2172c432cf
This patch removes the string from register component. Removed are all instances in libs or hardcoded in apps. Starting with this patch literal passed to register, serves as name for the flag. All instances of SPDK_LOG_* were replaced with just * in lowercase. No actual name change for flags occur in this patch. Affected are SPDK_LOG_REGISTER_COMPONENT() and SPDK_*LOG() macros. Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com> Change-Id: I002b232fde57ecf9c6777726b181fc0341f1bb17 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/4495 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Mellanox Build Bot Reviewed-by: Anil Veerabhadrappa <anil.veerabhadrappa@broadcom.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Community-CI: Broadcom CI
2611 lines
71 KiB
C
2611 lines
71 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2017, IBM Corporation. All rights reserved.
|
|
* Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NVMe over PCIe transport
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/likely.h"
|
|
#include "spdk/string.h"
|
|
#include "nvme_internal.h"
|
|
#include "nvme_uevent.h"
|
|
|
|
/*
|
|
* Number of completion queue entries to process before ringing the
|
|
* completion queue doorbell.
|
|
*/
|
|
#define NVME_MIN_COMPLETIONS (1)
|
|
#define NVME_MAX_COMPLETIONS (128)
|
|
|
|
/*
|
|
* NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
|
|
* segment.
|
|
*/
|
|
#define NVME_MAX_SGL_DESCRIPTORS (250)
|
|
|
|
#define NVME_MAX_PRP_LIST_ENTRIES (503)
|
|
|
|
struct nvme_pcie_enum_ctx {
|
|
struct spdk_nvme_probe_ctx *probe_ctx;
|
|
struct spdk_pci_addr pci_addr;
|
|
bool has_pci_addr;
|
|
};
|
|
|
|
/* PCIe transport extensions for spdk_nvme_ctrlr */
|
|
struct nvme_pcie_ctrlr {
|
|
struct spdk_nvme_ctrlr ctrlr;
|
|
|
|
/** NVMe MMIO register space */
|
|
volatile struct spdk_nvme_registers *regs;
|
|
|
|
/** NVMe MMIO register size */
|
|
uint64_t regs_size;
|
|
|
|
struct {
|
|
/* BAR mapping address which contains controller memory buffer */
|
|
void *bar_va;
|
|
|
|
/* BAR physical address which contains controller memory buffer */
|
|
uint64_t bar_pa;
|
|
|
|
/* Controller memory buffer size in Bytes */
|
|
uint64_t size;
|
|
|
|
/* Current offset of controller memory buffer, relative to start of BAR virt addr */
|
|
uint64_t current_offset;
|
|
|
|
void *mem_register_addr;
|
|
size_t mem_register_size;
|
|
} cmb;
|
|
|
|
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
|
|
uint32_t doorbell_stride_u32;
|
|
|
|
/* Opaque handle to associated PCI device. */
|
|
struct spdk_pci_device *devhandle;
|
|
|
|
/* Flag to indicate the MMIO register has been remapped */
|
|
bool is_remapped;
|
|
};
|
|
|
|
struct nvme_tracker {
|
|
TAILQ_ENTRY(nvme_tracker) tq_list;
|
|
|
|
struct nvme_request *req;
|
|
uint16_t cid;
|
|
|
|
uint16_t rsvd0;
|
|
uint32_t rsvd1;
|
|
|
|
spdk_nvme_cmd_cb cb_fn;
|
|
void *cb_arg;
|
|
|
|
uint64_t prp_sgl_bus_addr;
|
|
|
|
/* Don't move, metadata SGL is always contiguous with Data Block SGL */
|
|
struct spdk_nvme_sgl_descriptor meta_sgl;
|
|
union {
|
|
uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
|
|
struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
|
|
} u;
|
|
};
|
|
/*
|
|
* struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
|
|
* and so that there is no padding required to meet alignment requirements.
|
|
*/
|
|
SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
|
|
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
|
|
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, meta_sgl) & 7) == 0, "SGL must be Qword aligned");
|
|
|
|
struct nvme_pcie_poll_group {
|
|
struct spdk_nvme_transport_poll_group group;
|
|
};
|
|
|
|
/* PCIe transport extensions for spdk_nvme_qpair */
|
|
struct nvme_pcie_qpair {
|
|
/* Submission queue tail doorbell */
|
|
volatile uint32_t *sq_tdbl;
|
|
|
|
/* Completion queue head doorbell */
|
|
volatile uint32_t *cq_hdbl;
|
|
|
|
/* Submission queue */
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
/* Completion queue */
|
|
struct spdk_nvme_cpl *cpl;
|
|
|
|
TAILQ_HEAD(, nvme_tracker) free_tr;
|
|
TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
|
|
|
|
/* Array of trackers indexed by command ID. */
|
|
struct nvme_tracker *tr;
|
|
|
|
uint16_t num_entries;
|
|
|
|
uint8_t retry_count;
|
|
|
|
uint16_t max_completions_cap;
|
|
|
|
uint16_t last_sq_tail;
|
|
uint16_t sq_tail;
|
|
uint16_t cq_head;
|
|
uint16_t sq_head;
|
|
|
|
struct {
|
|
uint8_t phase : 1;
|
|
uint8_t delay_cmd_submit : 1;
|
|
uint8_t has_shadow_doorbell : 1;
|
|
} flags;
|
|
|
|
/*
|
|
* Base qpair structure.
|
|
* This is located after the hot data in this structure so that the important parts of
|
|
* nvme_pcie_qpair are in the same cache line.
|
|
*/
|
|
struct spdk_nvme_qpair qpair;
|
|
|
|
struct {
|
|
/* Submission queue shadow tail doorbell */
|
|
volatile uint32_t *sq_tdbl;
|
|
|
|
/* Completion queue shadow head doorbell */
|
|
volatile uint32_t *cq_hdbl;
|
|
|
|
/* Submission queue event index */
|
|
volatile uint32_t *sq_eventidx;
|
|
|
|
/* Completion queue event index */
|
|
volatile uint32_t *cq_eventidx;
|
|
} shadow_doorbell;
|
|
|
|
/*
|
|
* Fields below this point should not be touched on the normal I/O path.
|
|
*/
|
|
|
|
bool sq_in_cmb;
|
|
|
|
uint64_t cmd_bus_addr;
|
|
uint64_t cpl_bus_addr;
|
|
|
|
struct spdk_nvme_cmd *sq_vaddr;
|
|
struct spdk_nvme_cpl *cq_vaddr;
|
|
};
|
|
|
|
static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx,
|
|
struct spdk_pci_addr *pci_addr);
|
|
static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
|
|
const struct spdk_nvme_io_qpair_opts *opts);
|
|
static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
|
|
|
|
__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
|
|
static uint16_t g_signal_lock;
|
|
static bool g_sigset = false;
|
|
|
|
static void
|
|
nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
|
|
{
|
|
void *map_address;
|
|
uint16_t flag = 0;
|
|
|
|
if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
|
|
__ATOMIC_RELAXED)) {
|
|
SPDK_DEBUGLOG(nvme, "request g_signal_lock failed\n");
|
|
return;
|
|
}
|
|
|
|
assert(g_thread_mmio_ctrlr != NULL);
|
|
|
|
if (!g_thread_mmio_ctrlr->is_remapped) {
|
|
map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
|
|
if (map_address == MAP_FAILED) {
|
|
SPDK_ERRLOG("mmap failed\n");
|
|
__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
|
|
return;
|
|
}
|
|
memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
|
|
g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
|
|
g_thread_mmio_ctrlr->is_remapped = true;
|
|
}
|
|
__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_setup_signal(void)
|
|
{
|
|
struct sigaction sa;
|
|
|
|
sa.sa_sigaction = nvme_sigbus_fault_sighandler;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigaction(SIGBUS, &sa, NULL);
|
|
}
|
|
|
|
static inline struct nvme_pcie_ctrlr *
|
|
nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
|
|
return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
|
|
}
|
|
|
|
static int
|
|
_nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr, *tmp;
|
|
struct spdk_uevent event;
|
|
struct spdk_pci_addr pci_addr;
|
|
|
|
if (g_spdk_nvme_driver->hotplug_fd < 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (nvme_get_uevent(g_spdk_nvme_driver->hotplug_fd, &event) > 0) {
|
|
if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
|
|
event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
|
|
if (event.action == SPDK_NVME_UEVENT_ADD) {
|
|
SPDK_DEBUGLOG(nvme, "add nvme address: %s\n",
|
|
event.traddr);
|
|
if (spdk_process_is_primary()) {
|
|
if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
|
|
nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr);
|
|
}
|
|
}
|
|
} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
|
|
struct spdk_nvme_transport_id trid;
|
|
|
|
memset(&trid, 0, sizeof(trid));
|
|
spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
|
|
snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
|
|
|
|
ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
|
|
if (ctrlr == NULL) {
|
|
return 0;
|
|
}
|
|
SPDK_DEBUGLOG(nvme, "remove nvme address: %s\n",
|
|
event.traddr);
|
|
|
|
nvme_ctrlr_fail(ctrlr, true);
|
|
|
|
/* get the user app to clean up and stop I/O */
|
|
if (ctrlr->remove_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
ctrlr->remove_cb(probe_ctx->cb_ctx, ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initiate removal of physically hotremoved PCI controllers. Even after
|
|
* they're hotremoved from the system, SPDK might still report them via RPC.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
|
|
bool do_remove = false;
|
|
struct nvme_pcie_ctrlr *pctrlr;
|
|
|
|
if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
continue;
|
|
}
|
|
|
|
pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
|
|
do_remove = true;
|
|
}
|
|
|
|
if (do_remove) {
|
|
nvme_ctrlr_fail(ctrlr, true);
|
|
if (ctrlr->remove_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
ctrlr->remove_cb(probe_ctx->cb_ctx, ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline struct nvme_pcie_qpair *
|
|
nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
|
|
return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
|
|
}
|
|
|
|
static volatile void *
|
|
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
assert(value != NULL);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
|
|
g_thread_mmio_ctrlr = NULL;
|
|
if (~(*value) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
assert(value != NULL);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
|
|
g_thread_mmio_ctrlr = NULL;
|
|
if (~(*value) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
|
|
aqa->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
|
|
&cmbloc->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
|
|
&cmbsz->raw);
|
|
}
|
|
|
|
static uint32_t
|
|
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
/*
|
|
* For commands requiring more than 2 PRP entries, one PRP will be
|
|
* embedded in the command (prp1), and the rest of the PRP entries
|
|
* will be in a list pointed to by the command (prp2). This means
|
|
* that real max number of PRP entries we support is 506+1, which
|
|
* results in a max xfer size of 506*ctrlr->page_size.
|
|
*/
|
|
return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
|
|
}
|
|
|
|
static uint16_t
|
|
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return NVME_MAX_SGL_DESCRIPTORS;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr = NULL;
|
|
uint32_t bir;
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0;
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
|
|
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
goto exit;
|
|
}
|
|
|
|
if (!cmbsz.bits.sz) {
|
|
goto exit;
|
|
}
|
|
|
|
bir = cmbloc.bits.bir;
|
|
/* Values 0 2 3 4 5 are valid for BAR */
|
|
if (bir > 5 || bir == 1) {
|
|
goto exit;
|
|
}
|
|
|
|
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
|
|
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
|
|
/* controller memory buffer size in Bytes */
|
|
size = unit_size * cmbsz.bits.sz;
|
|
/* controller memory buffer offset from BAR in Bytes */
|
|
offset = unit_size * cmbloc.bits.ofst;
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
|
|
&bar_phys_addr, &bar_size);
|
|
if ((rc != 0) || addr == NULL) {
|
|
goto exit;
|
|
}
|
|
|
|
if (offset > bar_size) {
|
|
goto exit;
|
|
}
|
|
|
|
if (size > bar_size - offset) {
|
|
goto exit;
|
|
}
|
|
|
|
pctrlr->cmb.bar_va = addr;
|
|
pctrlr->cmb.bar_pa = bar_phys_addr;
|
|
pctrlr->cmb.size = size;
|
|
pctrlr->cmb.current_offset = offset;
|
|
|
|
if (!cmbsz.bits.sqs) {
|
|
pctrlr->ctrlr.opts.use_cmb_sqs = false;
|
|
}
|
|
|
|
return;
|
|
exit:
|
|
pctrlr->ctrlr.opts.use_cmb_sqs = false;
|
|
return;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
void *addr = pctrlr->cmb.bar_va;
|
|
|
|
if (addr) {
|
|
if (pctrlr->cmb.mem_register_addr) {
|
|
spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get_cmbloc() failed\n");
|
|
return -EIO;
|
|
}
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
if (pctrlr->cmb.bar_va == NULL) {
|
|
SPDK_DEBUGLOG(nvme, "CMB not available\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ctrlr->opts.use_cmb_sqs) {
|
|
SPDK_ERRLOG("CMB is already in use for submission queues.\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
uint64_t mem_register_start, mem_register_end;
|
|
int rc;
|
|
|
|
if (pctrlr->cmb.mem_register_addr != NULL) {
|
|
*size = pctrlr->cmb.mem_register_size;
|
|
return pctrlr->cmb.mem_register_addr;
|
|
}
|
|
|
|
*size = 0;
|
|
|
|
if (pctrlr->cmb.bar_va == NULL) {
|
|
SPDK_DEBUGLOG(nvme, "CMB not available\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (ctrlr->opts.use_cmb_sqs) {
|
|
SPDK_ERRLOG("CMB is already in use for submission queues.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
|
|
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* If only SQS is supported */
|
|
if (!(cmbsz.bits.wds || cmbsz.bits.rds)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* If CMB is less than 4MiB in size then abort CMB mapping */
|
|
if (pctrlr->cmb.size < (1ULL << 22)) {
|
|
return NULL;
|
|
}
|
|
|
|
mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
|
|
VALUE_2MB - 1);
|
|
mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
|
|
pctrlr->cmb.size);
|
|
|
|
rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
|
|
if (rc) {
|
|
SPDK_ERRLOG("spdk_mem_register() failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
|
|
pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;
|
|
|
|
*size = pctrlr->cmb.mem_register_size;
|
|
return pctrlr->cmb.mem_register_addr;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
int rc;
|
|
|
|
if (pctrlr->cmb.mem_register_addr == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
|
|
|
|
if (rc == 0) {
|
|
pctrlr->cmb.mem_register_addr = NULL;
|
|
pctrlr->cmb.mem_register_size = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr = NULL;
|
|
uint64_t phys_addr = 0, size = 0;
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
|
|
&phys_addr, &size);
|
|
|
|
if ((addr == NULL) || (rc != 0)) {
|
|
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
|
|
rc, addr);
|
|
return -1;
|
|
}
|
|
|
|
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
|
|
pctrlr->regs_size = size;
|
|
nvme_pcie_ctrlr_map_cmb(pctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
void *addr = (void *)pctrlr->regs;
|
|
|
|
if (pctrlr->ctrlr.is_removed) {
|
|
return rc;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
|
|
return -1;
|
|
}
|
|
|
|
if (addr) {
|
|
/* NOTE: addr may have been remapped here. We're relying on DPDK to call
|
|
* munmap internally.
|
|
*/
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair;
|
|
int rc;
|
|
|
|
pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (pqpair == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pqpair->num_entries = num_entries;
|
|
pqpair->flags.delay_cmd_submit = 0;
|
|
|
|
ctrlr->adminq = &pqpair->qpair;
|
|
|
|
rc = nvme_qpair_init(ctrlr->adminq,
|
|
0, /* qpair ID */
|
|
ctrlr,
|
|
SPDK_NVME_QPRIO_URGENT,
|
|
num_entries);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
static int
|
|
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
|
|
{
|
|
struct spdk_nvme_transport_id trid = {};
|
|
struct nvme_pcie_enum_ctx *enum_ctx = ctx;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_pci_addr pci_addr;
|
|
|
|
pci_addr = spdk_pci_device_get_addr(pci_dev);
|
|
|
|
spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
|
|
spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
|
|
|
|
ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
|
|
if (!spdk_process_is_primary()) {
|
|
if (!ctrlr) {
|
|
SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
|
|
return -1;
|
|
}
|
|
|
|
return nvme_ctrlr_add_process(ctrlr, pci_dev);
|
|
}
|
|
|
|
/* check whether user passes the pci_addr */
|
|
if (enum_ctx->has_pci_addr &&
|
|
(spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
|
|
return 1;
|
|
}
|
|
|
|
return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
|
|
bool direct_connect)
|
|
{
|
|
struct nvme_pcie_enum_ctx enum_ctx = {};
|
|
|
|
enum_ctx.probe_ctx = probe_ctx;
|
|
|
|
if (strlen(probe_ctx->trid.traddr) != 0) {
|
|
if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
|
|
return -1;
|
|
}
|
|
enum_ctx.has_pci_addr = true;
|
|
}
|
|
|
|
/* Only the primary process can monitor hotplug. */
|
|
if (spdk_process_is_primary()) {
|
|
_nvme_pcie_hotplug_monitor(probe_ctx);
|
|
}
|
|
|
|
if (enum_ctx.has_pci_addr == false) {
|
|
return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
|
|
pcie_nvme_enum_cb, &enum_ctx);
|
|
} else {
|
|
return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
|
|
pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr)
|
|
{
|
|
struct nvme_pcie_enum_ctx enum_ctx;
|
|
|
|
enum_ctx.probe_ctx = probe_ctx;
|
|
enum_ctx.has_pci_addr = true;
|
|
enum_ctx.pci_addr = *pci_addr;
|
|
|
|
return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx);
|
|
}
|
|
|
|
static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts,
|
|
void *devhandle)
|
|
{
|
|
struct spdk_pci_device *pci_dev = devhandle;
|
|
struct nvme_pcie_ctrlr *pctrlr;
|
|
union spdk_nvme_cap_register cap;
|
|
union spdk_nvme_vs_register vs;
|
|
uint16_t cmd_reg;
|
|
int rc;
|
|
struct spdk_pci_id pci_id;
|
|
|
|
rc = spdk_pci_device_claim(pci_dev);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("could not claim device %s (%s)\n",
|
|
trid->traddr, spdk_strerror(-rc));
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (pctrlr == NULL) {
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
SPDK_ERRLOG("could not allocate ctrlr\n");
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr->is_remapped = false;
|
|
pctrlr->ctrlr.is_removed = false;
|
|
pctrlr->devhandle = devhandle;
|
|
pctrlr->ctrlr.opts = *opts;
|
|
pctrlr->ctrlr.trid = *trid;
|
|
|
|
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
|
|
if (rc != 0) {
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
|
|
if (rc != 0) {
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Enable PCI busmaster and disable INTx */
|
|
spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4);
|
|
cmd_reg |= 0x404;
|
|
spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4);
|
|
|
|
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
|
|
SPDK_ERRLOG("get_cap() failed\n");
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
|
|
SPDK_ERRLOG("get_vs() failed\n");
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
|
|
|
|
/* Doorbell stride is 2 ^ (dstrd + 2),
|
|
* but we want multiples of 4, so drop the + 2 */
|
|
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
|
|
|
|
pci_id = spdk_pci_device_get_id(pci_dev);
|
|
pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
|
|
|
|
rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Construct the primary process properties */
|
|
rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
if (g_sigset != true) {
|
|
nvme_pcie_ctrlr_setup_signal();
|
|
g_sigset = true;
|
|
}
|
|
|
|
return &pctrlr->ctrlr;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
|
|
union spdk_nvme_aqa_register aqa;
|
|
|
|
if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
|
|
SPDK_ERRLOG("set_asq() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
|
|
SPDK_ERRLOG("set_acq() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
aqa.raw = 0;
|
|
/* acqs and asqs are 0-based. */
|
|
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
|
|
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
|
|
|
|
if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
|
|
SPDK_ERRLOG("set_aqa() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
|
|
|
|
if (ctrlr->adminq) {
|
|
nvme_pcie_qpair_destroy(ctrlr->adminq);
|
|
}
|
|
|
|
nvme_ctrlr_destruct_finish(ctrlr);
|
|
|
|
nvme_ctrlr_free_processes(ctrlr);
|
|
|
|
nvme_pcie_ctrlr_free_bars(pctrlr);
|
|
|
|
if (devhandle) {
|
|
spdk_pci_device_unclaim(devhandle);
|
|
spdk_pci_device_detach(devhandle);
|
|
}
|
|
|
|
spdk_free(pctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
|
|
{
|
|
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
|
|
tr->cid = cid;
|
|
tr->req = NULL;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
uint32_t i;
|
|
|
|
/* all head/tail vals are set to 0 */
|
|
pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
|
|
|
|
/*
|
|
* First time through the completion queue, HW will set phase
|
|
* bit on completions to 1. So set this to 1 here, indicating
|
|
* we're looking for a 1 to know which entries have completed.
|
|
* we'll toggle the bit each time when the completion queue
|
|
* rolls over.
|
|
*/
|
|
pqpair->flags.phase = 1;
|
|
for (i = 0; i < pqpair->num_entries; i++) {
|
|
pqpair->cpl[i].status.p = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
|
|
uint64_t *phys_addr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
uintptr_t addr;
|
|
|
|
if (pctrlr->cmb.mem_register_addr != NULL) {
|
|
/* BAR is mapped for data */
|
|
return NULL;
|
|
}
|
|
|
|
addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
|
|
addr = (addr + (alignment - 1)) & ~(alignment - 1);
|
|
|
|
/* CMB may only consume part of the BAR, calculate accordingly */
|
|
if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
|
|
SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
|
|
return NULL;
|
|
}
|
|
*phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;
|
|
|
|
pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;
|
|
|
|
return (void *)addr;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
|
|
const struct spdk_nvme_io_qpair_opts *opts)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr;
|
|
uint16_t i;
|
|
volatile uint32_t *doorbell_base;
|
|
uint16_t num_trackers;
|
|
size_t page_align = sysconf(_SC_PAGESIZE);
|
|
size_t queue_align, queue_len;
|
|
uint32_t flags = SPDK_MALLOC_DMA;
|
|
uint64_t sq_paddr = 0;
|
|
uint64_t cq_paddr = 0;
|
|
|
|
if (opts) {
|
|
pqpair->sq_vaddr = opts->sq.vaddr;
|
|
pqpair->cq_vaddr = opts->cq.vaddr;
|
|
sq_paddr = opts->sq.paddr;
|
|
cq_paddr = opts->cq.paddr;
|
|
}
|
|
|
|
pqpair->retry_count = ctrlr->opts.transport_retry_count;
|
|
|
|
/*
|
|
* Limit the maximum number of completions to return per call to prevent wraparound,
|
|
* and calculate how many trackers can be submitted at once without overflowing the
|
|
* completion queue.
|
|
*/
|
|
pqpair->max_completions_cap = pqpair->num_entries / 4;
|
|
pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
|
|
pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
|
|
num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
|
|
|
|
SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
|
|
pqpair->max_completions_cap, num_trackers);
|
|
|
|
assert(num_trackers != 0);
|
|
|
|
pqpair->sq_in_cmb = false;
|
|
|
|
if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
|
|
flags |= SPDK_MALLOC_SHARE;
|
|
}
|
|
|
|
/* cmd and cpl rings must be aligned on page size boundaries. */
|
|
if (ctrlr->opts.use_cmb_sqs) {
|
|
pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
|
|
page_align, &pqpair->cmd_bus_addr);
|
|
if (pqpair->cmd != NULL) {
|
|
pqpair->sq_in_cmb = true;
|
|
}
|
|
}
|
|
|
|
if (pqpair->sq_in_cmb == false) {
|
|
if (pqpair->sq_vaddr) {
|
|
pqpair->cmd = pqpair->sq_vaddr;
|
|
} else {
|
|
/* To ensure physical address contiguity we make each ring occupy
|
|
* a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
|
|
*/
|
|
queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
|
|
queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
|
|
pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
|
|
if (pqpair->cmd == NULL) {
|
|
SPDK_ERRLOG("alloc qpair_cmd failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
if (sq_paddr) {
|
|
assert(pqpair->sq_vaddr != NULL);
|
|
pqpair->cmd_bus_addr = sq_paddr;
|
|
} else {
|
|
pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL);
|
|
if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
|
|
SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pqpair->cq_vaddr) {
|
|
pqpair->cpl = pqpair->cq_vaddr;
|
|
} else {
|
|
queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
|
|
queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
|
|
pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
|
|
if (pqpair->cpl == NULL) {
|
|
SPDK_ERRLOG("alloc qpair_cpl failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
if (cq_paddr) {
|
|
assert(pqpair->cq_vaddr != NULL);
|
|
pqpair->cpl_bus_addr = cq_paddr;
|
|
} else {
|
|
pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL);
|
|
if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
|
|
SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
|
|
pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
|
|
pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
|
|
|
|
/*
|
|
* Reserve space for all of the trackers in a single allocation.
|
|
* struct nvme_tracker must be padded so that its size is already a power of 2.
|
|
* This ensures the PRP list embedded in the nvme_tracker object will not span a
|
|
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
|
|
*/
|
|
pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (pqpair->tr == NULL) {
|
|
SPDK_ERRLOG("nvme_tr failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
TAILQ_INIT(&pqpair->free_tr);
|
|
TAILQ_INIT(&pqpair->outstanding_tr);
|
|
|
|
for (i = 0; i < num_trackers; i++) {
|
|
tr = &pqpair->tr[i];
|
|
nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL));
|
|
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
|
|
}
|
|
|
|
nvme_pcie_qpair_reset(qpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
|
|
* not use wide instructions because QEMU will not emulate such instructions to MMIO space.
|
|
* So this function ensures we only copy 8 bytes at a time.
|
|
*/
|
|
static inline void
|
|
nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
|
|
{
|
|
uint64_t *dst64 = (uint64_t *)dst;
|
|
const uint64_t *src64 = (const uint64_t *)src;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < sizeof(*dst) / 8; i++) {
|
|
dst64[i] = src64[i];
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
|
|
{
|
|
/* dst and src are known to be non-overlapping and 64-byte aligned. */
|
|
#if defined(__SSE2__)
|
|
__m128i *d128 = (__m128i *)dst;
|
|
const __m128i *s128 = (const __m128i *)src;
|
|
|
|
_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
|
|
_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
|
|
_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
|
|
_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
|
|
#else
|
|
*dst = *src;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_request *active_req = req;
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
/*
|
|
* The admin request is from another process. Move to the per
|
|
* process list for that process to handle it later.
|
|
*/
|
|
assert(nvme_qpair_is_admin_queue(qpair));
|
|
assert(active_req->pid != getpid());
|
|
|
|
active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
|
|
if (active_proc) {
|
|
/* Save the original completion information */
|
|
memcpy(&active_req->cpl, cpl, sizeof(*cpl));
|
|
STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
|
|
} else {
|
|
SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
|
|
active_req->pid);
|
|
|
|
nvme_free_request(active_req);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_request *req, *tmp_req;
|
|
pid_t pid = getpid();
|
|
struct spdk_nvme_ctrlr_process *proc;
|
|
|
|
/*
|
|
* Check whether there is any pending admin request from
|
|
* other active processes.
|
|
*/
|
|
assert(nvme_qpair_is_admin_queue(qpair));
|
|
|
|
proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (!proc) {
|
|
SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
|
|
assert(proc);
|
|
return;
|
|
}
|
|
|
|
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
|
|
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
|
|
|
|
assert(req->pid == pid);
|
|
|
|
nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
|
|
nvme_free_request(req);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
|
|
{
|
|
return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
|
|
}
|
|
|
|
static bool
|
|
nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
|
|
volatile uint32_t *shadow_db,
|
|
volatile uint32_t *eventidx)
|
|
{
|
|
uint16_t old;
|
|
|
|
if (!shadow_db) {
|
|
return true;
|
|
}
|
|
|
|
old = *shadow_db;
|
|
*shadow_db = value;
|
|
|
|
/*
|
|
* Ensure that the doorbell is updated before reading the EventIdx from
|
|
* memory
|
|
*/
|
|
spdk_mb();
|
|
|
|
if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline void
|
|
nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
|
|
bool need_mmio = true;
|
|
|
|
if (qpair->first_fused_submitted) {
|
|
/* This is first cmd of two fused commands - don't ring doorbell */
|
|
qpair->first_fused_submitted = 0;
|
|
return;
|
|
}
|
|
|
|
if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
|
|
need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
|
|
pqpair->sq_tail,
|
|
pqpair->shadow_doorbell.sq_tdbl,
|
|
pqpair->shadow_doorbell.sq_eventidx);
|
|
}
|
|
|
|
if (spdk_likely(need_mmio)) {
|
|
spdk_wmb();
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
|
|
bool need_mmio = true;
|
|
|
|
if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
|
|
need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
|
|
pqpair->cq_head,
|
|
pqpair->shadow_doorbell.cq_hdbl,
|
|
pqpair->shadow_doorbell.cq_eventidx);
|
|
}
|
|
|
|
if (spdk_likely(need_mmio)) {
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
struct nvme_request *req;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
|
|
req = tr->req;
|
|
assert(req != NULL);
|
|
|
|
if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
|
|
/* This is first cmd of two fused commands - don't ring doorbell */
|
|
qpair->first_fused_submitted = 1;
|
|
}
|
|
|
|
/* Don't use wide instructions to copy NVMe command, this is limited by QEMU
|
|
* virtual NVMe controller, the maximum access width is 8 Bytes for one time.
|
|
*/
|
|
if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
|
|
nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
|
|
} else {
|
|
/* Copy the command from the tracker to the submission queue. */
|
|
nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
|
|
}
|
|
|
|
if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
|
|
pqpair->sq_tail = 0;
|
|
}
|
|
|
|
if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
|
|
SPDK_ERRLOG("sq_tail is passing sq_head!\n");
|
|
}
|
|
|
|
if (!pqpair->flags.delay_cmd_submit) {
|
|
nvme_pcie_qpair_ring_sq_doorbell(qpair);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
|
|
struct spdk_nvme_cpl *cpl, bool print_on_error)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_request *req;
|
|
bool retry, error;
|
|
bool req_from_current_proc = true;
|
|
|
|
req = tr->req;
|
|
|
|
assert(req != NULL);
|
|
|
|
error = spdk_nvme_cpl_is_error(cpl);
|
|
retry = error && nvme_completion_is_retry(cpl) &&
|
|
req->retries < pqpair->retry_count;
|
|
|
|
if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
|
|
spdk_nvme_qpair_print_command(qpair, &req->cmd);
|
|
spdk_nvme_qpair_print_completion(qpair, cpl);
|
|
}
|
|
|
|
assert(cpl->cid == req->cmd.cid);
|
|
|
|
if (retry) {
|
|
req->retries++;
|
|
nvme_pcie_qpair_submit_tracker(qpair, tr);
|
|
} else {
|
|
TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
|
|
|
|
/* Only check admin requests from different processes. */
|
|
if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
|
|
req_from_current_proc = false;
|
|
nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
|
|
} else {
|
|
nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
|
|
}
|
|
|
|
if (req_from_current_proc == true) {
|
|
nvme_qpair_free_request(qpair, req);
|
|
}
|
|
|
|
tr->req = NULL;
|
|
|
|
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
|
|
bool print_on_error)
|
|
{
|
|
struct spdk_nvme_cpl cpl;
|
|
|
|
memset(&cpl, 0, sizeof(cpl));
|
|
cpl.sqid = qpair->id;
|
|
cpl.cid = tr->cid;
|
|
cpl.status.sct = sct;
|
|
cpl.status.sc = sc;
|
|
cpl.status.dnr = dnr;
|
|
nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr, *temp, *last;
|
|
|
|
last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
|
|
|
|
/* Abort previously submitted (outstanding) trs */
|
|
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
|
|
if (!qpair->ctrlr->opts.disable_error_logging) {
|
|
SPDK_ERRLOG("aborting outstanding command\n");
|
|
}
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
|
|
SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
|
|
|
|
if (tr == last) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
|
|
int (*iter_fn)(struct nvme_request *req, void *arg),
|
|
void *arg)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr, *tmp;
|
|
int rc;
|
|
|
|
assert(iter_fn != NULL);
|
|
|
|
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
|
|
assert(tr->req != NULL);
|
|
|
|
rc = iter_fn(tr->req, arg);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr;
|
|
|
|
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
|
|
while (tr != NULL) {
|
|
assert(tr->req != NULL);
|
|
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
|
|
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
|
|
false);
|
|
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
|
|
} else {
|
|
tr = TAILQ_NEXT(tr, tq_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
nvme_pcie_admin_qpair_abort_aers(qpair);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
nvme_pcie_admin_qpair_destroy(qpair);
|
|
}
|
|
/*
|
|
* We check sq_vaddr and cq_vaddr to see if the user specified the memory
|
|
* buffers when creating the I/O queue.
|
|
* If the user specified them, we cannot free that memory.
|
|
* Nor do we free it if it's in the CMB.
|
|
*/
|
|
if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
|
|
spdk_free(pqpair->cmd);
|
|
}
|
|
if (!pqpair->cq_vaddr && pqpair->cpl) {
|
|
spdk_free(pqpair->cpl);
|
|
}
|
|
if (pqpair->tr) {
|
|
spdk_free(pqpair->tr);
|
|
}
|
|
|
|
nvme_qpair_deinit(qpair);
|
|
|
|
spdk_free(pqpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
|
|
{
|
|
nvme_pcie_qpair_abort_trackers(qpair, dnr);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
|
|
|
|
cmd->cdw10_bits.create_io_q.qid = io_que->id;
|
|
cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
|
|
|
|
cmd->cdw11_bits.create_io_cq.pc = 1;
|
|
cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
|
|
|
|
cmd->cdw10_bits.create_io_q.qid = io_que->id;
|
|
cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
|
|
cmd->cdw11_bits.create_io_sq.pc = 1;
|
|
cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
|
|
cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
|
|
cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
|
|
cmd->cdw10_bits.delete_io_q.qid = qpair->id;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
|
|
cmd->cdw10_bits.delete_io_q.qid = qpair->id;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
|
|
uint16_t qid)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_completion_poll_status *status;
|
|
int rc;
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
SPDK_ERRLOG("Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
|
|
if (rc != 0) {
|
|
free(status);
|
|
return rc;
|
|
}
|
|
|
|
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
|
|
SPDK_ERRLOG("nvme_create_io_cq failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
memset(status, 0, sizeof(*status));
|
|
rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
|
|
if (rc != 0) {
|
|
free(status);
|
|
return rc;
|
|
}
|
|
|
|
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
|
|
SPDK_ERRLOG("nvme_create_io_sq failed!\n");
|
|
if (status->timed_out) {
|
|
/* Request is still queued, the memory will be freed in a completion callback.
|
|
allocate a new request */
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
SPDK_ERRLOG("Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
memset(status, 0, sizeof(*status));
|
|
/* Attempt to delete the completion queue */
|
|
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
|
|
if (rc != 0) {
|
|
/* The originall or newly allocated status structure can be freed since
|
|
* the corresponding request has been completed of failed to submit */
|
|
free(status);
|
|
return -1;
|
|
}
|
|
nvme_wait_for_completion(ctrlr->adminq, status);
|
|
if (!status->timed_out) {
|
|
/* status can be freed regardless of nvme_wait_for_completion return value */
|
|
free(status);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (ctrlr->shadow_doorbell) {
|
|
pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
|
|
pctrlr->doorbell_stride_u32;
|
|
pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
|
|
pctrlr->doorbell_stride_u32;
|
|
pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
|
|
pctrlr->doorbell_stride_u32;
|
|
pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
|
|
pctrlr->doorbell_stride_u32;
|
|
pqpair->flags.has_shadow_doorbell = 1;
|
|
} else {
|
|
pqpair->flags.has_shadow_doorbell = 0;
|
|
}
|
|
nvme_pcie_qpair_reset(qpair);
|
|
free(status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct spdk_nvme_qpair *
|
|
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
|
|
const struct spdk_nvme_io_qpair_opts *opts)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair;
|
|
struct spdk_nvme_qpair *qpair;
|
|
int rc;
|
|
|
|
assert(ctrlr != NULL);
|
|
|
|
pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (pqpair == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pqpair->num_entries = opts->io_queue_size;
|
|
pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
|
|
|
|
qpair = &pqpair->qpair;
|
|
|
|
rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
|
|
if (rc != 0) {
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_pcie_qpair_construct(qpair, opts);
|
|
|
|
if (rc != 0) {
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return NULL;
|
|
}
|
|
|
|
return qpair;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
return 0;
|
|
} else {
|
|
return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
}
|
|
|
|
static int32_t nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair,
|
|
uint32_t max_completions);
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int rc;
|
|
|
|
assert(ctrlr != NULL);
|
|
|
|
if (ctrlr->is_removed) {
|
|
goto free;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
SPDK_ERRLOG("Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Delete the I/O submission queue */
|
|
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
|
|
free(status);
|
|
return rc;
|
|
}
|
|
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Now that the submission queue is deleted, the device is supposed to have
|
|
* completed any outstanding I/O. Try to complete them. If they don't complete,
|
|
* they'll be marked as aborted and completed below. */
|
|
nvme_pcie_qpair_process_completions(qpair, 0);
|
|
|
|
memset(status, 0, sizeof(*status));
|
|
/* Delete the completion queue */
|
|
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
|
|
free(status);
|
|
return rc;
|
|
}
|
|
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -1;
|
|
}
|
|
free(status);
|
|
|
|
free:
|
|
if (qpair->no_deletion_notification_needed == 0) {
|
|
/* Abort the rest of the I/O */
|
|
nvme_pcie_qpair_abort_trackers(qpair, 1);
|
|
}
|
|
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
/*
|
|
* Bad vtophys translation, so abort this request and return
|
|
* immediately.
|
|
*/
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
|
|
SPDK_NVME_SC_INVALID_FIELD,
|
|
1 /* do not retry */, true);
|
|
}
|
|
|
|
/*
|
|
* Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
|
|
*
|
|
* *prp_index will be updated to account for the number of PRP entries used.
|
|
*/
|
|
static inline int
|
|
nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
|
|
uint32_t page_size)
|
|
{
|
|
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
|
|
uintptr_t page_mask = page_size - 1;
|
|
uint64_t phys_addr;
|
|
uint32_t i;
|
|
|
|
SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n",
|
|
*prp_index, virt_addr, (uint32_t)len);
|
|
|
|
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
i = *prp_index;
|
|
while (len) {
|
|
uint32_t seg_len;
|
|
|
|
/*
|
|
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
|
|
* so prp_index == count is valid.
|
|
*/
|
|
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
|
|
SPDK_ERRLOG("out of PRP entries\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
phys_addr = spdk_vtophys(virt_addr, NULL);
|
|
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
|
|
SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (i == 0) {
|
|
SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr);
|
|
cmd->dptr.prp.prp1 = phys_addr;
|
|
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
|
|
} else {
|
|
if ((phys_addr & page_mask) != 0) {
|
|
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
|
|
tr->u.prp[i - 1] = phys_addr;
|
|
seg_len = page_size;
|
|
}
|
|
|
|
seg_len = spdk_min(seg_len, len);
|
|
virt_addr += seg_len;
|
|
len -= seg_len;
|
|
i++;
|
|
}
|
|
|
|
cmd->psdt = SPDK_NVME_PSDT_PRP;
|
|
if (i <= 1) {
|
|
cmd->dptr.prp.prp2 = 0;
|
|
} else if (i == 2) {
|
|
cmd->dptr.prp.prp2 = tr->u.prp[0];
|
|
SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
|
|
} else {
|
|
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
|
|
SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
|
|
}
|
|
|
|
*prp_index = i;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
assert(0);
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* Build PRP list describing physically contiguous payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
uint32_t prp_index = 0;
|
|
int rc;
|
|
|
|
rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
|
|
req->payload_size, qpair->ctrlr->page_size);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Build an SGL describing a physically contiguous payload buffer.
|
|
*
|
|
* This is more efficient than using PRP because large buffers can be
|
|
* described this way.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
void *virt_addr;
|
|
uint64_t phys_addr, mapping_length;
|
|
uint32_t length;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
uint32_t nseg = 0;
|
|
|
|
assert(req->payload_size != 0);
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
|
|
|
|
sgl = tr->u.sgl;
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
|
|
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
|
|
|
|
length = req->payload_size;
|
|
virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
|
|
mapping_length = length;
|
|
|
|
while (length > 0) {
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
phys_addr = spdk_vtophys(virt_addr, &mapping_length);
|
|
if (phys_addr == SPDK_VTOPHYS_ERROR) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
mapping_length = spdk_min(length, mapping_length);
|
|
|
|
length -= mapping_length;
|
|
virt_addr += mapping_length;
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
sgl->unkeyed.length = mapping_length;
|
|
sgl->address = phys_addr;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
}
|
|
|
|
if (nseg == 1) {
|
|
/*
|
|
* The whole transfer can be described by a single SGL descriptor.
|
|
* Use the special case described by the spec where SGL1's type is Data Block.
|
|
* This means the SGL in the tracker is not used at all, so copy the first (and only)
|
|
* SGL element into SGL1.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
|
|
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
|
|
} else {
|
|
/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
|
|
* NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
|
|
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Build SGL list describing scattered payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
int rc;
|
|
void *virt_addr;
|
|
uint64_t phys_addr;
|
|
uint32_t remaining_transfer_len, remaining_user_sge_len, length;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
uint32_t nseg = 0;
|
|
|
|
/*
|
|
* Build scattered payloads.
|
|
*/
|
|
assert(req->payload_size != 0);
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
|
|
assert(req->payload.reset_sgl_fn != NULL);
|
|
assert(req->payload.next_sge_fn != NULL);
|
|
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
|
|
|
|
sgl = tr->u.sgl;
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
|
|
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
|
|
|
|
remaining_transfer_len = req->payload_size;
|
|
|
|
while (remaining_transfer_len > 0) {
|
|
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
|
|
&virt_addr, &remaining_user_sge_len);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Bit Bucket SGL descriptor */
|
|
if ((uint64_t)virt_addr == UINT64_MAX) {
|
|
/* TODO: enable WRITE and COMPARE when necessary */
|
|
if (req->cmd.opc != SPDK_NVME_OPC_READ) {
|
|
SPDK_ERRLOG("Only READ command can be supported\n");
|
|
goto exit;
|
|
}
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
SPDK_ERRLOG("Too many SGL entries\n");
|
|
goto exit;
|
|
}
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
|
|
/* If the SGL describes a destination data buffer, the length of data
|
|
* buffer shall be discarded by controller, and the length is included
|
|
* in Number of Logical Blocks (NLB) parameter. Otherwise, the length
|
|
* is not included in the NLB parameter.
|
|
*/
|
|
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
|
|
remaining_transfer_len -= remaining_user_sge_len;
|
|
|
|
sgl->unkeyed.length = remaining_user_sge_len;
|
|
sgl->address = 0;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
|
|
continue;
|
|
}
|
|
|
|
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
|
|
remaining_transfer_len -= remaining_user_sge_len;
|
|
while (remaining_user_sge_len > 0) {
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
SPDK_ERRLOG("Too many SGL entries\n");
|
|
goto exit;
|
|
}
|
|
|
|
if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
goto exit;
|
|
}
|
|
|
|
phys_addr = spdk_vtophys(virt_addr, NULL);
|
|
if (phys_addr == SPDK_VTOPHYS_ERROR) {
|
|
goto exit;
|
|
}
|
|
|
|
length = spdk_min(remaining_user_sge_len, VALUE_2MB - _2MB_OFFSET(virt_addr));
|
|
remaining_user_sge_len -= length;
|
|
virt_addr += length;
|
|
|
|
if (nseg > 0 && phys_addr ==
|
|
(*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
|
|
/* extend previous entry */
|
|
(*(sgl - 1)).unkeyed.length += length;
|
|
continue;
|
|
}
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
sgl->unkeyed.length = length;
|
|
sgl->address = phys_addr;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
}
|
|
}
|
|
|
|
if (nseg == 1) {
|
|
/*
|
|
* The whole transfer can be described by a single SGL descriptor.
|
|
* Use the special case described by the spec where SGL1's type is Data Block.
|
|
* This means the SGL in the tracker is not used at all, so copy the first (and only)
|
|
* SGL element into SGL1.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
|
|
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
|
|
} else {
|
|
/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
|
|
* NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
|
|
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/**
|
|
* Build PRP list describing scattered payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
int rc;
|
|
void *virt_addr;
|
|
uint32_t remaining_transfer_len, length;
|
|
uint32_t prp_index = 0;
|
|
uint32_t page_size = qpair->ctrlr->page_size;
|
|
|
|
/*
|
|
* Build scattered payloads.
|
|
*/
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
|
|
assert(req->payload.reset_sgl_fn != NULL);
|
|
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
|
|
|
|
remaining_transfer_len = req->payload_size;
|
|
while (remaining_transfer_len > 0) {
|
|
assert(req->payload.next_sge_fn != NULL);
|
|
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
length = spdk_min(remaining_transfer_len, length);
|
|
|
|
/*
|
|
* Any incompatible sges should have been handled up in the splitting routine,
|
|
* but assert here as an additional check.
|
|
*
|
|
* All SGEs except last must end on a page boundary.
|
|
*/
|
|
assert((length == remaining_transfer_len) ||
|
|
_is_page_aligned((uintptr_t)virt_addr + length, page_size));
|
|
|
|
rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return rc;
|
|
}
|
|
|
|
remaining_transfer_len -= length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
|
|
bool);
|
|
|
|
static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
|
|
[NVME_PAYLOAD_TYPE_INVALID] = {
|
|
nvme_pcie_qpair_build_request_invalid, /* PRP */
|
|
nvme_pcie_qpair_build_request_invalid /* SGL */
|
|
},
|
|
[NVME_PAYLOAD_TYPE_CONTIG] = {
|
|
nvme_pcie_qpair_build_contig_request, /* PRP */
|
|
nvme_pcie_qpair_build_contig_hw_sgl_request /* SGL */
|
|
},
|
|
[NVME_PAYLOAD_TYPE_SGL] = {
|
|
nvme_pcie_qpair_build_prps_sgl_request, /* PRP */
|
|
nvme_pcie_qpair_build_hw_sgl_request /* SGL */
|
|
}
|
|
};
|
|
|
|
static int
|
|
nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
|
|
bool sgl_supported, bool dword_aligned)
|
|
{
|
|
void *md_payload;
|
|
struct nvme_request *req = tr->req;
|
|
|
|
if (req->payload.md) {
|
|
md_payload = req->payload.md + req->md_offset;
|
|
if (dword_aligned && ((uintptr_t)md_payload & 3)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
|
|
goto exit;
|
|
}
|
|
|
|
if (sgl_supported && dword_aligned) {
|
|
assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
|
|
tr->meta_sgl.address = spdk_vtophys(md_payload, NULL);
|
|
if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
|
|
goto exit;
|
|
}
|
|
tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
tr->meta_sgl.unkeyed.length = req->md_size;
|
|
tr->meta_sgl.unkeyed.subtype = 0;
|
|
req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
|
|
} else {
|
|
req->cmd.mptr = spdk_vtophys(md_payload, NULL);
|
|
if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
|
|
goto exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
int rc = 0;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
enum nvme_payload_type payload_type;
|
|
bool sgl_supported;
|
|
bool dword_aligned = true;
|
|
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
tr = TAILQ_FIRST(&pqpair->free_tr);
|
|
|
|
if (tr == NULL) {
|
|
/* Inform the upper layer to try again later. */
|
|
rc = -EAGAIN;
|
|
goto exit;
|
|
}
|
|
|
|
TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
|
|
TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
|
|
tr->req = req;
|
|
tr->cb_fn = req->cb_fn;
|
|
tr->cb_arg = req->cb_arg;
|
|
req->cmd.cid = tr->cid;
|
|
|
|
if (req->payload_size != 0) {
|
|
payload_type = nvme_payload_type(&req->payload);
|
|
/* According to the specification, PRPs shall be used for all
|
|
* Admin commands for NVMe over PCIe implementations.
|
|
*/
|
|
sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
|
|
!nvme_qpair_is_admin_queue(qpair);
|
|
|
|
if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
|
|
dword_aligned = false;
|
|
}
|
|
rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
|
|
if (rc < 0) {
|
|
goto exit;
|
|
}
|
|
|
|
rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
|
|
if (rc < 0) {
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
nvme_pcie_qpair_submit_tracker(qpair, tr);
|
|
|
|
exit:
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
uint64_t t02;
|
|
struct nvme_tracker *tr, *tmp;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
/* Don't check timeouts during controller initialization. */
|
|
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
|
|
return;
|
|
}
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
} else {
|
|
active_proc = qpair->active_proc;
|
|
}
|
|
|
|
/* Only check timeouts if the current process has a timeout callback. */
|
|
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
|
|
return;
|
|
}
|
|
|
|
t02 = spdk_get_ticks();
|
|
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
|
|
assert(tr->req != NULL);
|
|
|
|
if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
|
|
/*
|
|
* The requests are in order, so as soon as one has not timed out,
|
|
* stop iterating.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int32_t
|
|
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr;
|
|
struct spdk_nvme_cpl *cpl, *next_cpl;
|
|
uint32_t num_completions = 0;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
uint16_t next_cq_head;
|
|
uint8_t next_phase;
|
|
bool next_is_valid = false;
|
|
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
|
|
/*
|
|
* max_completions == 0 means unlimited, but complete at most
|
|
* max_completions_cap batch of I/O at a time so that the completion
|
|
* queue doorbells don't wrap around.
|
|
*/
|
|
max_completions = pqpair->max_completions_cap;
|
|
}
|
|
|
|
while (1) {
|
|
cpl = &pqpair->cpl[pqpair->cq_head];
|
|
|
|
if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
|
|
break;
|
|
}
|
|
|
|
if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
|
|
next_cq_head = pqpair->cq_head + 1;
|
|
next_phase = pqpair->flags.phase;
|
|
} else {
|
|
next_cq_head = 0;
|
|
next_phase = !pqpair->flags.phase;
|
|
}
|
|
next_cpl = &pqpair->cpl[next_cq_head];
|
|
next_is_valid = (next_cpl->status.p == next_phase);
|
|
if (next_is_valid) {
|
|
__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
|
|
}
|
|
|
|
#ifdef __PPC64__
|
|
/*
|
|
* This memory barrier prevents reordering of:
|
|
* - load after store from/to tr
|
|
* - load after load cpl phase and cpl cid
|
|
*/
|
|
spdk_mb();
|
|
#elif defined(__aarch64__)
|
|
__asm volatile("dmb oshld" ::: "memory");
|
|
#endif
|
|
|
|
if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
|
|
pqpair->cq_head = 0;
|
|
pqpair->flags.phase = !pqpair->flags.phase;
|
|
}
|
|
|
|
tr = &pqpair->tr[cpl->cid];
|
|
/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
|
|
* as part of putting the req back on the qpair's free list.
|
|
*/
|
|
__builtin_prefetch(&tr->req->stailq);
|
|
pqpair->sq_head = cpl->sqhd;
|
|
|
|
if (tr->req) {
|
|
nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
|
|
} else {
|
|
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
|
|
spdk_nvme_qpair_print_completion(qpair, cpl);
|
|
assert(0);
|
|
}
|
|
|
|
if (++num_completions == max_completions) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_completions > 0) {
|
|
nvme_pcie_qpair_ring_cq_doorbell(qpair);
|
|
}
|
|
|
|
if (pqpair->flags.delay_cmd_submit) {
|
|
if (pqpair->last_sq_tail != pqpair->sq_tail) {
|
|
nvme_pcie_qpair_ring_sq_doorbell(qpair);
|
|
pqpair->last_sq_tail = pqpair->sq_tail;
|
|
}
|
|
}
|
|
|
|
if (spdk_unlikely(ctrlr->timeout_enabled)) {
|
|
/*
|
|
* User registered for timeout callback
|
|
*/
|
|
nvme_pcie_qpair_check_timeout(qpair);
|
|
}
|
|
|
|
/* Before returning, complete any pending admin request. */
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_pcie_qpair_complete_pending_admin_request(qpair);
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
return num_completions;
|
|
}
|
|
|
|
static struct spdk_nvme_transport_poll_group *
|
|
nvme_pcie_poll_group_create(void)
|
|
{
|
|
struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));
|
|
|
|
if (group == NULL) {
|
|
SPDK_ERRLOG("Unable to allocate poll group.\n");
|
|
return NULL;
|
|
}
|
|
|
|
return &group->group;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
|
|
struct spdk_nvme_qpair *qpair)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
|
|
struct spdk_nvme_qpair *qpair)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int64_t
|
|
nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
|
|
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
|
|
{
|
|
struct spdk_nvme_qpair *qpair, *tmp_qpair;
|
|
int32_t local_completions = 0;
|
|
int64_t total_completions = 0;
|
|
|
|
STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
|
|
disconnected_qpair_cb(qpair, tgroup->group->ctx);
|
|
}
|
|
|
|
STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
|
|
local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
|
|
if (local_completions < 0) {
|
|
disconnected_qpair_cb(qpair, tgroup->group->ctx);
|
|
local_completions = 0;
|
|
}
|
|
total_completions += local_completions;
|
|
}
|
|
|
|
return total_completions;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
|
|
{
|
|
if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
free(tgroup);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct spdk_pci_id nvme_pci_driver_id[] = {
|
|
{
|
|
.class_id = SPDK_PCI_CLASS_NVME,
|
|
.vendor_id = SPDK_PCI_ANY_ID,
|
|
.device_id = SPDK_PCI_ANY_ID,
|
|
.subvendor_id = SPDK_PCI_ANY_ID,
|
|
.subdevice_id = SPDK_PCI_ANY_ID,
|
|
},
|
|
{ .vendor_id = 0, /* sentinel */ },
|
|
};
|
|
|
|
SPDK_PCI_DRIVER_REGISTER(nvme, nvme_pci_driver_id,
|
|
SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE);
|
|
|
|
const struct spdk_nvme_transport_ops pcie_ops = {
|
|
.name = "PCIE",
|
|
.type = SPDK_NVME_TRANSPORT_PCIE,
|
|
.ctrlr_construct = nvme_pcie_ctrlr_construct,
|
|
.ctrlr_scan = nvme_pcie_ctrlr_scan,
|
|
.ctrlr_destruct = nvme_pcie_ctrlr_destruct,
|
|
.ctrlr_enable = nvme_pcie_ctrlr_enable,
|
|
|
|
.ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
|
|
.ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
|
|
.ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
|
|
.ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,
|
|
|
|
.ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size,
|
|
.ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges,
|
|
|
|
.ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb,
|
|
.ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb,
|
|
.ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb,
|
|
|
|
.ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
|
|
.ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
|
|
.ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
|
|
.ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,
|
|
|
|
.qpair_abort_reqs = nvme_pcie_qpair_abort_reqs,
|
|
.qpair_reset = nvme_pcie_qpair_reset,
|
|
.qpair_submit_request = nvme_pcie_qpair_submit_request,
|
|
.qpair_process_completions = nvme_pcie_qpair_process_completions,
|
|
.qpair_iterate_requests = nvme_pcie_qpair_iterate_requests,
|
|
.admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers,
|
|
|
|
.poll_group_create = nvme_pcie_poll_group_create,
|
|
.poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
|
|
.poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
|
|
.poll_group_add = nvme_pcie_poll_group_add,
|
|
.poll_group_remove = nvme_pcie_poll_group_remove,
|
|
.poll_group_process_completions = nvme_pcie_poll_group_process_completions,
|
|
.poll_group_destroy = nvme_pcie_poll_group_destroy,
|
|
};
|
|
|
|
SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);
|