numam-spdk/lib/env_dpdk/memory.c
sunshihao520 b1687cd456 lib:env_dpdk fix the enum rte_kernel_driver definition deference between dpdk 19.11 and 20.11
In dpdk 19.11, rte_kernel_driver is the old version, add version check before use the members.
Signed-off-by: sunshihao <sunshihao@huawei.com>
Change-Id: Ic1db37cc0760c7d03692fd2cdcbb6ff1e41f872d
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/6252
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2021-02-05 13:45:00 +00:00

1530 lines
39 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include <rte_dev.h>
#include <rte_config.h>
#include <rte_memory.h>
#include <rte_eal_memconfig.h>
#include "spdk_internal/assert.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#include "spdk/memory.h"
#include "spdk/env_dpdk.h"
#include "spdk/log.h"
#ifndef __linux__
#define VFIO_ENABLED 0
#else
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
#define VFIO_ENABLED 1
#include <linux/vfio.h>
#include <rte_vfio.h>
struct spdk_vfio_dma_map {
struct vfio_iommu_type1_dma_map map;
TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
};
struct vfio_cfg {
int fd;
bool enabled;
bool noiommu_enabled;
unsigned device_ref;
TAILQ_HEAD(, spdk_vfio_dma_map) maps;
pthread_mutex_t mutex;
};
static struct vfio_cfg g_vfio = {
.fd = -1,
.enabled = false,
.noiommu_enabled = false,
.device_ref = 0,
.maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
.mutex = PTHREAD_MUTEX_INITIALIZER
};
#else
#define VFIO_ENABLED 0
#endif
#endif
#if DEBUG
#define DEBUG_PRINT(...) SPDK_ERRLOG(__VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1))
/* Page is registered */
#define REG_MAP_REGISTERED (1ULL << 62)
/* A notification region barrier. The 2MB translation entry that's marked
* with this flag must be unregistered separately. This allows contiguous
* regions to be unregistered in the same chunks they were registered.
*/
#define REG_MAP_NOTIFY_START (1ULL << 63)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];
};
/* Top-level map table indexed by bits [30..47] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_256tb {
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_256tb map_256tb;
pthread_mutex_t mutex;
uint64_t default_translation;
struct spdk_mem_map_ops ops;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
/* Registrations map. The 64 bit translations are bit fields with the
* following layout (starting with the low bits):
* 0 - 61 : reserved
* 62 - 63 : flags
*/
static struct spdk_mem_map *g_mem_reg_map;
static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps =
TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
static bool g_legacy_mem;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static int
mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_256tb;
uint64_t idx_1gb;
uint64_t contig_start = UINT64_MAX;
uint64_t contig_end = UINT64_MAX;
struct map_1gb *map_1gb;
int rc;
if (!g_mem_reg_map) {
return -EINVAL;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_256tb = 0;
idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
idx_256tb++) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
}
contig_start = UINT64_MAX;
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_start == UINT64_MAX ||
(map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == UINT64_MAX) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
/* This page might be a part of a neighbour region, so process
* it again. The idx_1gb will be incremented immediately.
*/
idx_1gb--;
}
contig_start = UINT64_MAX;
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return 0;
err_unregister:
/* Unwind to the first empty translation so we don't unregister
* a region that just failed to register.
*/
idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1);
idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1);
contig_start = UINT64_MAX;
contig_end = UINT64_MAX;
/* Unregister any memory we managed to register before the failure */
for (; idx_256tb < SIZE_MAX; idx_256tb--) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
}
contig_end = UINT64_MAX;
continue;
}
for (; idx_1gb < UINT64_MAX; idx_1gb--) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_end == UINT64_MAX) {
contig_end = vaddr;
}
contig_start = vaddr;
} else {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
idx_1gb++;
}
contig_end = UINT64_MAX;
}
}
idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1;
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return rc;
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
{
struct spdk_mem_map *map;
int rc;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->cb_ctx = cb_ctx;
if (ops) {
map->ops = *ops;
}
if (ops && ops->notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
DEBUG_PRINT("Initial mem_map notify failed\n");
pthread_mutex_destroy(&map->mutex);
free(map);
return NULL;
}
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
if (map->ops.notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
free(map->map_256tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB,
seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
seg_len += VALUE_2MB;
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg, newreg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* The first page must be a start of a region. Also check if it's
* registered to make sure we don't return -ERANGE for non-registered
* regions.
*/
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
/* If the next page is registered, it must be a start of a region as well,
* otherwise we'd be unregistering only a part of a region.
*/
if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0);
if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
seg_vaddr = vaddr;
seg_len = VALUE_2MB;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_reserve(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
void *seg_vaddr;
size_t seg_len;
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* Check if any part of this range is already registered */
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
/* Simply set the translation to the memory map's default. This allocates the space in the
* map but does not provide a valid translation. */
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len,
g_mem_reg_map->default_translation);
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation);
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb);
size_t i;
if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
return NULL;
}
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
map->map_256tb.map[idx_256tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %" PRIu64 "\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%" PRIu64 " len=%" PRIu64 "\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation);
}
inline uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_256tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
uint64_t cur_size;
uint64_t prev_translation;
uint64_t orig_translation;
if (spdk_unlikely(vaddr & ~MASK_256TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
cur_size = VALUE_2MB - _2MB_OFFSET(vaddr);
map_2mb = &map_1gb->map[idx_1gb];
if (size == NULL || map->ops.are_contiguous == NULL ||
map_2mb->translation_2mb == map->default_translation) {
if (size != NULL) {
*size = spdk_min(*size, cur_size);
}
return map_2mb->translation_2mb;
}
orig_translation = map_2mb->translation_2mb;
prev_translation = orig_translation;
while (cur_size < *size) {
vfn_2mb++;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
break;
}
map_2mb = &map_1gb->map[idx_1gb];
if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) {
break;
}
cur_size += VALUE_2MB;
prev_translation = map_2mb->translation_2mb;
}
*size = spdk_min(*size, cur_size);
return orig_translation;
}
static void
memory_hotplug_cb(enum rte_mem_event event_type,
const void *addr, size_t len, void *arg)
{
if (event_type == RTE_MEM_EVENT_ALLOC) {
spdk_mem_register((void *)addr, len);
if (!spdk_env_dpdk_external_init()) {
return;
}
/* When the user initialized DPDK separately, we can't
* be sure that --match-allocations RTE flag was specified.
* Without this flag, DPDK can free memory in different units
* than it was allocated. It doesn't work with things like RDMA MRs.
*
* For such cases, we mark segments so they aren't freed.
*/
while (len > 0) {
struct rte_memseg *seg;
seg = rte_mem_virt2memseg(addr, NULL);
assert(seg != NULL);
seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
len -= seg->hugepage_sz;
}
} else if (event_type == RTE_MEM_EVENT_FREE) {
spdk_mem_unregister((void *)addr, len);
}
}
static int
memory_iter_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
return spdk_mem_register(ms->addr, len);
}
int
mem_map_init(bool legacy_mem)
{
g_legacy_mem = legacy_mem;
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
return -ENOMEM;
}
/*
* Walk all DPDK memory segments and register them
* with the main memory map
*/
rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
rte_memseg_contig_walk(memory_iter_cb, NULL);
return 0;
}
bool
spdk_iommu_is_enabled(void)
{
#if VFIO_ENABLED
return g_vfio.enabled && !g_vfio.noiommu_enabled;
#else
return false;
#endif
}
struct spdk_vtophys_pci_device {
struct rte_pci_device *pci_device;
TAILQ_ENTRY(spdk_vtophys_pci_device) tailq;
};
static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices =
TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices);
static struct spdk_mem_map *g_vtophys_map;
static struct spdk_mem_map *g_phys_ref_map;
#if VFIO_ENABLED
static int
vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
uint64_t refcount;
int ret;
refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL);
assert(refcount < UINT64_MAX);
if (refcount > 0) {
spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1);
return 0;
}
dma_map = calloc(1, sizeof(*dma_map));
if (dma_map == NULL) {
return -ENOMEM;
}
dma_map->map.argsz = sizeof(dma_map->map);
dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
dma_map->map.vaddr = vaddr;
dma_map->map.iova = iova;
dma_map->map.size = size;
pthread_mutex_lock(&g_vfio.mutex);
if (g_vfio.device_ref == 0) {
/* VFIO requires at least one device (IOMMU group) to be added to
* a VFIO container before it is possible to perform any IOMMU
* operations on that container. This memory will be mapped once
* the first device (IOMMU group) is hotplugged.
*
* Since the vfio container is managed internally by DPDK, it is
* also possible that some device is already in that container, but
* it's not managed by SPDK - e.g. an NIC attached internally
* inside DPDK. We could map the memory straight away in such
* scenario, but there's no need to do it. DPDK devices clearly
* don't need our mappings and hence we defer the mapping
* unconditionally until the first SPDK-managed device is
* hotplugged.
*/
goto out_insert;
}
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno);
pthread_mutex_unlock(&g_vfio.mutex);
free(dma_map);
return ret;
}
out_insert:
TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
pthread_mutex_unlock(&g_vfio.mutex);
spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1);
return 0;
}
static int
vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
uint64_t refcount;
int ret;
struct vfio_iommu_type1_dma_unmap unmap = {};
pthread_mutex_lock(&g_vfio.mutex);
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
if (dma_map->map.iova == iova) {
break;
}
}
if (dma_map == NULL) {
DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
pthread_mutex_unlock(&g_vfio.mutex);
return -ENXIO;
}
refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL);
assert(refcount < UINT64_MAX);
if (refcount > 0) {
spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1);
}
/* We still have outstanding references, don't clear it. */
if (refcount > 1) {
pthread_mutex_unlock(&g_vfio.mutex);
return 0;
}
/** don't support partial or multiple-page unmap for now */
assert(dma_map->map.size == size);
if (g_vfio.device_ref == 0) {
/* Memory is not mapped anymore, just remove it's references */
goto out_remove;
}
unmap.argsz = sizeof(unmap);
unmap.flags = 0;
unmap.iova = dma_map->map.iova;
unmap.size = dma_map->map.size;
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap);
if (ret) {
DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno);
pthread_mutex_unlock(&g_vfio.mutex);
return ret;
}
out_remove:
TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
pthread_mutex_unlock(&g_vfio.mutex);
free(dma_map);
return 0;
}
#endif
static uint64_t
vtophys_get_paddr_memseg(uint64_t vaddr)
{
uintptr_t paddr;
struct rte_memseg *seg;
seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
if (seg != NULL) {
paddr = seg->iova;
if (paddr == RTE_BAD_IOVA) {
return SPDK_VTOPHYS_ERROR;
}
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
return SPDK_VTOPHYS_ERROR;
}
/* Try to get the paddr from /proc/self/pagemap */
static uint64_t
vtophys_get_paddr_pagemap(uint64_t vaddr)
{
uintptr_t paddr;
/* Silence static analyzers */
assert(vaddr != 0);
paddr = rte_mem_virt2iova((void *)vaddr);
if (paddr == RTE_BAD_IOVA) {
/*
* The vaddr may be valid but doesn't have a backing page
* assigned yet. Touch the page to ensure a backing page
* gets assigned, then try to translate again.
*/
rte_atomic64_read((rte_atomic64_t *)vaddr);
paddr = rte_mem_virt2iova((void *)vaddr);
}
if (paddr == RTE_BAD_IOVA) {
/* Unable to get to the physical address. */
return SPDK_VTOPHYS_ERROR;
}
return paddr;
}
/* Try to get the paddr from pci devices */
static uint64_t
vtophys_get_paddr_pci(uint64_t vaddr)
{
struct spdk_vtophys_pci_device *vtophys_dev;
uintptr_t paddr;
struct rte_pci_device *dev;
struct rte_mem_resource *res;
unsigned r;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
dev = vtophys_dev->pci_device;
for (r = 0; r < PCI_MAX_RESOURCE; r++) {
res = &dev->mem_resource[r];
if (res->phys_addr && vaddr >= (uint64_t)res->addr &&
vaddr < (uint64_t)res->addr + res->len) {
paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr,
(void *)paddr);
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return paddr;
}
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return SPDK_VTOPHYS_ERROR;
}
static int
vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t len)
{
int rc = 0, pci_phys = 0;
uint64_t paddr;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n",
vaddr, len);
return -EINVAL;
}
/* Get the physical address from the DPDK memsegs */
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (paddr == SPDK_VTOPHYS_ERROR) {
/* This is not an address that DPDK is managing. */
#if VFIO_ENABLED
enum rte_iova_mode iova_mode;
iova_mode = rte_eal_iova_mode();
if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) {
/* We'll use the virtual address as the iova to match DPDK. */
paddr = (uint64_t)vaddr;
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len);
if (rc) {
return -EFAULT;
}
while (len > 0) {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
paddr += VALUE_2MB;
len -= VALUE_2MB;
}
} else
#endif
{
/* Get the physical address from /proc/self/pagemap. */
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
/* Get the physical address from PCI devices */
paddr = vtophys_get_paddr_pci((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
/* The beginning of this address range points to a PCI resource,
* so the rest must point to a PCI resource as well.
*/
pci_phys = 1;
}
/* Get paddr for each 2MB chunk in this address range */
while (len > 0) {
/* Get the physical address from /proc/self/pagemap. */
if (pci_phys) {
paddr = vtophys_get_paddr_pci((uint64_t)vaddr);
} else {
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
}
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
/* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */
if (!pci_phys && (paddr & MASK_2MB)) {
DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
return -EINVAL;
}
#if VFIO_ENABLED
/* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory
* with the IOMMU using the physical address to match. */
if (spdk_iommu_is_enabled()) {
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
if (rc) {
DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr);
return -EFAULT;
}
}
#endif
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
}
} else {
/* This is an address managed by DPDK. Just setup the translations. */
while (len > 0) {
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
#if VFIO_ENABLED
if (paddr == SPDK_VTOPHYS_ERROR) {
/*
* This is not an address that DPDK is managing. If vfio is enabled,
* we need to unmap the range from the IOMMU
*/
if (spdk_iommu_is_enabled()) {
uint64_t buffer_len = len;
uint8_t *va = vaddr;
enum rte_iova_mode iova_mode;
iova_mode = rte_eal_iova_mode();
/*
* In virtual address mode, the region is contiguous and can be done in
* one unmap.
*/
if (iova_mode == RTE_IOVA_VA) {
paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len);
if (buffer_len != len || paddr != (uintptr_t)va) {
DEBUG_PRINT("Unmapping %p with length %lu failed because "
"translation had address 0x%" PRIx64 " and length %lu\n",
va, len, paddr, buffer_len);
return -EINVAL;
}
rc = vtophys_iommu_unmap_dma(paddr, len);
if (rc) {
DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr);
return -EFAULT;
}
} else if (iova_mode == RTE_IOVA_PA) {
/* Get paddr for each 2MB chunk in this address range */
while (buffer_len > 0) {
paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL);
if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) {
DEBUG_PRINT("could not get phys addr for %p\n", va);
return -EFAULT;
}
rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
if (rc) {
DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr);
return -EFAULT;
}
va += VALUE_2MB;
buffer_len -= VALUE_2MB;
}
}
}
}
#endif
while (len > 0) {
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
break;
default:
SPDK_UNREACHABLE();
}
return rc;
}
static int
vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2)
{
/* This function is always called with paddrs for two subsequent
* 2MB chunks in virtual address space, so those chunks will be only
* physically contiguous if the physical addresses are 2MB apart
* from each other as well.
*/
return (paddr2 - paddr1 == VALUE_2MB);
}
#if VFIO_ENABLED
static bool
vfio_enabled(void)
{
return rte_vfio_is_enabled("vfio_pci");
}
/* Check if IOMMU is enabled on the system */
static bool
has_iommu_groups(void)
{
int count = 0;
DIR *dir = opendir("/sys/kernel/iommu_groups");
if (dir == NULL) {
return false;
}
while (count < 3 && readdir(dir) != NULL) {
count++;
}
closedir(dir);
/* there will always be ./ and ../ entries */
return count > 2;
}
static bool
vfio_noiommu_enabled(void)
{
return rte_vfio_noiommu_is_enabled();
}
static void
vtophys_iommu_device_event(const char *device_name,
enum rte_dev_event_type event,
void *cb_arg)
{
struct rte_dev_iterator dev_iter;
struct rte_device *dev;
pthread_mutex_lock(&g_vfio.mutex);
switch (event) {
default:
case RTE_DEV_EVENT_ADD:
RTE_DEV_FOREACH(dev, "bus=pci", &dev_iter) {
if (strcmp(dev->name, device_name) == 0) {
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
#if RTE_VERSION < RTE_VERSION_NUM(20, 11, 0, 0)
if (pci_dev->kdrv == RTE_KDRV_VFIO) {
#else
if (pci_dev->kdrv == RTE_PCI_KDRV_VFIO) {
#endif
/* This is a new PCI device using vfio */
g_vfio.device_ref++;
}
break;
}
}
if (g_vfio.device_ref == 1) {
struct spdk_vfio_dma_map *dma_map;
int ret;
/* This is the first device registered. This means that the first
* IOMMU group might have been just been added to the DPDK vfio container.
* From this point it is certain that the memory can be mapped now.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
break;
}
}
}
break;
case RTE_DEV_EVENT_REMOVE:
RTE_DEV_FOREACH(dev, "bus=pci", &dev_iter) {
if (strcmp(dev->name, device_name) == 0) {
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
#if RTE_VERSION < RTE_VERSION_NUM(20, 11, 0, 0)
if (pci_dev->kdrv == RTE_KDRV_VFIO) {
#else
if (pci_dev->kdrv == RTE_PCI_KDRV_VFIO) {
#endif
/* This is a PCI device using vfio */
g_vfio.device_ref--;
}
break;
}
}
if (g_vfio.device_ref == 0) {
struct spdk_vfio_dma_map *dma_map;
int ret;
/* If DPDK doesn't have any additional devices using it's vfio container,
* all the mappings will be automatically removed by the Linux vfio driver.
* We unmap the memory manually to be able to easily re-map it later regardless
* of other, external factors.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
struct vfio_iommu_type1_dma_unmap unmap = {};
unmap.argsz = sizeof(unmap);
unmap.flags = 0;
unmap.iova = dma_map->map.iova;
unmap.size = dma_map->map.size;
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap);
if (ret) {
DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
break;
}
}
}
break;
}
pthread_mutex_unlock(&g_vfio.mutex);
}
static void
vtophys_iommu_init(void)
{
char proc_fd_path[PATH_MAX + 1];
char link_path[PATH_MAX + 1];
const char vfio_path[] = "/dev/vfio/vfio";
DIR *dir;
struct dirent *d;
struct rte_dev_iterator dev_iter;
struct rte_device *dev;
int rc;
if (!vfio_enabled()) {
return;
}
if (vfio_noiommu_enabled()) {
g_vfio.noiommu_enabled = true;
} else if (!has_iommu_groups()) {
return;
}
dir = opendir("/proc/self/fd");
if (!dir) {
DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
return;
}
while ((d = readdir(dir)) != NULL) {
if (d->d_type != DT_LNK) {
continue;
}
snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
continue;
}
if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
sscanf(d->d_name, "%d", &g_vfio.fd);
break;
}
}
closedir(dir);
if (g_vfio.fd < 0) {
DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
return;
}
/* If the IOMMU is enabled, we need to track whether there are any devices present because
* it's only valid to perform vfio IOCTLs to the containers when there is at least
* one device. The device may be a DPDK device that SPDK doesn't otherwise know about, but
* that's ok.
*/
RTE_DEV_FOREACH(dev, "bus=pci", &dev_iter) {
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
#if RTE_VERSION < RTE_VERSION_NUM(20, 11, 0, 0)
if (pci_dev->kdrv == RTE_KDRV_VFIO) {
#else
if (pci_dev->kdrv == RTE_PCI_KDRV_VFIO) {
#endif
/* This is a PCI device using vfio */
g_vfio.device_ref++;
}
}
if (spdk_process_is_primary()) {
rc = rte_dev_event_callback_register(NULL, vtophys_iommu_device_event, NULL);
if (rc) {
DEBUG_PRINT("Failed to register device event callback\n");
return;
}
rc = rte_dev_event_monitor_start();
if (rc) {
DEBUG_PRINT("Failed to start device event monitoring.\n");
return;
}
}
g_vfio.enabled = true;
return;
}
static void
vtophys_iommu_fini(void)
{
if (spdk_process_is_primary()) {
rte_dev_event_callback_unregister(NULL, vtophys_iommu_device_event, NULL);
rte_dev_event_monitor_stop();
}
}
#endif
void
vtophys_pci_device_added(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
vtophys_dev = calloc(1, sizeof(*vtophys_dev));
if (vtophys_dev) {
vtophys_dev->pci_device = pci_device;
TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq);
} else {
DEBUG_PRINT("Memory allocation error\n");
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
}
void
vtophys_pci_device_removed(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
if (vtophys_dev->pci_device == pci_device) {
TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq);
free(vtophys_dev);
break;
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
}
int
vtophys_init(void)
{
const struct spdk_mem_map_ops vtophys_map_ops = {
.notify_cb = vtophys_notify,
.are_contiguous = vtophys_check_contiguous_entries,
};
const struct spdk_mem_map_ops phys_ref_map_ops = {
.notify_cb = NULL,
.are_contiguous = NULL,
};
#if VFIO_ENABLED
vtophys_iommu_init();
#endif
g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL);
if (g_phys_ref_map == NULL) {
DEBUG_PRINT("phys_ref map allocation failed.\n");
return -ENOMEM;
}
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL);
if (g_vtophys_map == NULL) {
DEBUG_PRINT("vtophys map allocation failed\n");
return -ENOMEM;
}
return 0;
}
void
vtophys_fini(void)
{
#if VFIO_ENABLED
vtophys_iommu_fini();
#endif
}
uint64_t
spdk_vtophys(const void *buf, uint64_t *size)
{
uint64_t vaddr, paddr_2mb;
vaddr = (uint64_t)buf;
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size);
/*
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
* we will still bitwise-or it with the buf offset below, but the result will still be
* SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
* unaligned) we must now check the return value before addition.
*/
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
return SPDK_VTOPHYS_ERROR;
} else {
return paddr_2mb + (vaddr & MASK_2MB);
}
}
int
spdk_mem_get_fd_and_offset(void *vaddr, uint64_t *offset)
{
struct rte_memseg *seg;
int ret, fd;
seg = rte_mem_virt2memseg(vaddr, NULL);
if (!seg) {
SPDK_ERRLOG("memory %p doesn't exist\n", vaddr);
return -ENOENT;
}
fd = rte_memseg_get_fd_thread_unsafe(seg);
if (fd < 0) {
return fd;
}
ret = rte_memseg_get_fd_offset_thread_unsafe(seg, offset);
if (ret < 0) {
return ret;
}
return fd;
}