numam-spdk/lib/nvme/nvme_rdma.c
Daniel Verkamp f7b58aea2b nvme: capture VS register at init time
This will be used later instead of retrieving VS (potentially via a Get
property command for Fabrics) multiple times.

The Active NS List code was previously depending on the VER field of the
Identify Controller data, but this was only added with NVMe 1.2, so we
can't rely on it to detect NVMe 1.1 controllers; it is changed to use
the new cache VS value instead.

Change-Id: Iba9ed5ecbc82b4654973438d119daba0c4cf0724
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-on: https://review.gerrithub.io/408895
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2018-04-30 17:19:07 +00:00

1644 lines
41 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over RDMA transport
*/
#include "spdk/stdinc.h"
#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>
#include "spdk/assert.h"
#include "spdk/log.h"
#include "spdk/trace.h"
#include "spdk/event.h"
#include "spdk/queue.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/endian.h"
#include "nvme_internal.h"
#define NVME_RDMA_TIME_OUT_IN_MS 2000
#define NVME_RDMA_RW_BUFFER_SIZE 131072
/*
NVME RDMA qpair Resouce Defaults
*/
#define NVME_RDMA_DEFAULT_TX_SGE 2
#define NVME_RDMA_DEFAULT_RX_SGE 1
/* Mapping from virtual address to ibv_mr pointer for a protection domain */
struct spdk_nvme_rdma_mr_map {
struct ibv_pd *pd;
struct spdk_mem_map *map;
uint64_t ref;
LIST_ENTRY(spdk_nvme_rdma_mr_map) link;
};
/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
struct nvme_rdma_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
uint16_t cntlid;
};
/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
struct nvme_rdma_qpair {
struct spdk_nvme_qpair qpair;
struct rdma_event_channel *cm_channel;
struct rdma_cm_id *cm_id;
struct ibv_cq *cq;
struct spdk_nvme_rdma_req *rdma_reqs;
uint16_t num_entries;
/* Parallel arrays of response buffers + response SGLs of size num_entries */
struct ibv_sge *rsp_sgls;
struct spdk_nvme_cpl *rsps;
struct ibv_recv_wr *rsp_recv_wrs;
/* Memory region describing all rsps for this qpair */
struct ibv_mr *rsp_mr;
/*
* Array of num_entries NVMe commands registered as RDMA message buffers.
* Indexed by rdma_req->id.
*/
struct spdk_nvme_cmd *cmds;
/* Memory region describing all cmds for this qpair */
struct ibv_mr *cmd_mr;
struct spdk_nvme_rdma_mr_map *mr_map;
STAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
};
struct spdk_nvme_rdma_req {
int id;
struct ibv_send_wr send_wr;
struct nvme_request *req;
struct ibv_sge send_sgl;
STAILQ_ENTRY(spdk_nvme_rdma_req) link;
};
static const char *rdma_cm_event_str[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps);
static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER;
static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair);
static inline struct nvme_rdma_qpair *
nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
return (struct nvme_rdma_qpair *)((uintptr_t)qpair - offsetof(struct nvme_rdma_qpair, qpair));
}
static inline struct nvme_rdma_ctrlr *
nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
return (struct nvme_rdma_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_rdma_ctrlr, ctrlr));
}
static struct spdk_nvme_rdma_req *
nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = STAILQ_FIRST(&rqpair->free_reqs);
if (rdma_req) {
STAILQ_REMOVE_HEAD(&rqpair->free_reqs, link);
}
return rdma_req;
}
static void
nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
STAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
}
static void
nvme_rdma_req_complete(struct nvme_request *req,
struct spdk_nvme_cpl *rsp)
{
req->cb_fn(req->cb_arg, rsp);
nvme_free_request(req);
}
static const char *
nvme_rdma_cm_event_str_get(uint32_t event)
{
if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
return rdma_cm_event_str[event];
} else {
return "Undefined";
}
}
static struct rdma_cm_event *
nvme_rdma_get_event(struct rdma_event_channel *channel,
enum rdma_cm_event_type evt)
{
struct rdma_cm_event *event;
int rc;
rc = rdma_get_cm_event(channel, &event);
if (rc < 0) {
SPDK_ERRLOG("Failed to get event from CM event channel. Error %d (%s)\n",
errno, spdk_strerror(errno));
return NULL;
}
if (event->event != evt) {
SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
nvme_rdma_cm_event_str_get(evt),
nvme_rdma_cm_event_str_get(event->event), event->event, event->status);
rdma_ack_cm_event(event);
return NULL;
}
return event;
}
static int
nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
{
int rc;
struct ibv_qp_init_attr attr;
rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
if (!rqpair->cq) {
SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
attr.qp_type = IBV_QPT_RC;
attr.send_cq = rqpair->cq;
attr.recv_cq = rqpair->cq;
attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
attr.cap.max_send_sge = NVME_RDMA_DEFAULT_TX_SGE;
attr.cap.max_recv_sge = NVME_RDMA_DEFAULT_RX_SGE;
rc = rdma_create_qp(rqpair->cm_id, NULL, &attr);
if (rc) {
SPDK_ERRLOG("rdma_create_qp failed\n");
return -1;
}
rqpair->cm_id->context = &rqpair->qpair;
return 0;
}
#define nvme_rdma_trace_ibv_sge(sg_list) \
if (sg_list) { \
SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \
(void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
}
static int
nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
{
struct ibv_recv_wr *wr, *bad_wr = NULL;
int rc;
wr = &rqpair->rsp_recv_wrs[rsp_idx];
nvme_rdma_trace_ibv_sge(wr->sg_list);
rc = ibv_post_recv(rqpair->cm_id->qp, wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc);
}
return rc;
}
static void
nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
{
if (rqpair->rsp_mr && rdma_dereg_mr(rqpair->rsp_mr)) {
SPDK_ERRLOG("Unable to de-register rsp_mr\n");
}
rqpair->rsp_mr = NULL;
free(rqpair->rsps);
rqpair->rsps = NULL;
free(rqpair->rsp_sgls);
rqpair->rsp_sgls = NULL;
free(rqpair->rsp_recv_wrs);
rqpair->rsp_recv_wrs = NULL;
}
static int
nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
{
uint16_t i;
rqpair->rsp_mr = NULL;
rqpair->rsps = NULL;
rqpair->rsp_recv_wrs = NULL;
rqpair->rsp_sgls = calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
if (!rqpair->rsp_sgls) {
SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
goto fail;
}
rqpair->rsp_recv_wrs = calloc(rqpair->num_entries,
sizeof(*rqpair->rsp_recv_wrs));
if (!rqpair->rsp_recv_wrs) {
SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
goto fail;
}
rqpair->rsps = calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
if (!rqpair->rsps) {
SPDK_ERRLOG("can not allocate rdma rsps\n");
goto fail;
}
rqpair->rsp_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->rsps,
rqpair->num_entries * sizeof(*rqpair->rsps));
if (rqpair->rsp_mr == NULL) {
SPDK_ERRLOG("Unable to register rsp_mr\n");
goto fail;
}
for (i = 0; i < rqpair->num_entries; i++) {
struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
rsp_sgl->length = sizeof(rqpair->rsps[i]);
rsp_sgl->lkey = rqpair->rsp_mr->lkey;
rqpair->rsp_recv_wrs[i].wr_id = i;
rqpair->rsp_recv_wrs[i].next = NULL;
rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
rqpair->rsp_recv_wrs[i].num_sge = 1;
if (nvme_rdma_post_recv(rqpair, i)) {
SPDK_ERRLOG("Unable to post connection rx desc\n");
goto fail;
}
}
return 0;
fail:
nvme_rdma_free_rsps(rqpair);
return -ENOMEM;
}
static void
nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
{
if (!rqpair->rdma_reqs) {
return;
}
if (rqpair->cmd_mr && rdma_dereg_mr(rqpair->cmd_mr)) {
SPDK_ERRLOG("Unable to de-register cmd_mr\n");
}
rqpair->cmd_mr = NULL;
free(rqpair->cmds);
rqpair->cmds = NULL;
free(rqpair->rdma_reqs);
rqpair->rdma_reqs = NULL;
}
static int
nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
{
int i;
rqpair->rdma_reqs = calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
if (rqpair->rdma_reqs == NULL) {
SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
goto fail;
}
rqpair->cmds = calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
if (!rqpair->cmds) {
SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
goto fail;
}
rqpair->cmd_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->cmds,
rqpair->num_entries * sizeof(*rqpair->cmds));
if (!rqpair->cmd_mr) {
SPDK_ERRLOG("Unable to register cmd_mr\n");
goto fail;
}
STAILQ_INIT(&rqpair->free_reqs);
for (i = 0; i < rqpair->num_entries; i++) {
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_cmd *cmd;
rdma_req = &rqpair->rdma_reqs[i];
cmd = &rqpair->cmds[i];
rdma_req->id = i;
rdma_req->send_sgl.addr = (uint64_t)cmd;
rdma_req->send_sgl.length = sizeof(*cmd);
rdma_req->send_sgl.lkey = rqpair->cmd_mr->lkey;
rdma_req->send_wr.wr_id = (uint64_t)rdma_req;
rdma_req->send_wr.next = NULL;
rdma_req->send_wr.opcode = IBV_WR_SEND;
rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->send_wr.sg_list = &rdma_req->send_sgl;
rdma_req->send_wr.num_sge = 1;
rdma_req->send_wr.imm_data = 0;
STAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
}
return 0;
fail:
nvme_rdma_free_reqs(rqpair);
return -ENOMEM;
}
static int
nvme_rdma_recv(struct nvme_rdma_qpair *rqpair, uint64_t rsp_idx)
{
struct spdk_nvme_qpair *qpair = &rqpair->qpair;
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_cpl *rsp;
struct nvme_request *req;
assert(rsp_idx < rqpair->num_entries);
rsp = &rqpair->rsps[rsp_idx];
rdma_req = &rqpair->rdma_reqs[rsp->cid];
req = rdma_req->req;
nvme_rdma_req_complete(req, rsp);
nvme_rdma_req_put(rqpair, rdma_req);
if (nvme_rdma_post_recv(rqpair, rsp_idx)) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
return -1;
}
if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
return 0;
}
static int
nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct rdma_event_channel *cm_channel)
{
int ret;
struct rdma_cm_event *event;
ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
return ret;
}
event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
if (event == NULL) {
SPDK_ERRLOG("RDMA address resolution error\n");
return -1;
}
rdma_ack_cm_event(event);
ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_route\n");
return ret;
}
event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
if (event == NULL) {
SPDK_ERRLOG("RDMA route resolution error\n");
return -1;
}
rdma_ack_cm_event(event);
return 0;
}
static int
nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
{
struct rdma_conn_param param = {};
struct spdk_nvmf_rdma_request_private_data request_data = {};
struct spdk_nvmf_rdma_accept_private_data *accept_data;
struct ibv_device_attr attr;
int ret;
struct rdma_cm_event *event;
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_rdma_ctrlr *rctrlr;
ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
if (ret != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return ret;
}
param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);
ctrlr = rqpair->qpair.ctrlr;
if (!ctrlr) {
return -1;
}
rctrlr = nvme_rdma_ctrlr(ctrlr);
request_data.qid = rqpair->qpair.id;
request_data.hrqsize = rqpair->num_entries;
request_data.hsqsize = rqpair->num_entries - 1;
request_data.cntlid = rctrlr->cntlid;
param.private_data = &request_data;
param.private_data_len = sizeof(request_data);
param.retry_count = 7;
ret = rdma_connect(rqpair->cm_id, &param);
if (ret) {
SPDK_ERRLOG("nvme rdma connect error\n");
return ret;
}
event = nvme_rdma_get_event(rqpair->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
if (event == NULL) {
SPDK_ERRLOG("RDMA connect error\n");
return -1;
}
accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
if (accept_data == NULL) {
rdma_ack_cm_event(event);
SPDK_ERRLOG("NVMe-oF target did not return accept data\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n",
rqpair->num_entries, accept_data->crqsize);
rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);
rdma_ack_cm_event(event);
return 0;
}
static int
nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
return ret;
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static int
nvme_rdma_qpair_fabric_connect(struct nvme_rdma_qpair *rqpair)
{
struct nvme_completion_poll_status status;
struct spdk_nvmf_fabric_connect_rsp *rsp;
struct spdk_nvmf_fabric_connect_cmd cmd;
struct spdk_nvmf_fabric_connect_data *nvmf_data;
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_rdma_ctrlr *rctrlr;
int rc = 0;
ctrlr = rqpair->qpair.ctrlr;
if (!ctrlr) {
return -1;
}
rctrlr = nvme_rdma_ctrlr(ctrlr);
nvmf_data = spdk_dma_zmalloc(sizeof(*nvmf_data), 0, NULL);
if (!nvmf_data) {
SPDK_ERRLOG("nvmf_data allocation error\n");
rc = -1;
return rc;
}
memset(&cmd, 0, sizeof(cmd));
memset(&status, 0, sizeof(struct nvme_completion_poll_status));
cmd.opcode = SPDK_NVME_OPC_FABRIC;
cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_CONNECT;
cmd.qid = rqpair->qpair.id;
cmd.sqsize = rqpair->num_entries - 1;
cmd.kato = ctrlr->opts.keep_alive_timeout_ms;
if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
nvmf_data->cntlid = 0xFFFF;
} else {
nvmf_data->cntlid = rctrlr->cntlid;
}
SPDK_STATIC_ASSERT(sizeof(nvmf_data->hostid) == sizeof(ctrlr->opts.extended_host_id),
"host ID size mismatch");
memcpy(nvmf_data->hostid, ctrlr->opts.extended_host_id, sizeof(nvmf_data->hostid));
snprintf(nvmf_data->hostnqn, sizeof(nvmf_data->hostnqn), "%s", ctrlr->opts.hostnqn);
snprintf(nvmf_data->subnqn, sizeof(nvmf_data->subnqn), "%s", ctrlr->trid.subnqn);
rc = spdk_nvme_ctrlr_cmd_io_raw(ctrlr, &rqpair->qpair,
(struct spdk_nvme_cmd *)&cmd,
nvmf_data, sizeof(*nvmf_data),
nvme_completion_poll_cb, &status);
if (rc < 0) {
SPDK_ERRLOG("spdk_nvme_rdma_req_fabric_connect failed\n");
rc = -1;
goto ret;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(&rqpair->qpair, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("Connect command failed\n");
return -1;
}
if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
rsp = (struct spdk_nvmf_fabric_connect_rsp *)&status.cpl;
rctrlr->cntlid = rsp->status_code_specific.success.cntlid;
}
ret:
spdk_dma_free(nvmf_data);
return rc;
}
static int
nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t size)
{
struct ibv_pd *pd = cb_ctx;
struct ibv_mr *mr;
int rc;
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
mr = ibv_reg_mr(pd, vaddr, size,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);
if (mr == NULL) {
SPDK_ERRLOG("ibv_reg_mr() failed\n");
return -EFAULT;
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr);
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
if (mr) {
ibv_dereg_mr(mr);
}
break;
default:
SPDK_UNREACHABLE();
}
return rc;
}
static int
nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair)
{
struct ibv_pd *pd = rqpair->cm_id->qp->pd;
struct spdk_nvme_rdma_mr_map *mr_map;
pthread_mutex_lock(&g_rdma_mr_maps_mutex);
/* Look up existing mem map registration for this pd */
LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) {
if (mr_map->pd == pd) {
mr_map->ref++;
rqpair->mr_map = mr_map;
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return 0;
}
}
mr_map = calloc(1, sizeof(*mr_map));
if (mr_map == NULL) {
SPDK_ERRLOG("calloc() failed\n");
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return -1;
}
mr_map->ref = 1;
mr_map->pd = pd;
mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, nvme_rdma_mr_map_notify, pd);
if (mr_map == NULL) {
SPDK_ERRLOG("spdk_mem_map_alloc() failed\n");
free(mr_map);
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return -1;
}
rqpair->mr_map = mr_map;
LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link);
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return 0;
}
static void
nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_mr_map *mr_map;
mr_map = rqpair->mr_map;
rqpair->mr_map = NULL;
if (mr_map == NULL) {
return;
}
pthread_mutex_lock(&g_rdma_mr_maps_mutex);
assert(mr_map->ref > 0);
mr_map->ref--;
if (mr_map->ref == 0) {
LIST_REMOVE(mr_map, link);
spdk_mem_map_free(&mr_map->map);
free(mr_map);
}
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
}
static int
nvme_rdma_qpair_connect(struct nvme_rdma_qpair *rqpair)
{
struct sockaddr_storage dst_addr;
struct sockaddr_storage src_addr;
bool src_addr_specified;
int rc;
struct spdk_nvme_ctrlr *ctrlr;
int family;
rqpair->cm_channel = rdma_create_event_channel();
if (rqpair->cm_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed\n");
return -1;
}
ctrlr = rqpair->qpair.ctrlr;
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&dst_addr, 0, sizeof(dst_addr));
SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
memset(&src_addr, 0, sizeof(src_addr));
rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
if (rc != 0) {
SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
src_addr_specified = true;
} else {
src_addr_specified = false;
}
rc = rdma_create_id(rqpair->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
return -1;
}
rc = nvme_rdma_resolve_addr(rqpair,
src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
(struct sockaddr *)&dst_addr, rqpair->cm_channel);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
return -1;
}
rc = nvme_rdma_qpair_init(rqpair);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
return -1;
}
rc = nvme_rdma_connect(rqpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect the rqpair\n");
return -1;
}
rc = nvme_rdma_alloc_reqs(rqpair);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
if (rc) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n");
rc = nvme_rdma_alloc_rsps(rqpair);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
if (rc < 0) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n");
rc = nvme_rdma_register_mem(rqpair);
if (rc < 0) {
SPDK_ERRLOG("Unable to register memory for RDMA\n");
return -1;
}
rc = nvme_rdma_qpair_fabric_connect(rqpair);
if (rc < 0) {
SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
return -1;
}
return 0;
}
/*
* Build SGL describing empty payload.
*/
static int
nvme_rdma_build_null_request(struct nvme_request *req)
{
struct spdk_nvme_sgl_descriptor *nvme_sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
nvme_sgl = &req->cmd.dptr.sgl1;
nvme_sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
nvme_sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
nvme_sgl->keyed.length = 0;
nvme_sgl->keyed.key = 0;
nvme_sgl->address = 0;
return 0;
}
/*
* Build SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, struct nvme_request *req)
{
void *payload = req->payload.u.contig + req->payload_offset;
struct ibv_mr *mr;
assert(req->payload_size != 0);
assert(req->payload.type == NVME_PAYLOAD_TYPE_CONTIG);
mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload);
if (mr == NULL) {
return -1;
}
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = req->payload_size;
req->cmd.dptr.sgl1.keyed.key = mr->rkey;
req->cmd.dptr.sgl1.address = (uint64_t)payload;
return 0;
}
/*
* Build SGL describing scattered payload buffer.
*/
static int
nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, struct nvme_request *req)
{
int rc;
void *virt_addr;
struct ibv_mr *mr;
uint32_t length;
assert(req->payload_size != 0);
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
assert(req->payload.u.sgl.next_sge_fn != NULL);
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
/* TODO: for now, we only support a single SGL entry */
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length);
if (rc) {
return -1;
}
if (length < req->payload_size) {
SPDK_ERRLOG("multi-element SGL currently not supported for RDMA\n");
return -1;
}
mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr);
if (mr == NULL) {
return -1;
}
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = req->payload_size;
req->cmd.dptr.sgl1.keyed.key = mr->rkey;
req->cmd.dptr.sgl1.address = (uint64_t)virt_addr;
return 0;
}
static int
nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
struct spdk_nvme_rdma_req *rdma_req)
{
int rc;
rdma_req->req = req;
req->cmd.cid = rdma_req->id;
if (req->payload_size == 0) {
rc = nvme_rdma_build_null_request(req);
} else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) {
rc = nvme_rdma_build_contig_request(rqpair, req);
} else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) {
rc = nvme_rdma_build_sgl_request(rqpair, req);
} else {
rc = -1;
}
if (rc) {
return rc;
}
memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
return 0;
}
static int
nvme_rdma_fabric_prop_set_cmd(struct spdk_nvme_ctrlr *ctrlr,
uint32_t offset, uint8_t size, uint64_t value)
{
struct spdk_nvmf_fabric_prop_set_cmd cmd = {};
struct nvme_completion_poll_status status = {};
int rc;
cmd.opcode = SPDK_NVME_OPC_FABRIC;
cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET;
cmd.ofst = offset;
cmd.attrib.size = size;
cmd.value.u64 = value;
rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, (struct spdk_nvme_cmd *)&cmd,
NULL, 0,
nvme_completion_poll_cb, &status);
if (rc < 0) {
SPDK_ERRLOG("failed to send nvmf_fabric_prop_set_cmd\n");
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_rdma_fabric_prop_get_cmd failed\n");
return -1;
}
return 0;
}
static int
nvme_rdma_fabric_prop_get_cmd(struct spdk_nvme_ctrlr *ctrlr,
uint32_t offset, uint8_t size, uint64_t *value)
{
struct spdk_nvmf_fabric_prop_set_cmd cmd = {};
struct nvme_completion_poll_status status = {};
struct spdk_nvmf_fabric_prop_get_rsp *response;
int rc;
cmd.opcode = SPDK_NVME_OPC_FABRIC;
cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET;
cmd.ofst = offset;
cmd.attrib.size = size;
rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, (struct spdk_nvme_cmd *)&cmd,
NULL, 0, nvme_completion_poll_cb,
&status);
if (rc < 0) {
SPDK_ERRLOG("failed to send nvme_rdma_fabric_prop_get_cmd\n");
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_rdma_fabric_prop_get_cmd failed\n");
return -1;
}
response = (struct spdk_nvmf_fabric_prop_get_rsp *)&status.cpl;
if (!size) {
*value = response->value.u32.low;
} else {
*value = response->value.u64;
}
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, uint32_t qsize,
enum spdk_nvme_qprio qprio,
uint32_t num_requests)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_qpair *qpair;
int rc;
rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
if (!rqpair) {
SPDK_ERRLOG("failed to get create rqpair\n");
return NULL;
}
rqpair->num_entries = qsize;
qpair = &rqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
if (rc != 0) {
return NULL;
}
rc = nvme_rdma_qpair_connect(rqpair);
if (rc < 0) {
nvme_rdma_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
static int
nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair;
if (!qpair) {
return -1;
}
rqpair = nvme_rdma_qpair(qpair);
nvme_rdma_unregister_mem(rqpair);
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free_rsps(rqpair);
if (rqpair->cm_id) {
if (rqpair->cm_id->qp) {
rdma_destroy_qp(rqpair->cm_id);
}
rdma_destroy_id(rqpair->cm_id);
}
if (rqpair->cq) {
ibv_destroy_cq(rqpair->cq);
}
if (rqpair->cm_channel) {
rdma_destroy_event_channel(rqpair->cm_channel);
}
free(rqpair);
return 0;
}
struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
opts->io_queue_requests);
}
int
nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
/* do nothing here */
return 0;
}
static int
nvme_fabrics_get_log_discovery_page(struct spdk_nvme_ctrlr *ctrlr,
void *log_page, uint32_t size, uint64_t offset)
{
struct nvme_completion_poll_status status;
int rc;
status.done = false;
rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_DISCOVERY, 0, log_page, size, offset,
nvme_completion_poll_cb, &status);
if (rc < 0) {
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
return -1;
}
return 0;
}
static void
nvme_rdma_discovery_probe(struct spdk_nvmf_discovery_log_page_entry *entry,
void *cb_ctx, spdk_nvme_probe_cb probe_cb)
{
struct spdk_nvme_transport_id trid;
uint8_t *end;
size_t len;
memset(&trid, 0, sizeof(trid));
if (entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
SPDK_WARNLOG("Skipping unsupported discovery service referral\n");
return;
} else if (entry->subtype != SPDK_NVMF_SUBTYPE_NVME) {
SPDK_WARNLOG("Skipping unknown subtype %u\n", entry->subtype);
return;
}
trid.trtype = entry->trtype;
if (!spdk_nvme_transport_available(trid.trtype)) {
SPDK_WARNLOG("NVMe transport type %u not available; skipping probe\n",
trid.trtype);
return;
}
trid.adrfam = entry->adrfam;
/* Ensure that subnqn is null terminated. */
end = memchr(entry->subnqn, '\0', SPDK_NVMF_NQN_MAX_LEN + 1);
if (!end) {
SPDK_ERRLOG("Discovery entry SUBNQN is not null terminated\n");
return;
}
len = end - entry->subnqn;
memcpy(trid.subnqn, entry->subnqn, len);
trid.subnqn[len] = '\0';
/* Convert traddr to a null terminated string. */
len = spdk_strlen_pad(entry->traddr, sizeof(entry->traddr), ' ');
memcpy(trid.traddr, entry->traddr, len);
if (spdk_str_chomp(trid.traddr) != 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Trailing newlines removed from discovery TRADDR\n");
}
/* Convert trsvcid to a null terminated string. */
len = spdk_strlen_pad(entry->trsvcid, sizeof(entry->trsvcid), ' ');
memcpy(trid.trsvcid, entry->trsvcid, len);
if (spdk_str_chomp(trid.trsvcid) != 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Trailing newlines removed from discovery TRSVCID\n");
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "subnqn=%s, trtype=%u, traddr=%s, trsvcid=%s\n",
trid.subnqn, trid.trtype,
trid.traddr, trid.trsvcid);
nvme_ctrlr_probe(&trid, NULL, probe_cb, cb_ctx);
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_rdma_ctrlr_scan(const struct spdk_nvme_transport_id *discovery_trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb,
bool direct_connect)
{
struct spdk_nvme_ctrlr_opts discovery_opts;
struct spdk_nvme_ctrlr *discovery_ctrlr;
struct spdk_nvmf_discovery_log_page *log_page;
struct spdk_nvmf_discovery_log_page_entry *log_page_entry;
union spdk_nvme_cc_register cc;
char buffer[4096];
int rc;
uint64_t i, numrec, buffer_max_entries_first, buffer_max_entries, log_page_offset = 0;
uint64_t remaining_num_rec = 0;
uint16_t recfmt;
struct nvme_completion_poll_status status;
if (strcmp(discovery_trid->subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) {
/* It is not a discovery_ctrlr info and try to directly connect it */
rc = nvme_ctrlr_probe(discovery_trid, NULL, probe_cb, cb_ctx);
return rc;
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts));
/* For discovery_ctrlr set the timeout to 0 */
discovery_opts.keep_alive_timeout_ms = 0;
memset(buffer, 0x0, 4096);
discovery_ctrlr = nvme_rdma_ctrlr_construct(discovery_trid, &discovery_opts, NULL);
if (discovery_ctrlr == NULL) {
return -1;
}
/* TODO: this should be using the normal NVMe controller initialization process */
cc.raw = 0;
cc.bits.en = 1;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
cc.raw);
if (rc < 0) {
SPDK_ERRLOG("Failed to set cc\n");
nvme_ctrlr_destruct(discovery_ctrlr);
return -1;
}
/* get the cdata info */
status.done = false;
rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0,
&discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata),
nvme_completion_poll_cb, &status);
if (rc != 0) {
SPDK_ERRLOG("Failed to identify cdata\n");
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(discovery_ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_identify_controller failed!\n");
return -ENXIO;
}
/* Direct attach through spdk_nvme_connect() API */
if (direct_connect == true) {
/* Set the ready state to skip the normal init process */
discovery_ctrlr->state = NVME_CTRLR_STATE_READY;
nvme_ctrlr_connected(discovery_ctrlr);
nvme_ctrlr_add_process(discovery_ctrlr, 0);
return 0;
}
buffer_max_entries_first = (sizeof(buffer) - offsetof(struct spdk_nvmf_discovery_log_page,
entries[0])) /
sizeof(struct spdk_nvmf_discovery_log_page_entry);
buffer_max_entries = sizeof(buffer) / sizeof(struct spdk_nvmf_discovery_log_page_entry);
do {
rc = nvme_fabrics_get_log_discovery_page(discovery_ctrlr, buffer, sizeof(buffer), log_page_offset);
if (rc < 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "nvme_fabrics_get_log_discovery_page error\n");
nvme_ctrlr_destruct(discovery_ctrlr);
return rc;
}
if (!remaining_num_rec) {
log_page = (struct spdk_nvmf_discovery_log_page *)buffer;
recfmt = from_le16(&log_page->recfmt);
if (recfmt != 0) {
SPDK_ERRLOG("Unrecognized discovery log record format %" PRIu16 "\n", recfmt);
nvme_ctrlr_destruct(discovery_ctrlr);
return -EPROTO;
}
remaining_num_rec = log_page->numrec;
log_page_offset = offsetof(struct spdk_nvmf_discovery_log_page, entries[0]);
log_page_entry = &log_page->entries[0];
numrec = spdk_min(remaining_num_rec, buffer_max_entries_first);
} else {
numrec = spdk_min(remaining_num_rec, buffer_max_entries);
log_page_entry = (struct spdk_nvmf_discovery_log_page_entry *)buffer;
}
for (i = 0; i < numrec; i++) {
nvme_rdma_discovery_probe(log_page_entry++, cb_ctx, probe_cb);
}
remaining_num_rec -= numrec;
log_page_offset += numrec * sizeof(struct spdk_nvmf_discovery_log_page_entry);
} while (remaining_num_rec != 0);
nvme_ctrlr_destruct(discovery_ctrlr);
return 0;
}
struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_rdma_ctrlr *rctrlr;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
int rc;
rctrlr = calloc(1, sizeof(struct nvme_rdma_ctrlr));
if (rctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
rctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
rctrlr->ctrlr.opts = *opts;
memcpy(&rctrlr->ctrlr.trid, trid, sizeof(rctrlr->ctrlr.trid));
rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
if (rc != 0) {
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES);
if (!rctrlr->ctrlr.adminq) {
SPDK_ERRLOG("failed to create admin qpair\n");
return NULL;
}
if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
SPDK_ERRLOG("get_vs() failed\n");
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "succesully initialized the nvmf ctrlr\n");
return &rctrlr->ctrlr;
}
int
nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
if (ctrlr->adminq) {
nvme_rdma_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
free(rctrlr);
return 0;
}
int
nvme_rdma_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
return nvme_rdma_fabric_prop_set_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_4, value);
}
int
nvme_rdma_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
return nvme_rdma_fabric_prop_set_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_8, value);
}
int
nvme_rdma_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
uint64_t tmp_value;
int rc;
rc = nvme_rdma_fabric_prop_get_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_4, &tmp_value);
if (!rc) {
*value = (uint32_t)tmp_value;
}
return rc;
}
int
nvme_rdma_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
return nvme_rdma_fabric_prop_get_cmd(ctrlr, offset, SPDK_NVMF_PROP_SIZE_8, value);
}
int
nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct ibv_send_wr *wr, *bad_wr = NULL;
int rc;
rqpair = nvme_rdma_qpair(qpair);
assert(rqpair != NULL);
assert(req != NULL);
rdma_req = nvme_rdma_req_get(rqpair);
if (!rdma_req) {
/*
* No rdma_req is available. Queue the request to be processed later.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
return 0;
}
if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
nvme_rdma_req_put(rqpair, rdma_req);
return -1;
}
wr = &rdma_req->send_wr;
nvme_rdma_trace_ibv_sge(wr->sg_list);
rc = ibv_post_send(rqpair->cm_id->qp, wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma send for NVMf completion: %d (%s)\n", rc, spdk_strerror(rc));
}
return rc;
}
int
nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return nvme_rdma_qpair_destroy(qpair);
}
int
nvme_rdma_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return nvme_rdma_qpair_connect(nvme_rdma_qpair(qpair));
}
int
nvme_rdma_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_disable(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_fail(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
#define MAX_COMPLETIONS_PER_POLL 128
int
nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
int i, rc, batch_size;
uint32_t reaped;
struct ibv_cq *cq;
if (max_completions == 0) {
max_completions = rqpair->num_entries;
} else {
max_completions = spdk_min(max_completions, rqpair->num_entries);
}
cq = rqpair->cq;
reaped = 0;
do {
batch_size = spdk_min((max_completions - reaped),
MAX_COMPLETIONS_PER_POLL);
rc = ibv_poll_cq(cq, batch_size, wc);
if (rc < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -1;
} else if (rc == 0) {
/* Ran out of completions */
break;
}
for (i = 0; i < rc; i++) {
if (wc[i].status) {
SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
qpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
return -1;
}
switch (wc[i].opcode) {
case IBV_WC_RECV:
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n");
reaped++;
if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
return -1;
}
if (nvme_rdma_recv(rqpair, wc[i].wr_id)) {
SPDK_ERRLOG("nvme_rdma_recv processing failure\n");
return -1;
}
break;
case IBV_WC_SEND:
break;
default:
SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", wc[i].opcode);
return -1;
}
}
} while (reaped < max_completions);
return reaped;
}
uint32_t
nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/* Todo, which should get from the NVMF target */
return NVME_RDMA_RW_BUFFER_SIZE;
}
uint16_t
nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
/*
* We do not support >1 SGE in the initiator currently,
* so we can only return 1 here. Once that support is
* added, this should return ctrlr->cdata.nvmf_specific.msdbd
* instead.
*/
return 1;
}
void *
nvme_rdma_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
{
return NULL;
}
int
nvme_rdma_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
{
return 0;
}