {
ch->start_ticks = spdk_get_ticks();
}
num_completions = spdk_nvme_qpair_process_completions(ch->qpair, 0);
if (ch->collect_spin_stat) {
if (num_completions > 0) {
if (ch->end_ticks != 0) {
ch->spin_ticks += (ch->end_ticks - ch->start_ticks);
ch->end_ticks = 0;
}
ch->start_ticks = 0;
} else {
ch->end_ticks = spdk_get_ticks();
}
}
return num_completions;
}
static int
bdev_nvme_poll_adminq(void *arg)
{
struct spdk_nvme_ctrlr *ctrlr = arg;
return spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
static void
bdev_nvme_unregister_cb(void *io_device)
{
struct spdk_nvme_ctrlr *ctrlr = io_device;
spdk_nvme_detach(ctrlr);
}
static int
bdev_nvme_destruct(void *ctx)
{
struct nvme_bdev *nvme_disk = ctx;
struct nvme_ctrlr *nvme_ctrlr = nvme_disk->nvme_ctrlr;
pthread_mutex_lock(&g_bdev_nvme_mutex);
nvme_ctrlr->ref--;
free(nvme_disk->disk.name);
memset(nvme_disk, 0, sizeof(*nvme_disk));
if (nvme_ctrlr->ref == 0) {
TAILQ_REMOVE(&g_nvme_ctrlrs, nvme_ctrlr, tailq);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(nvme_ctrlr->ctrlr, bdev_nvme_unregister_cb);
spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
free(nvme_ctrlr->name);
free(nvme_ctrlr->bdevs);
free(nvme_ctrlr);
return 0;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
static int
bdev_nvme_flush(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio,
uint64_t offset, uint64_t nbytes)
{
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_SUCCESS);
return 0;
}
static void
_bdev_nvme_reset_done(struct spdk_io_channel_iter *i, int status)
{
void *ctx = spdk_io_channel_iter_get_ctx(i);
int rc = SPDK_BDEV_IO_STATUS_SUCCESS;
if (status) {
rc = SPDK_BDEV_IO_STATUS_FAILED;
}
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(ctx), rc);
}
static void
_bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_nvme_ctrlr *ctrlr = spdk_io_channel_iter_get_io_device(i);
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(_ch);
nvme_ch->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, NULL, 0);
if (!nvme_ch->qpair) {
spdk_for_each_channel_continue(i, -1);
return;
}
spdk_for_each_channel_continue(i, 0);
}
static void
_bdev_nvme_reset(struct spdk_io_channel_iter *i, int status)
{
struct spdk_nvme_ctrlr *ctrlr = spdk_io_channel_iter_get_io_device(i);
struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
int rc;
if (status) {
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_FAILED);
return;
}
rc = spdk_nvme_ctrlr_reset(ctrlr);
if (rc != 0) {
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_FAILED);
return;
}
/* Recreate all of the I/O queue pairs */
spdk_for_each_channel(ctrlr,
_bdev_nvme_reset_create_qpair,
bio,
_bdev_nvme_reset_done);
}
static void
_bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int rc;
rc = spdk_nvme_ctrlr_free_io_qpair(nvme_ch->qpair);
if (!rc) {
nvme_ch->qpair = NULL;
}
spdk_for_each_channel_continue(i, rc);
}
static int
bdev_nvme_reset(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
{
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nbdev->nvme_ctrlr->ctrlr,
_bdev_nvme_reset_destroy_qpair,
bio,
_bdev_nvme_reset);
return 0;
}
static int
bdev_nvme_unmap(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks);
static void
bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
int ret;
ret = bdev_nvme_readv((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks);
if (spdk_likely(ret == 0)) {
return;
} else if (ret == -ENOMEM) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static int
_bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
if (nvme_ch->qpair == NULL) {
/* The device is currently resetting */
return -1;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
return 0;
case SPDK_BDEV_IO_TYPE_WRITE:
return bdev_nvme_writev((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks);
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
return bdev_nvme_unmap((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_UNMAP:
return bdev_nvme_unmap((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_RESET:
return bdev_nvme_reset((struct nvme_bdev *)bdev_io->bdev->ctxt,
(struct nvme_bdev_io *)bdev_io->driver_ctx);
case SPDK_BDEV_IO_TYPE_FLUSH:
return bdev_nvme_flush((struct nvme_bdev *)bdev_io->bdev->ctxt,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
return bdev_nvme_admin_passthru((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
case SPDK_BDEV_IO_TYPE_NVME_IO:
return bdev_nvme_io_passthru((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return bdev_nvme_io_passthru_md((struct nvme_bdev *)bdev_io->bdev->ctxt,
ch,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes,
bdev_io->u.nvme_passthru.md_buf,
bdev_io->u.nvme_passthru.md_len);
default:
return -EINVAL;
}
return 0;
}
static void
bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
int rc = _bdev_nvme_submit_request(ch, bdev_io);
if (spdk_unlikely(rc != 0)) {
if (rc == -ENOMEM) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
static bool
bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
{
struct nvme_bdev *nbdev = ctx;
const struct spdk_nvme_ctrlr_data *cdata;
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_FLUSH:
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
case SPDK_BDEV_IO_TYPE_NVME_IO:
return true;
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return spdk_nvme_ns_get_md_size(nbdev->ns) ? true : false;
case SPDK_BDEV_IO_TYPE_UNMAP:
cdata = spdk_nvme_ctrlr_get_data(nbdev->nvme_ctrlr->ctrlr);
return cdata->oncs.dsm;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
cdata = spdk_nvme_ctrlr_get_data(nbdev->nvme_ctrlr->ctrlr);
/*
* If an NVMe controller guarantees reading unallocated blocks returns zero,
* we can implement WRITE_ZEROES as an NVMe deallocate command.
*/
if (cdata->oncs.dsm &&
spdk_nvme_ns_get_dealloc_logical_block_read_value(nbdev->ns) == SPDK_NVME_DEALLOC_READ_00) {
return true;
}
/*
* The NVMe controller write_zeroes function is currently not used by our driver.
* If a user submits an arbitrarily large write_zeroes request to the controller, the request will fail.
* Until this is resolved, we only claim support for write_zeroes if deallocated blocks return 0's when read.
*/
return false;
default:
return false;
}
}
static int
bdev_nvme_create_cb(void *io_device, void *ctx_buf)
{
struct spdk_nvme_ctrlr *ctrlr = io_device;
struct nvme_io_channel *ch = ctx_buf;
#ifdef SPDK_CONFIG_VTUNE
ch->collect_spin_stat = true;
#else
ch->collect_spin_stat = false;
#endif
ch->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, NULL, 0);
if (ch->qpair == NULL) {
return -1;
}
ch->poller = spdk_poller_register(bdev_nvme_poll, ch, 0);
return 0;
}
static void
bdev_nvme_destroy_cb(void *io_device, void *ctx_buf)
{
struct nvme_io_channel *ch = ctx_buf;
spdk_nvme_ctrlr_free_io_qpair(ch->qpair);
spdk_poller_unregister(&ch->poller);
}
static struct spdk_io_channel *
bdev_nvme_get_io_channel(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
return spdk_get_io_channel(nvme_bdev->nvme_ctrlr->ctrlr);
}
static int
bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
{
struct nvme_bdev *nvme_bdev = ctx;
struct nvme_ctrlr *nvme_ctrlr = nvme_bdev->nvme_ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
struct spdk_nvme_ns *ns;
union spdk_nvme_vs_register vs;
union spdk_nvme_csts_register csts;
const char *trtype_str;
const char *adrfam_str;
char buf[128];
cdata = spdk_nvme_ctrlr_get_data(nvme_bdev->nvme_ctrlr->ctrlr);
vs = spdk_nvme_ctrlr_get_regs_vs(nvme_bdev->nvme_ctrlr->ctrlr);
csts = spdk_nvme_ctrlr_get_regs_csts(nvme_bdev->nvme_ctrlr->ctrlr);
ns = nvme_bdev->ns;
spdk_json_write_named_object_begin(w, "nvme");
if (nvme_ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
spdk_json_write_named_string(w, "pci_address", nvme_ctrlr->trid.traddr);
}
spdk_json_write_named_object_begin(w, "trid");
trtype_str = spdk_nvme_transport_id_trtype_str(nvme_ctrlr->trid.trtype);
if (trtype_str) {
spdk_json_write_named_string(w, "trtype", trtype_str);
}
adrfam_str = spdk_nvme_transport_id_adrfam_str(nvme_ctrlr->trid.adrfam);
if (adrfam_str) {
spdk_json_write_named_string(w, "adrfam", adrfam_str);
}
if (nvme_ctrlr->trid.traddr[0] != '\0') {
spdk_json_write_named_string(w, "traddr", nvme_ctrlr->trid.traddr);
}
if (nvme_ctrlr->trid.trsvcid[0] != '\0') {
spdk_json_write_named_string(w, "trsvcid", nvme_ctrlr->trid.trsvcid);
}
if (nvme_ctrlr->trid.subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", nvme_ctrlr->trid.subnqn);
}
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "ctrlr_data");
spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "model_number", buf);
snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "serial_number", buf);
snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "firmware_revision", buf);
spdk_json_write_named_object_begin(w, "oacs");
spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "vs");
spdk_json_write_name(w, "nvme_version");
if (vs.bits.ter) {
spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
} else {
spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
}
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "csts");
spdk_json_write_named_uint32(w, "rdy", csts.bits.rdy);
spdk_json_write_named_uint32(w, "cfs", csts.bits.cfs);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "ns_data");
spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
return 0;
}
static void
bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
/* No config per bdev needed */
}
static uint64_t
bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
uint64_t spin_time;
if (!nvme_ch->collect_spin_stat) {
return 0;
}
if (nvme_ch->end_ticks != 0) {
nvme_ch->spin_ticks += (nvme_ch->end_ticks - nvme_ch->start_ticks);
nvme_ch->end_ticks = 0;
}
spin_time = (nvme_ch->spin_ticks * 1000000ULL) / spdk_get_ticks_hz();
nvme_ch->start_ticks = 0;
nvme_ch->spin_ticks = 0;
return spin_time;
}
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
.destruct = bdev_nvme_destruct,
.submit_request = bdev_nvme_submit_request,
.io_type_supported = bdev_nvme_io_type_supported,
.get_io_channel = bdev_nvme_get_io_channel,
.dump_info_json = bdev_nvme_dump_info_json,
.write_config_json = bdev_nvme_write_config_json,
.get_spin_time = bdev_nvme_get_spin_time,
};
static int
nvme_ctrlr_create_bdev(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
struct nvme_bdev *bdev;
struct spdk_nvme_ns *ns;
const struct spdk_uuid *uuid;
const struct spdk_nvme_ctrlr_data *cdata;
int rc;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (!ns) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "Invalid NS %d\n", nsid);
return -EINVAL;
}
bdev = &nvme_ctrlr->bdevs[nsid - 1];
bdev->id = nsid;
bdev->nvme_ctrlr = nvme_ctrlr;
bdev->ns = ns;
nvme_ctrlr->ref++;
bdev->disk.name = spdk_sprintf_alloc("%sn%d", nvme_ctrlr->name, spdk_nvme_ns_get_id(ns));
if (!bdev->disk.name) {
nvme_ctrlr->ref--;
memset(bdev, 0, sizeof(*bdev));
return -ENOMEM;
}
bdev->disk.product_name = "NVMe disk";
bdev->disk.write_cache = 0;
if (cdata->vwc.present) {
/* Enable if the Volatile Write Cache exists */
bdev->disk.write_cache = 1;
}
bdev->disk.blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
bdev->disk.blockcnt = spdk_nvme_ns_get_num_sectors(ns);
bdev->disk.optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
uuid = spdk_nvme_ns_get_uuid(ns);
if (uuid != NULL) {
bdev->disk.uuid = *uuid;
}
bdev->disk.ctxt = bdev;
bdev->disk.fn_table = &nvmelib_fn_table;
bdev->disk.module = &nvme_if;
rc = spdk_bdev_register(&bdev->disk);
if (rc) {
free(bdev->disk.name);
nvme_ctrlr->ref--;
memset(bdev, 0, sizeof(*bdev));
return rc;
}
bdev->active = true;
return 0;
}
static bool
hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "Attaching to %s\n", trid->traddr);
return true;
}
static struct nvme_ctrlr *
nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr *nvme_ctrlr;
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->trid) == 0) {
return nvme_ctrlr;
}
}
return NULL;
}
static struct nvme_ctrlr *
nvme_ctrlr_get_by_name(const char *name)
{
struct nvme_ctrlr *nvme_ctrlr;
if (name == NULL) {
return NULL;
}
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
if (strcmp(name, nvme_ctrlr->name) == 0) {
return nvme_ctrlr;
}
}
return NULL;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_ctx *ctx = cb_ctx;
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "Probing device %s\n", trid->traddr);
if (nvme_ctrlr_get(trid)) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n",
trid->traddr);
return false;
}
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
bool claim_device = false;
size_t i;
for (i = 0; i < ctx->count; i++) {
if (spdk_nvme_transport_id_compare(trid, &ctx->trids[i]) == 0) {
claim_device = true;
break;
}
}
if (!claim_device) {
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "Not claiming device at %s\n", trid->traddr);
return false;
}
}
if (ctx->hostnqn) {
snprintf(opts->hostnqn, sizeof(opts->hostnqn), "%s", ctx->hostnqn);
}
return true;
}
static void
spdk_nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_ctrlr *ctrlr = ctx;
int rc;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("Abort failed. Resetting controller.\n");
rc = spdk_nvme_ctrlr_reset(ctrlr);
if (rc) {
SPDK_ERRLOG("Resetting controller failed.\n");
}
}
}
static void
timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair, uint16_t cid)
{
int rc;
union spdk_nvme_csts_register csts;
SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.bits.cfs) {
SPDK_ERRLOG("Controller Fatal Status, reset required\n");
rc = spdk_nvme_ctrlr_reset(ctrlr);
if (rc) {
SPDK_ERRLOG("Resetting controller failed.\n");
}
return;
}
switch (g_opts.action_on_timeout) {
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
if (qpair) {
rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
spdk_nvme_abort_cpl, ctrlr);
if (rc == 0) {
return;
}
SPDK_ERRLOG("Unable to send abort. Resetting.\n");
}
/* FALLTHROUGH */
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
rc = spdk_nvme_ctrlr_reset(ctrlr);
if (rc) {
SPDK_ERRLOG("Resetting controller failed.\n");
}
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
break;
}
}
static void
nvme_ctrlr_deactivate_bdev(struct nvme_bdev *bdev)
{
spdk_bdev_unregister(&bdev->disk, NULL, NULL);
bdev->active = false;
}
static void
nvme_ctrlr_update_ns_bdevs(struct nvme_ctrlr *nvme_ctrlr)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
uint32_t i;
struct nvme_bdev *bdev;
for (i = 0; i < nvme_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
bdev = &nvme_ctrlr->bdevs[i];
if (!bdev->active && spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid)) {
SPDK_NOTICELOG("NSID %u to be added\n", nsid);
nvme_ctrlr_create_bdev(nvme_ctrlr, nsid);
}
if (bdev->active && !spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid)) {
SPDK_NOTICELOG("NSID %u Bdev %s is removed\n", nsid, bdev->disk.name);
nvme_ctrlr_deactivate_bdev(bdev);
}
}
}
static void
aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = arg;
union spdk_nvme_async_event_completion event;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("AER request execute failed");
return;
}
event.raw = cpl->cdw0;
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
nvme_ctrlr_update_ns_bdevs(nvme_ctrlr);
}
}
static int
create_ctrlr(struct spdk_nvme_ctrlr *ctrlr,
const char *name,
const struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr *nvme_ctrlr;
nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
if (nvme_ctrlr == NULL) {
SPDK_ERRLOG("Failed to allocate device struct\n");
return -ENOMEM;
}
nvme_ctrlr->num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
nvme_ctrlr->bdevs = calloc(nvme_ctrlr->num_ns, sizeof(struct nvme_bdev));
if (!nvme_ctrlr->bdevs) {
SPDK_ERRLOG("Failed to allocate block devices struct\n");
free(nvme_ctrlr);
return -ENOMEM;
}
nvme_ctrlr->adminq_timer_poller = NULL;
nvme_ctrlr->ctrlr = ctrlr;
nvme_ctrlr->ref = 0;
nvme_ctrlr->trid = *trid;
nvme_ctrlr->name = strdup(name);
if (nvme_ctrlr->name == NULL) {
free(nvme_ctrlr->bdevs);
free(nvme_ctrlr);
return -ENOMEM;
}
spdk_io_device_register(ctrlr, bdev_nvme_create_cb, bdev_nvme_destroy_cb,
sizeof(struct nvme_io_channel));
if (nvme_ctrlr_create_bdevs(nvme_ctrlr) != 0) {
spdk_io_device_unregister(ctrlr, bdev_nvme_unregister_cb);
free(nvme_ctrlr->bdevs);
free(nvme_ctrlr->name);
free(nvme_ctrlr);
return -1;
}
nvme_ctrlr->adminq_timer_poller = spdk_poller_register(bdev_nvme_poll_adminq, ctrlr,
g_opts.nvme_adminq_poll_period_us);
TAILQ_INSERT_TAIL(&g_nvme_ctrlrs, nvme_ctrlr, tailq);
if (g_opts.timeout_us > 0 && g_opts.action_on_timeout != SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE) {
spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
timeout_cb, NULL);
}
spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
return 0;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_ctx *ctx = cb_ctx;
char *name = NULL;
size_t i;
if (ctx) {
for (i = 0; i < ctx->count; i++) {
if (spdk_nvme_transport_id_compare(trid, &ctx->trids[i]) == 0) {
name = strdup(ctx->names[i]);
break;
}
}
} else {
name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
}
if (!name) {
SPDK_ERRLOG("Failed to assign name to NVMe device\n");
return;
}
SPDK_DEBUGLOG(SPDK_LOG_BDEV_NVME, "Attached to %s (%s)\n", trid->traddr, name);
create_ctrlr(ctrlr, name, trid);
free(name);
}
static void
remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
{
uint32_t i;
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_bdev *nvme_bdev;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
if (nvme_ctrlr->ctrlr == ctrlr) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
for (i = 0; i < nvme_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
nvme_bdev = &nvme_ctrlr->bdevs[nsid - 1];
assert(nvme_bdev->id == nsid);
if (nvme_bdev->active) {
spdk_bdev_unregister(&nvme_bdev->disk, NULL, NULL);
}
}
return;
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static int
bdev_nvme_hotplug(void *arg)
{
if (spdk_nvme_probe(NULL, NULL, hotplug_probe_cb, attach_cb, remove_cb) != 0) {
SPDK_ERRLOG("spdk_nvme_probe() failed\n");
}
return -1;
}
void
spdk_bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
{
*opts = g_opts;
}
int
spdk_bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
{
if (g_bdev_nvme_init_thread != NULL) {
return -EPERM;
}
g_opts = *opts;
return 0;
}
struct set_nvme_hotplug_ctx {
uint64_t period_us;
bool enabled;
spdk_thread_fn fn;
void *fn_ctx;
};
static void
set_nvme_hotplug_period_cb(void *_ctx)
{
struct set_nvme_hotplug_ctx *ctx = _ctx;
spdk_poller_unregister(&g_hotplug_poller);
if (ctx->enabled) {
g_hotplug_poller = spdk_poller_register(bdev_nvme_hotplug, NULL, ctx->period_us);
}
g_nvme_hotplug_poll_period_us = ctx->period_us;
g_nvme_hotplug_enabled = ctx->enabled;
if (ctx->fn) {
ctx->fn(ctx->fn_ctx);
}
free(ctx);
}
int
spdk_bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_thread_fn cb, void *cb_ctx)
{
struct set_nvme_hotplug_ctx *ctx;
if (enabled == true && !spdk_process_is_primary()) {
return -EPERM;
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
ctx->enabled = enabled;
ctx->fn = cb;
ctx->fn_ctx = cb_ctx;
spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
return 0;
}
int
spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
const char *base_name,
const char **names, size_t *count,
const char *hostnqn)
{
struct nvme_probe_ctx *probe_ctx;
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_bdev *nvme_bdev;
uint32_t i, nsid;
size_t j;
if (nvme_ctrlr_get(trid) != NULL) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
return -1;
}
probe_ctx = calloc(1, sizeof(*probe_ctx));
if (probe_ctx == NULL) {
SPDK_ERRLOG("Failed to allocate probe_ctx\n");
return -1;
}
probe_ctx->count = 1;
probe_ctx->trids[0] = *trid;
probe_ctx->names[0] = base_name;
probe_ctx->hostnqn = hostnqn;
if (spdk_nvme_probe(trid, probe_ctx, probe_cb, attach_cb, NULL)) {
SPDK_ERRLOG("Failed to probe for new devices\n");
free(probe_ctx);
return -1;
}
nvme_ctrlr = nvme_ctrlr_get(trid);
if (!nvme_ctrlr) {
SPDK_ERRLOG("Failed to find new NVMe controller\n");
free(probe_ctx);
return -1;
}
/*
* Report the new bdevs that were created in this call.
* There can be more than one bdev per NVMe controller since one bdev is created per namespace.
*/
j = 0;
for (i = 0; i < nvme_ctrlr->num_ns; i++) {
nsid = i + 1;
nvme_bdev = &nvme_ctrlr->bdevs[nsid - 1];
if (!nvme_bdev->active) {
continue;
}
assert(nvme_bdev->id == nsid);
if (j < *count) {
names[j] = nvme_bdev->disk.name;
j++;
} else {
SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %zu. Unable to return all names of created bdevs\n",
*count);
free(probe_ctx);
return -1;
}
}
*count = j;
free(probe_ctx);
return 0;
}
int
spdk_bdev_nvme_delete(const char *name)
{
struct nvme_ctrlr *nvme_ctrlr = NULL;
if (name == NULL) {
return -EINVAL;
}
nvme_ctrlr = nvme_ctrlr_get_by_name(name);
if (nvme_ctrlr == NULL) {
SPDK_ERRLOG("Failed to find NVMe controller\n");
return -ENODEV;
}
remove_cb(NULL, nvme_ctrlr->ctrlr);
return 0;
}
static int
bdev_nvme_library_init(void)
{
struct spdk_conf_section *sp;
const char *val;
int rc = 0;
int64_t intval = 0;
size_t i;
struct nvme_probe_ctx *probe_ctx = NULL;
int retry_count;
uint32_t local_nvme_num = 0;
int64_t hotplug_period;
bool hotplug_enabled = g_nvme_hotplug_enabled;
g_bdev_nvme_init_thread = spdk_get_thread();
sp = spdk_conf_find_section(NULL, "Nvme");
if (sp == NULL) {
goto end;
}
probe_ctx = calloc(1, sizeof(*probe_ctx));
if (probe_ctx == NULL) {
SPDK_ERRLOG("Failed to allocate probe_ctx\n");
rc = -1;
goto end;
}
if ((retry_count = spdk_conf_section_get_intval(sp, "RetryCount")) < 0) {
if ((retry_count = spdk_conf_section_get_intval(sp, "NvmeRetryCount")) < 0) {
retry_count = SPDK_NVME_DEFAULT_RETRY_COUNT;
} else {
SPDK_WARNLOG("NvmeRetryCount was renamed to RetryCount\n");
SPDK_WARNLOG("Please update your configuration file\n");
}
}
g_opts.retry_count = retry_count;
val = spdk_conf_section_get_val(sp, "TimeoutUsec");
if (val != NULL) {
intval = strtoll(val, NULL, 10);
if (intval == LLONG_MIN || intval == LLONG_MAX) {
SPDK_ERRLOG("Invalid TimeoutUsec value\n");
rc = -1;
goto end;
} else if (intval < 0) {
intval = 0;
}
}
g_opts.timeout_us = intval;
if (g_opts.timeout_us > 0) {
val = spdk_conf_section_get_val(sp, "ActionOnTimeout");
if (val != NULL) {
if (!strcasecmp(val, "Reset")) {
g_opts.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET;
} else if (!strcasecmp(val, "Abort")) {
g_opts.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT;
}
} else {
/* Handle old name for backward compatibility */
val = spdk_conf_section_get_val(sp, "ResetControllerOnTimeout");
if (val) {
SPDK_WARNLOG("ResetControllerOnTimeout was renamed to ActionOnTimeout\n");
SPDK_WARNLOG("Please update your configuration file\n");
if (spdk_conf_section_get_boolval(sp, "ResetControllerOnTimeout", false)) {
g_opts.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET;
}
}
}
}
intval = spdk_conf_section_get_intval(sp, "AdminPollRate");
if (intval > 0) {
g_opts.nvme_adminq_poll_period_us = intval;
}
if (spdk_process_is_primary()) {
hotplug_enabled = spdk_conf_section_get_boolval(sp, "HotplugEnable", false);
}
hotplug_period = spdk_conf_section_get_intval(sp, "HotplugPollRate");
g_nvme_hostnqn = spdk_conf_section_get_val(sp, "HostNQN");
probe_ctx->hostnqn = g_nvme_hostnqn;
for (i = 0; i < NVME_MAX_CONTROLLERS; i++) {
val = spdk_conf_section_get_nmval(sp, "TransportID", i, 0);
if (val == NULL) {
break;
}
rc = spdk_nvme_transport_id_parse(&probe_ctx->trids[i], val);
if (rc < 0) {
SPDK_ERRLOG("Unable to parse TransportID: %s\n", val);
rc = -1;
goto end;
}
val = spdk_conf_section_get_nmval(sp, "TransportID", i, 1);
if (val == NULL) {
SPDK_ERRLOG("No name provided for TransportID\n");
rc = -1;
goto end;
}
probe_ctx->names[i] = val;
probe_ctx->count++;
if (probe_ctx->trids[i].trtype != SPDK_NVME_TRANSPORT_PCIE) {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ctrlr_opts opts;
if (nvme_ctrlr_get(&probe_ctx->trids[i])) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n",
probe_ctx->trids[i].traddr);
rc = -1;
goto end;
}
if (probe_ctx->trids[i].subnqn[0] == '\0') {
SPDK_ERRLOG("Need to provide subsystem nqn\n");
rc = -1;
goto end;
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
if (probe_ctx->hostnqn != NULL) {
snprintf(opts.hostnqn, sizeof(opts.hostnqn), "%s", probe_ctx->hostnqn);
}
ctrlr = spdk_nvme_connect(&probe_ctx->trids[i], &opts, sizeof(opts));
if (ctrlr == NULL) {
SPDK_ERRLOG("Unable to connect to provided trid (traddr: %s)\n",
probe_ctx->trids[i].traddr);
rc = -1;
goto end;
}
rc = create_ctrlr(ctrlr, probe_ctx->names[i], &probe_ctx->trids[i]);
if (rc) {
goto end;
}
} else {
local_nvme_num++;
}
}
if (local_nvme_num > 0) {
/* used to probe local NVMe device */
if (spdk_nvme_probe(NULL, probe_ctx, probe_cb, attach_cb, NULL)) {
rc = -1;
goto end;
}
for (i = 0; i < probe_ctx->count; i++) {
if (probe_ctx->trids[i].trtype != SPDK_NVME_TRANSPORT_PCIE) {
continue;
}
if (!nvme_ctrlr_get(&probe_ctx->trids[i])) {
SPDK_ERRLOG("NVMe SSD \"%s\" could not be found.\n", probe_ctx->trids[i].traddr);
SPDK_ERRLOG("Check PCIe BDF and that it is attached to UIO/VFIO driver.\n");
}
}
}
rc = spdk_bdev_nvme_set_hotplug(hotplug_enabled, hotplug_period, NULL, NULL);
if (rc) {
SPDK_ERRLOG("Failed to setup hotplug (%d): %s", rc, spdk_strerror(rc));
rc = -1;
}
end:
spdk_nvme_retry_count = g_opts.retry_count;
free(probe_ctx);
return rc;
}
static void
bdev_nvme_library_fini(void)
{
spdk_poller_unregister(&g_hotplug_poller);
}
static int
nvme_ctrlr_create_bdevs(struct nvme_ctrlr *nvme_ctrlr)
{
int rc;
int bdev_created = 0;
uint32_t nsid;
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(nvme_ctrlr->ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(nvme_ctrlr->ctrlr, nsid)) {
rc = nvme_ctrlr_create_bdev(nvme_ctrlr, nsid);
if (rc == 0) {
bdev_created++;
}
}
return (bdev_created > 0) ? 0 : -1;
}
static void
bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_admin_passthru_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
spdk_bdev_io_complete_nvme_status(bdev_io,
bio->cpl.status.sct, bio->cpl.status.sc);
}
static void
bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_admin_passthru_completion, bio);
}
static void
bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->iov_offset = sgl_offset;
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
if (bio->iov_offset < iov->iov_len) {
break;
}
bio->iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->iovpos < bio->iovcnt);
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->iov_offset) {
assert(bio->iov_offset <= iov->iov_len);
*address += bio->iov_offset;
*length -= bio->iov_offset;
}
bio->iov_offset += *length;
if (bio->iov_offset == iov->iov_len) {
bio->iovpos++;
bio->iov_offset = 0;
}
return 0;
}
static int
bdev_nvme_queue_cmd(struct nvme_bdev *bdev, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
int direction, struct iovec *iov, int iovcnt, uint64_t lba_count,
uint64_t lba)
{
int rc;
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (direction == BDEV_DISK_READ) {
rc = spdk_nvme_ns_cmd_readv(bdev->ns, qpair, lba,
lba_count, bdev_nvme_queued_done, bio, 0,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
} else {
rc = spdk_nvme_ns_cmd_writev(bdev->ns, qpair, lba,
lba_count, bdev_nvme_queued_done, bio, 0,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("%s failed: rc = %d\n", direction == BDEV_DISK_READ ? "readv" : "writev", rc);
}
return rc;
}
static int
bdev_nvme_unmap(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
struct spdk_nvme_dsm_range *range;
uint64_t offset, remaining;
uint64_t num_ranges_u64;
uint16_t num_ranges;
int rc;
num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
return -EINVAL;
}
num_ranges = (uint16_t)num_ranges_u64;
offset = offset_blocks;
remaining = num_blocks;
range = &dsm_ranges[0];
/* Fill max-size ranges until the remaining blocks fit into one range */
while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
range->attributes.raw = 0;
range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range->starting_lba = offset;
offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range++;
}
/* Final range describes the remaining blocks */
range->attributes.raw = 0;
range->length = remaining;
range->starting_lba = offset;
rc = spdk_nvme_ns_cmd_dataset_management(nbdev->ns, nvme_ch->qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE,
dsm_ranges, num_ranges,
bdev_nvme_queued_done, bio);
return rc;
}
static int
bdev_nvme_admin_passthru(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
uint32_t max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nbdev->nvme_ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
bio->orig_thread = spdk_io_channel_get_thread(ch);
return spdk_nvme_ctrlr_cmd_admin_raw(nbdev->nvme_ctrlr->ctrlr, cmd, buf,
(uint32_t)nbytes, bdev_nvme_admin_passthru_done, bio);
}
static int
bdev_nvme_io_passthru(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
uint32_t max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nbdev->nvme_ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(nbdev->ns);
return spdk_nvme_ctrlr_cmd_io_raw(nbdev->nvme_ctrlr->ctrlr, nvme_ch->qpair, cmd, buf,
(uint32_t)nbytes, bdev_nvme_queued_done, bio);
}
static int
bdev_nvme_io_passthru_md(struct nvme_bdev *nbdev, struct spdk_io_channel *ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(nbdev->ns);
uint32_t max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nbdev->nvme_ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(nbdev->ns)) {
SPDK_ERRLOG("invalid meta data buffer size\n");
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(nbdev->ns);
return spdk_nvme_ctrlr_cmd_io_raw_with_md(nbdev->nvme_ctrlr->ctrlr, nvme_ch->qpair, cmd, buf,
(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
}
static void
bdev_nvme_get_spdk_running_config(FILE *fp)
{
struct nvme_ctrlr *nvme_ctrlr;
fprintf(fp, "\n[Nvme]");
fprintf(fp, "\n"
"# NVMe Device Whitelist\n"
"# Users may specify which NVMe devices to claim by their transport id.\n"
"# See spdk_nvme_transport_id_parse() in spdk/nvme.h for the correct format.\n"
"# The second argument is the assigned name, which can be referenced from\n"
"# other sections in the configuration file. For NVMe devices, a namespace\n"
"# is automatically appended to each name in the format <YourName>nY, where\n"
"# Y is the NSID (starts at 1).\n");
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
const char *trtype;
trtype = spdk_nvme_transport_id_trtype_str(nvme_ctrlr->trid.trtype);
if (!trtype) {
continue;
}
if (nvme_ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
fprintf(fp, "TransportId \"trtype:%s traddr:%s\" %s\n",
trtype,
nvme_ctrlr->trid.traddr, nvme_ctrlr->name);
} else {
const char *adrfam;
adrfam = spdk_nvme_transport_id_adrfam_str(nvme_ctrlr->trid.adrfam);
if (adrfam) {
fprintf(fp, "TransportId \"trtype:%s adrfam:%s traddr:%s trsvcid:%s subnqn:%s\" %s\n",
trtype, adrfam,
nvme_ctrlr->trid.traddr, nvme_ctrlr->trid.trsvcid,
nvme_ctrlr->trid.subnqn, nvme_ctrlr->name);
} else {
fprintf(fp, "TransportId \"trtype:%s traddr:%s trsvcid:%s subnqn:%s\" %s\n",
trtype,
nvme_ctrlr->trid.traddr, nvme_ctrlr->trid.trsvcid,
nvme_ctrlr->trid.subnqn, nvme_ctrlr->name);
}
}
}
fprintf(fp, "\n"
"# The number of attempts per I/O when an I/O fails. Do not include\n"
"# this key to get the default behavior.\n");
fprintf(fp, "RetryCount %d\n", spdk_nvme_retry_count);
fprintf(fp, "\n"
"# Timeout for each command, in microseconds. If 0, don't track timeouts.\n");
fprintf(fp, "TimeoutUsec %"PRIu64"\n", g_opts.timeout_us);
fprintf(fp, "\n"
"# Action to take on command time out. Only valid when Timeout is greater\n"
"# than 0. This may be 'Reset' to reset the controller, 'Abort' to abort\n"
"# the command, or 'None' to just print a message but do nothing.\n"
"# Admin command timeouts will always result in a reset.\n");
switch (g_opts.action_on_timeout) {
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
fprintf(fp, "ActionOnTimeout None\n");
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
fprintf(fp, "ActionOnTimeout Reset\n");
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
fprintf(fp, "ActionOnTimeout Abort\n");
break;
}
fprintf(fp, "\n"
"# Set how often the admin queue is polled for asynchronous events.\n"
"# Units in microseconds.\n");
fprintf(fp, "AdminPollRate %"PRIu64"\n", g_opts.nvme_adminq_poll_period_us);
fprintf(fp, "\n"
"# Disable handling of hotplug (runtime insert and remove) events,\n"
"# users can set to Yes if want to enable it.\n"
"# Default: No\n");
fprintf(fp, "HotplugEnable %s\n", g_nvme_hotplug_enabled ? "Yes" : "No");
fprintf(fp, "\n"
"# Set how often the hotplug is processed for insert and remove events."
"# Units in microseconds.\n");
fprintf(fp, "HotplugPollRate %"PRIu64"\n", g_nvme_hotplug_poll_period_us);
if (g_nvme_hostnqn) {
fprintf(fp, "HostNQN %s\n", g_nvme_hostnqn);
}
fprintf(fp, "\n");
}
static int
bdev_nvme_config_json(struct spdk_json_write_ctx *w)
{
struct nvme_ctrlr *nvme_ctrlr;
struct spdk_nvme_transport_id *trid;
const char *adrfam;
const char *action;
if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
action = "reset";
} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
action = "abort";
} else {
action = "none";
}
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "set_bdev_nvme_options");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "action_on_timeout", action);
spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
spdk_json_write_named_uint32(w, "retry_count", g_opts.retry_count);
spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_ctrlr, &g_nvme_ctrlrs, tailq) {
trid = &nvme_ctrlr->trid;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "construct_nvme_bdev");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", nvme_ctrlr->name);
spdk_json_write_named_string(w, "trtype", spdk_nvme_transport_id_trtype_str(trid->trtype));
spdk_json_write_named_string(w, "traddr", trid->traddr);
adrfam = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
if (adrfam) {
spdk_json_write_named_string(w, "adrfam", adrfam);
}
if (trid->trsvcid[0] != '\0') {
spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
}
if (trid->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", trid->subnqn);
}
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
/* Dump as last parameter to give all NVMe bdevs chance to be constructed
* before enabling hotplug poller.
*/
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "set_bdev_nvme_hotplug");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
struct spdk_nvme_ctrlr *
spdk_bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
{
if (!bdev || bdev->module != &nvme_if) {
return NULL;
}
return SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk)->nvme_ctrlr->ctrlr;
}
SPDK_LOG_REGISTER_COMPONENT("bdev_nvme", SPDK_LOG_BDEV_NVME)