c45669cf89
If those are encountered, SPDK will get physical addreses by itself (either IOVAs from vfio or real physical addreses from /proc/self/pagemap). Change-Id: I321892f7dfb26054087a86cd24502efff05883ea Signed-off-by: Dariusz Stojaczyk <dariuszx.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/404138 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com>
529 lines
13 KiB
C
529 lines
13 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "env_internal.h"
|
|
|
|
#include <rte_config.h>
|
|
#include <rte_eal_memconfig.h>
|
|
|
|
#include "spdk_internal/assert.h"
|
|
|
|
#include "spdk/assert.h"
|
|
#include "spdk/likely.h"
|
|
#include "spdk/queue.h"
|
|
#include "spdk/util.h"
|
|
|
|
#ifdef __FreeBSD__
|
|
#define SPDK_VFIO_ENABLED 0
|
|
#else
|
|
#include <linux/version.h>
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
|
|
#define SPDK_VFIO_ENABLED 1
|
|
#include <linux/vfio.h>
|
|
|
|
/* Internal DPDK function forward declaration */
|
|
int pci_vfio_is_enabled(void);
|
|
|
|
struct spdk_vfio_dma_map {
|
|
struct vfio_iommu_type1_dma_map map;
|
|
TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
|
|
};
|
|
|
|
struct vfio_cfg {
|
|
int fd;
|
|
bool enabled;
|
|
unsigned device_ref;
|
|
TAILQ_HEAD(, spdk_vfio_dma_map) maps;
|
|
pthread_mutex_t mutex;
|
|
};
|
|
|
|
static struct vfio_cfg g_vfio = {
|
|
.fd = -1,
|
|
.enabled = false,
|
|
.device_ref = 0,
|
|
.maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
|
|
.mutex = PTHREAD_MUTEX_INITIALIZER
|
|
};
|
|
|
|
#else
|
|
#define SPDK_VFIO_ENABLED 0
|
|
#endif
|
|
#endif
|
|
|
|
#if DEBUG
|
|
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
|
|
#else
|
|
#define DEBUG_PRINT(...)
|
|
#endif
|
|
|
|
static struct spdk_mem_map *g_vtophys_map;
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
static int
|
|
vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
|
|
{
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
dma_map = calloc(1, sizeof(*dma_map));
|
|
if (dma_map == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_map->map.argsz = sizeof(dma_map->map);
|
|
dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
|
|
dma_map->map.vaddr = vaddr;
|
|
dma_map->map.iova = iova;
|
|
dma_map->map.size = size;
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
if (g_vfio.device_ref == 0) {
|
|
/* VFIO requires at least one device (IOMMU group) to be added to
|
|
* a VFIO container before it is possible to perform any IOMMU
|
|
* operations on that container. This memory will be mapped once
|
|
* the first device (IOMMU group) is hotplugged.
|
|
*
|
|
* Since the vfio container is managed internally by DPDK, it is
|
|
* also possible that some device is already in that container, but
|
|
* it's not managed by SPDK - e.g. an NIC attached internally
|
|
* inside DPDK. We could map the memory straight away in such
|
|
* scenario, but there's no need to do it. DPDK devices clearly
|
|
* don't need our mappings and hence we defer the mapping
|
|
* unconditionally until the first SPDK-managed device is
|
|
* hotplugged.
|
|
*/
|
|
goto out_insert;
|
|
}
|
|
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
free(dma_map);
|
|
return ret;
|
|
}
|
|
|
|
out_insert:
|
|
TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
|
|
{
|
|
struct vfio_iommu_type1_dma_unmap dma_unmap;
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
|
|
if (dma_map->map.iova == iova) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dma_map == NULL) {
|
|
DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/** don't support partial or multiple-page unmap for now */
|
|
assert(dma_map->map.size == size);
|
|
|
|
if (g_vfio.device_ref == 0) {
|
|
/* Memory is not mapped anymore, just remove it's references */
|
|
goto out_remove;
|
|
}
|
|
|
|
dma_unmap.argsz = sizeof(dma_unmap);
|
|
dma_unmap.flags = 0;
|
|
dma_unmap.iova = iova;
|
|
dma_unmap.size = size;
|
|
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_unmap);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return ret;
|
|
}
|
|
|
|
out_remove:
|
|
TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
free(dma_map);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static uint64_t
|
|
vtophys_get_paddr_memseg(uint64_t vaddr)
|
|
{
|
|
uintptr_t paddr;
|
|
struct rte_mem_config *mcfg;
|
|
struct rte_memseg *seg;
|
|
uint32_t seg_idx;
|
|
|
|
mcfg = rte_eal_get_configuration()->mem_config;
|
|
|
|
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
|
|
seg = &mcfg->memseg[seg_idx];
|
|
if (seg->addr == NULL) {
|
|
break;
|
|
}
|
|
|
|
if (vaddr >= (uintptr_t)seg->addr &&
|
|
vaddr < ((uintptr_t)seg->addr + seg->len)) {
|
|
paddr = seg->phys_addr;
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
if (paddr == RTE_BAD_IOVA) {
|
|
#else
|
|
if (paddr == RTE_BAD_PHYS_ADDR) {
|
|
#endif
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
paddr += (vaddr - (uintptr_t)seg->addr);
|
|
return paddr;
|
|
}
|
|
}
|
|
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
|
|
/* Try to get the paddr from /proc/self/pagemap */
|
|
static uint64_t
|
|
vtophys_get_paddr_pagemap(uint64_t vaddr)
|
|
{
|
|
uintptr_t paddr;
|
|
|
|
paddr = rte_mem_virt2phy((void *)vaddr);
|
|
if (paddr == 0) {
|
|
/*
|
|
* The vaddr was valid but returned 0. Touch the page
|
|
* to ensure a backing page gets assigned, then call
|
|
* rte_mem_virt2phy() again.
|
|
*/
|
|
rte_atomic64_read((rte_atomic64_t *)vaddr);
|
|
paddr = rte_mem_virt2phy((void *)vaddr);
|
|
}
|
|
if (paddr == RTE_BAD_PHYS_ADDR) {
|
|
/* Unable to get to the physical address. */
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
|
|
return paddr;
|
|
}
|
|
|
|
/* Try to get the paddr from pci devices */
|
|
static uint64_t
|
|
vtophys_get_paddr_pci(uint64_t vaddr)
|
|
{
|
|
uintptr_t paddr;
|
|
struct rte_pci_device *dev;
|
|
struct rte_mem_resource *res;
|
|
unsigned r;
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 05, 0, 2)
|
|
FOREACH_DEVICE_ON_PCIBUS(dev) {
|
|
#else
|
|
TAILQ_FOREACH(dev, &pci_device_list, next) {
|
|
#endif
|
|
for (r = 0; r < PCI_MAX_RESOURCE; r++) {
|
|
res = &dev->mem_resource[r];
|
|
if (res->phys_addr && vaddr >= (uint64_t)res->addr &&
|
|
vaddr < (uint64_t)res->addr + res->len) {
|
|
paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
|
|
DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr,
|
|
(void *)paddr);
|
|
return paddr;
|
|
}
|
|
}
|
|
}
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
|
|
static int
|
|
spdk_vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
|
|
enum spdk_mem_map_notify_action action,
|
|
void *vaddr, size_t len)
|
|
{
|
|
int rc = 0, pci_phys = 0;
|
|
uint64_t paddr;
|
|
|
|
if ((uintptr_t)vaddr & ~MASK_256TB) {
|
|
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
|
|
__func__, vaddr, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (len > 0) {
|
|
/* Get the physical address from the DPDK memsegs */
|
|
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
|
|
|
|
switch (action) {
|
|
case SPDK_MEM_MAP_NOTIFY_REGISTER:
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
/* This is not an address that DPDK is managing. */
|
|
#if SPDK_VFIO_ENABLED
|
|
if (g_vfio.enabled) {
|
|
/* We'll use the virtual address as the iova. DPDK
|
|
* currently uses physical addresses as the iovas (or counts
|
|
* up from 0 if it can't get physical addresses), so
|
|
* the range of user space virtual addresses and physical
|
|
* addresses will never overlap.
|
|
*/
|
|
paddr = (uint64_t)vaddr;
|
|
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
|
|
if (rc) {
|
|
return -EFAULT;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
/* Get the physical address from /proc/self/pagemap. */
|
|
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
/* Get the physical address from PCI devices */
|
|
paddr = vtophys_get_paddr_pci((uint64_t)vaddr);
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
|
|
return -EFAULT;
|
|
}
|
|
pci_phys = 1;
|
|
}
|
|
}
|
|
}
|
|
/* Since PCI paddr can break the 2MiB physical alginment skip this check for that. */
|
|
if (!pci_phys && (paddr & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
|
|
break;
|
|
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
|
|
#if SPDK_VFIO_ENABLED
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
/*
|
|
* This is not an address that DPDK is managing. If vfio is enabled,
|
|
* we need to unmap the range from the IOMMU
|
|
*/
|
|
if (g_vfio.enabled) {
|
|
paddr = spdk_mem_map_translate(map, (uint64_t)vaddr);
|
|
rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
|
|
if (rc) {
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
|
|
break;
|
|
default:
|
|
SPDK_UNREACHABLE();
|
|
}
|
|
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
vaddr += VALUE_2MB;
|
|
len -= VALUE_2MB;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
static void
|
|
spdk_vtophys_iommu_init(void)
|
|
{
|
|
char proc_fd_path[PATH_MAX + 1];
|
|
char link_path[PATH_MAX + 1];
|
|
const char vfio_path[] = "/dev/vfio/vfio";
|
|
DIR *dir;
|
|
struct dirent *d;
|
|
|
|
if (!pci_vfio_is_enabled()) {
|
|
return;
|
|
}
|
|
|
|
dir = opendir("/proc/self/fd");
|
|
if (!dir) {
|
|
DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
|
|
return;
|
|
}
|
|
|
|
while ((d = readdir(dir)) != NULL) {
|
|
if (d->d_type != DT_LNK) {
|
|
continue;
|
|
}
|
|
|
|
snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
|
|
if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
|
|
continue;
|
|
}
|
|
|
|
if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
|
|
sscanf(d->d_name, "%d", &g_vfio.fd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
closedir(dir);
|
|
|
|
if (g_vfio.fd < 0) {
|
|
DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
|
|
return;
|
|
}
|
|
|
|
g_vfio.enabled = true;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
spdk_vtophys_get_ref(void)
|
|
{
|
|
#if SPDK_VFIO_ENABLED
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
if (!g_vfio.enabled) {
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
g_vfio.device_ref++;
|
|
if (g_vfio.device_ref > 1) {
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return;
|
|
}
|
|
|
|
/* This is the first SPDK device using DPDK vfio. This means that the first
|
|
* IOMMU group might have been just been added to the DPDK vfio container.
|
|
* From this point it is certain that the memory can be mapped now.
|
|
*/
|
|
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
spdk_vtophys_put_ref(void)
|
|
{
|
|
#if SPDK_VFIO_ENABLED
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
if (!g_vfio.enabled) {
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
assert(g_vfio.device_ref > 0);
|
|
g_vfio.device_ref--;
|
|
if (g_vfio.device_ref > 0) {
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return;
|
|
}
|
|
|
|
/* This is the last SPDK device using DPDK vfio. If DPDK doesn't have
|
|
* any additional devices using it's vfio container, all the mappings
|
|
* will be automatically removed by the Linux vfio driver. We unmap
|
|
* the memory manually to be able to easily re-map it later regardless
|
|
* of other, external factors.
|
|
*/
|
|
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->map);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
spdk_vtophys_init(void)
|
|
{
|
|
#if SPDK_VFIO_ENABLED
|
|
spdk_vtophys_iommu_init();
|
|
#endif
|
|
|
|
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, spdk_vtophys_notify, NULL);
|
|
if (g_vtophys_map == NULL) {
|
|
DEBUG_PRINT("vtophys map allocation failed\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
spdk_vtophys(void *buf)
|
|
{
|
|
uint64_t vaddr, paddr_2mb;
|
|
|
|
vaddr = (uint64_t)buf;
|
|
|
|
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr);
|
|
|
|
/*
|
|
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
|
|
* we will still bitwise-or it with the buf offset below, but the result will still be
|
|
* SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
|
|
* unaligned) we must now check the return value before addition.
|
|
*/
|
|
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
|
|
if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
|
|
return SPDK_VTOPHYS_ERROR;
|
|
} else {
|
|
return paddr_2mb + ((uint64_t)buf & MASK_2MB);
|
|
}
|
|
}
|