numam-spdk/lib/nvme/nvme_pcie.c
Ziye Yang 31bf5d795e nvme: make timeout function per process
Change-Id: I6e58baaeb09580b5f70e1acf5323376ca0b26bbf
Signed-off-by: Ziye Yang <optimistyzy@gmail.com>
Reviewed-on: https://review.gerrithub.io/407382
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2018-04-13 12:30:51 -04:00

2132 lines
56 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* Copyright (c) 2017, IBM Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over PCIe transport
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "nvme_internal.h"
#include "nvme_uevent.h"
/*
* Number of completion queue entries to process before ringing the
* completion queue doorbell.
*/
#define NVME_MIN_COMPLETIONS (1)
#define NVME_MAX_COMPLETIONS (128)
#define NVME_ADMIN_ENTRIES (128)
/*
* NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
* segment.
*/
#define NVME_MAX_SGL_DESCRIPTORS (253)
#define NVME_MAX_PRP_LIST_ENTRIES (506)
struct nvme_pcie_enum_ctx {
spdk_nvme_probe_cb probe_cb;
void *cb_ctx;
struct spdk_pci_addr pci_addr;
bool has_pci_addr;
};
/* PCIe transport extensions for spdk_nvme_ctrlr */
struct nvme_pcie_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
/** NVMe MMIO register space */
volatile struct spdk_nvme_registers *regs;
/** NVMe MMIO register size */
uint64_t regs_size;
/* BAR mapping address which contains controller memory buffer */
void *cmb_bar_virt_addr;
/* BAR physical address which contains controller memory buffer */
uint64_t cmb_bar_phys_addr;
/* Controller memory buffer size in Bytes */
uint64_t cmb_size;
/* Current offset of controller memory buffer, relative to start of BAR virt addr */
uint64_t cmb_current_offset;
/* Last valid offset into CMB, this differs if CMB memory registration occurs or not */
uint64_t cmb_max_offset;
void *cmb_mem_register_addr;
size_t cmb_mem_register_size;
bool cmb_io_data_supported;
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
uint32_t doorbell_stride_u32;
/* Opaque handle to associated PCI device. */
struct spdk_pci_device *devhandle;
/* File descriptor returned from spdk_pci_device_claim(). Closed when ctrlr is detached. */
int claim_fd;
/* Flag to indicate the MMIO register has been remapped */
bool is_remapped;
};
struct nvme_tracker {
TAILQ_ENTRY(nvme_tracker) tq_list;
struct nvme_request *req;
uint16_t cid;
uint16_t rsvd1: 14;
uint16_t timed_out: 1;
uint16_t active: 1;
uint32_t rsvd2;
/* The value of spdk_get_ticks() when the tracker was submitted to the hardware. */
uint64_t submit_tick;
uint64_t prp_sgl_bus_addr;
union {
uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
} u;
};
/*
* struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
* and so that there is no padding required to meet alignment requirements.
*/
SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
/* PCIe transport extensions for spdk_nvme_qpair */
struct nvme_pcie_qpair {
/* Submission queue tail doorbell */
volatile uint32_t *sq_tdbl;
/* Completion queue head doorbell */
volatile uint32_t *cq_hdbl;
/* Submission queue shadow tail doorbell */
volatile uint32_t *sq_shadow_tdbl;
/* Completion queue shadow head doorbell */
volatile uint32_t *cq_shadow_hdbl;
/* Submission queue event index */
volatile uint32_t *sq_eventidx;
/* Completion queue event index */
volatile uint32_t *cq_eventidx;
/* Submission queue */
struct spdk_nvme_cmd *cmd;
/* Completion queue */
struct spdk_nvme_cpl *cpl;
TAILQ_HEAD(, nvme_tracker) free_tr;
TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
/* Array of trackers indexed by command ID. */
struct nvme_tracker *tr;
uint16_t num_entries;
uint16_t max_completions_cap;
uint16_t sq_tail;
uint16_t cq_head;
uint16_t sq_head;
uint8_t phase;
bool is_enabled;
/*
* Base qpair structure.
* This is located after the hot data in this structure so that the important parts of
* nvme_pcie_qpair are in the same cache line.
*/
struct spdk_nvme_qpair qpair;
/*
* Fields below this point should not be touched on the normal I/O path.
*/
bool sq_in_cmb;
uint64_t cmd_bus_addr;
uint64_t cpl_bus_addr;
};
static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx,
struct spdk_pci_addr *pci_addr);
static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair);
static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
static volatile uint16_t g_signal_lock;
static bool g_sigset = false;
static int hotplug_fd = -1;
static void
nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
{
void *map_address;
if (!__sync_bool_compare_and_swap(&g_signal_lock, 0, 1)) {
return;
}
assert(g_thread_mmio_ctrlr != NULL);
if (!g_thread_mmio_ctrlr->is_remapped) {
map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (map_address == MAP_FAILED) {
SPDK_ERRLOG("mmap failed\n");
g_signal_lock = 0;
return;
}
memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
g_thread_mmio_ctrlr->is_remapped = true;
}
g_signal_lock = 0;
return;
}
static void
nvme_pcie_ctrlr_setup_signal(void)
{
struct sigaction sa;
sa.sa_sigaction = nvme_sigbus_fault_sighandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
sigaction(SIGBUS, &sa, NULL);
}
static int
_nvme_pcie_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb)
{
struct spdk_nvme_ctrlr *ctrlr, *tmp;
struct spdk_uevent event;
struct spdk_pci_addr pci_addr;
union spdk_nvme_csts_register csts;
while (spdk_get_uevent(hotplug_fd, &event) > 0) {
if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
if (event.action == SPDK_NVME_UEVENT_ADD) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
event.traddr);
if (spdk_process_is_primary()) {
if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
nvme_pcie_ctrlr_attach(probe_cb, cb_ctx, &pci_addr);
}
}
} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
struct spdk_nvme_transport_id trid;
memset(&trid, 0, sizeof(trid));
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
if (ctrlr == NULL) {
return 0;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
event.traddr);
nvme_ctrlr_fail(ctrlr, true);
/* get the user app to clean up and stop I/O */
if (remove_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
remove_cb(cb_ctx, ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
}
/* This is a work around for vfio-attached device hot remove detection. */
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.raw == 0xffffffffU) {
nvme_ctrlr_fail(ctrlr, true);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
remove_cb(cb_ctx, ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
return 0;
}
static inline struct nvme_pcie_ctrlr *
nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
return (struct nvme_pcie_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_pcie_ctrlr, ctrlr));
}
static inline struct nvme_pcie_qpair *
nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
return (struct nvme_pcie_qpair *)((uintptr_t)qpair - offsetof(struct nvme_pcie_qpair, qpair));
}
static volatile void *
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
}
int
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
g_thread_mmio_ctrlr = NULL;
return 0;
}
int
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
g_thread_mmio_ctrlr = NULL;
return 0;
}
int
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
assert(value != NULL);
g_thread_mmio_ctrlr = pctrlr;
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
g_thread_mmio_ctrlr = NULL;
if (~(*value) == 0) {
return -1;
}
return 0;
}
int
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
assert(value != NULL);
g_thread_mmio_ctrlr = pctrlr;
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
g_thread_mmio_ctrlr = NULL;
if (~(*value) == 0) {
return -1;
}
return 0;
}
static int
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
value);
}
static int
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
value);
}
static int
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
{
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
aqa->raw);
}
static int
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
&cmbloc->raw);
}
static int
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
&cmbsz->raw);
}
uint32_t
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/*
* For commands requiring more than 2 PRP entries, one PRP will be
* embedded in the command (prp1), and the rest of the PRP entries
* will be in a list pointed to by the command (prp2). This means
* that real max number of PRP entries we support is 506+1, which
* results in a max xfer size of 506*ctrlr->page_size.
*/
return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
}
uint16_t
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_MAX_SGL_DESCRIPTORS;
}
static void
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr;
uint32_t bir;
union spdk_nvme_cmbsz_register cmbsz;
union spdk_nvme_cmbloc_register cmbloc;
uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
uint64_t mem_register_start, mem_register_end;
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get registers failed\n");
goto exit;
}
if (!cmbsz.bits.sz) {
goto exit;
}
bir = cmbloc.bits.bir;
/* Values 0 2 3 4 5 are valid for BAR */
if (bir > 5 || bir == 1) {
goto exit;
}
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
/* controller memory buffer size in Bytes */
size = unit_size * cmbsz.bits.sz;
/* controller memory buffer offset from BAR in Bytes */
offset = unit_size * cmbloc.bits.ofst;
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
&bar_phys_addr, &bar_size);
if ((rc != 0) || addr == NULL) {
goto exit;
}
if (offset > bar_size) {
goto exit;
}
if (size > bar_size - offset) {
goto exit;
}
pctrlr->cmb_bar_virt_addr = addr;
pctrlr->cmb_bar_phys_addr = bar_phys_addr;
pctrlr->cmb_size = size;
pctrlr->cmb_current_offset = offset;
pctrlr->cmb_max_offset = offset + size;
if (!cmbsz.bits.sqs) {
pctrlr->ctrlr.opts.use_cmb_sqs = false;
}
/* If only SQS is supported use legacy mapping */
if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) {
return;
}
/* If CMB is less than 4MiB in size then abort CMB mapping */
if (pctrlr->cmb_size < (1ULL << 22)) {
goto exit;
}
mem_register_start = (((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + 0x1fffff) & ~(0x200000 - 1));
mem_register_end = ((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size);
mem_register_end &= ~(uint64_t)(0x200000 - 1);
pctrlr->cmb_mem_register_addr = (void *)mem_register_start;
pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start;
rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
if (rc) {
SPDK_ERRLOG("spdk_mem_register() failed\n");
goto exit;
}
pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr);
pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr);
pctrlr->cmb_io_data_supported = true;
return;
exit:
pctrlr->cmb_bar_virt_addr = NULL;
pctrlr->ctrlr.opts.use_cmb_sqs = false;
return;
}
static int
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
union spdk_nvme_cmbloc_register cmbloc;
void *addr = pctrlr->cmb_bar_virt_addr;
if (addr) {
if (pctrlr->cmb_mem_register_addr) {
spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
}
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get_cmbloc() failed\n");
return -EIO;
}
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
}
return rc;
}
static int
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
uint64_t *offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
uint64_t round_offset;
round_offset = pctrlr->cmb_current_offset;
round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
/* CMB may only consume part of the BAR, calculate accordingly */
if (round_offset + length > pctrlr->cmb_max_offset) {
SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
return -1;
}
*offset = round_offset;
pctrlr->cmb_current_offset = round_offset + length;
return 0;
}
void *
nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
uint64_t offset;
if (pctrlr->cmb_bar_virt_addr == NULL) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
return NULL;
}
if (!pctrlr->cmb_io_data_supported) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n");
return NULL;
}
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size);
return NULL;
}
return pctrlr->cmb_bar_virt_addr + offset;
}
int
nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
{
/*
* Do nothing for now.
* TODO: Track free space so buffers may be reused.
*/
SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n",
__func__);
return 0;
}
static int
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr;
uint64_t phys_addr, size;
rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
&phys_addr, &size);
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
if ((pctrlr->regs == NULL) || (rc != 0)) {
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
rc, pctrlr->regs);
return -1;
}
pctrlr->regs_size = size;
nvme_pcie_ctrlr_map_cmb(pctrlr);
return 0;
}
static int
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
void *addr = (void *)pctrlr->regs;
if (pctrlr->ctrlr.is_removed) {
return rc;
}
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
if (rc != 0) {
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
return -1;
}
if (addr) {
/* NOTE: addr may have been remapped here. We're relying on DPDK to call
* munmap internally.
*/
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
}
return rc;
}
static int
nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_qpair *pqpair;
int rc;
pqpair = spdk_dma_zmalloc(sizeof(*pqpair), 64, NULL);
if (pqpair == NULL) {
return -ENOMEM;
}
pqpair->num_entries = NVME_ADMIN_ENTRIES;
ctrlr->adminq = &pqpair->qpair;
rc = nvme_qpair_init(ctrlr->adminq,
0, /* qpair ID */
ctrlr,
SPDK_NVME_QPRIO_URGENT,
NVME_ADMIN_ENTRIES);
if (rc != 0) {
return rc;
}
return nvme_pcie_qpair_construct(ctrlr->adminq);
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct spdk_nvme_transport_id trid = {};
struct nvme_pcie_enum_ctx *enum_ctx = ctx;
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_pci_addr pci_addr;
pci_addr = spdk_pci_device_get_addr(pci_dev);
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
/* Verify that this controller is not already attached */
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
if (ctrlr) {
if (spdk_process_is_primary()) {
/* Already attached */
return 0;
} else {
return nvme_ctrlr_add_process(ctrlr, pci_dev);
}
}
/* check whether user passes the pci_addr */
if (enum_ctx->has_pci_addr &&
(spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
return 1;
}
return nvme_ctrlr_probe(&trid, pci_dev,
enum_ctx->probe_cb, enum_ctx->cb_ctx);
}
int
nvme_pcie_ctrlr_scan(const struct spdk_nvme_transport_id *trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb,
bool direct_connect)
{
struct nvme_pcie_enum_ctx enum_ctx = {};
enum_ctx.probe_cb = probe_cb;
enum_ctx.cb_ctx = cb_ctx;
if (strlen(trid->traddr) != 0) {
if (spdk_pci_addr_parse(&enum_ctx.pci_addr, trid->traddr)) {
return -1;
}
enum_ctx.has_pci_addr = true;
}
if (hotplug_fd < 0) {
hotplug_fd = spdk_uevent_connect();
if (hotplug_fd < 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
}
} else {
_nvme_pcie_hotplug_monitor(cb_ctx, probe_cb, remove_cb);
}
if (enum_ctx.has_pci_addr == false) {
return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx);
} else {
return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
}
}
static int
nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr)
{
struct nvme_pcie_enum_ctx enum_ctx;
enum_ctx.probe_cb = probe_cb;
enum_ctx.cb_ctx = cb_ctx;
return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, pci_addr);
}
struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct spdk_pci_device *pci_dev = devhandle;
struct nvme_pcie_ctrlr *pctrlr;
union spdk_nvme_cap_register cap;
uint32_t cmd_reg;
int rc, claim_fd;
struct spdk_pci_id pci_id;
struct spdk_pci_addr pci_addr;
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
SPDK_ERRLOG("could not parse pci address\n");
return NULL;
}
claim_fd = spdk_pci_device_claim(&pci_addr);
if (claim_fd < 0) {
SPDK_ERRLOG("could not claim device %s\n", trid->traddr);
return NULL;
}
pctrlr = spdk_dma_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL);
if (pctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
pctrlr->is_remapped = false;
pctrlr->ctrlr.is_removed = false;
pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
pctrlr->devhandle = devhandle;
pctrlr->ctrlr.opts = *opts;
pctrlr->claim_fd = claim_fd;
memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid));
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
if (rc != 0) {
spdk_dma_free(pctrlr);
return NULL;
}
/* Enable PCI busmaster and disable INTx */
spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
cmd_reg |= 0x404;
spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
spdk_dma_free(pctrlr);
return NULL;
}
nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap);
/* Doorbell stride is 2 ^ (dstrd + 2),
* but we want multiples of 4, so drop the + 2 */
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
pci_id = spdk_pci_device_get_id(pci_dev);
pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
/* Construct the primary process properties */
rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
if (g_sigset != true) {
nvme_pcie_ctrlr_setup_signal();
g_sigset = true;
}
return &pctrlr->ctrlr;
}
int
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
union spdk_nvme_aqa_register aqa;
if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
SPDK_ERRLOG("set_asq() failed\n");
return -EIO;
}
if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
SPDK_ERRLOG("set_acq() failed\n");
return -EIO;
}
aqa.raw = 0;
/* acqs and asqs are 0-based. */
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
SPDK_ERRLOG("set_aqa() failed\n");
return -EIO;
}
return 0;
}
int
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
close(pctrlr->claim_fd);
if (ctrlr->adminq) {
nvme_pcie_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
nvme_ctrlr_free_processes(ctrlr);
nvme_pcie_ctrlr_free_bars(pctrlr);
if (devhandle) {
spdk_pci_device_detach(devhandle);
}
spdk_dma_free(pctrlr);
return 0;
}
static void
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
{
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
tr->cid = cid;
tr->active = false;
}
int
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
pqpair->sq_tail = pqpair->cq_head = 0;
/*
* First time through the completion queue, HW will set phase
* bit on completions to 1. So set this to 1 here, indicating
* we're looking for a 1 to know which entries have completed.
* we'll toggle the bit each time when the completion queue
* rolls over.
*/
pqpair->phase = 1;
memset(pqpair->cmd, 0,
pqpair->num_entries * sizeof(struct spdk_nvme_cmd));
memset(pqpair->cpl, 0,
pqpair->num_entries * sizeof(struct spdk_nvme_cpl));
return 0;
}
static int
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
uint16_t i;
volatile uint32_t *doorbell_base;
uint64_t phys_addr = 0;
uint64_t offset;
uint16_t num_trackers;
size_t page_size = sysconf(_SC_PAGESIZE);
/*
* Limit the maximum number of completions to return per call to prevent wraparound,
* and calculate how many trackers can be submitted at once without overflowing the
* completion queue.
*/
pqpair->max_completions_cap = pqpair->num_entries / 4;
pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
pqpair->max_completions_cap, num_trackers);
assert(num_trackers != 0);
pqpair->sq_in_cmb = false;
/* cmd and cpl rings must be aligned on page size boundaries. */
if (ctrlr->opts.use_cmb_sqs) {
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
page_size, &offset) == 0) {
pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
pqpair->sq_in_cmb = true;
}
}
if (pqpair->sq_in_cmb == false) {
pqpair->cmd = spdk_dma_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
page_size,
&pqpair->cmd_bus_addr);
if (pqpair->cmd == NULL) {
SPDK_ERRLOG("alloc qpair_cmd failed\n");
return -ENOMEM;
}
}
pqpair->cpl = spdk_dma_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl),
page_size,
&pqpair->cpl_bus_addr);
if (pqpair->cpl == NULL) {
SPDK_ERRLOG("alloc qpair_cpl failed\n");
return -ENOMEM;
}
doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
/*
* Reserve space for all of the trackers in a single allocation.
* struct nvme_tracker must be padded so that its size is already a power of 2.
* This ensures the PRP list embedded in the nvme_tracker object will not span a
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
*/
pqpair->tr = spdk_dma_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), &phys_addr);
if (pqpair->tr == NULL) {
SPDK_ERRLOG("nvme_tr failed\n");
return -ENOMEM;
}
TAILQ_INIT(&pqpair->free_tr);
TAILQ_INIT(&pqpair->outstanding_tr);
for (i = 0; i < num_trackers; i++) {
tr = &pqpair->tr[i];
nvme_qpair_construct_tracker(tr, i, phys_addr);
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
phys_addr += sizeof(struct nvme_tracker);
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
static inline void
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
/* dst and src are known to be non-overlapping and 64-byte aligned. */
#if defined(__AVX__)
__m256i *d256 = (__m256i *)dst;
const __m256i *s256 = (const __m256i *)src;
_mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0]));
_mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1]));
#elif defined(__SSE2__)
__m128i *d128 = (__m128i *)dst;
const __m128i *s128 = (const __m128i *)src;
_mm_store_si128(&d128[0], _mm_load_si128(&s128[0]));
_mm_store_si128(&d128[1], _mm_load_si128(&s128[1]));
_mm_store_si128(&d128[2], _mm_load_si128(&s128[2]));
_mm_store_si128(&d128[3], _mm_load_si128(&s128[3]));
#else
*dst = *src;
#endif
}
/**
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_request *active_req = req;
struct spdk_nvme_ctrlr_process *active_proc;
bool pending_on_proc = false;
/*
* The admin request is from another process. Move to the per
* process list for that process to handle it later.
*/
assert(nvme_qpair_is_admin_queue(qpair));
assert(active_req->pid != getpid());
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
if (active_proc->pid == active_req->pid) {
/* Saved the original completion information */
memcpy(&active_req->cpl, cpl, sizeof(*cpl));
STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
pending_on_proc = true;
break;
}
}
if (pending_on_proc == false) {
SPDK_ERRLOG("The owning process (pid %d) is not found. Drop the request.\n",
active_req->pid);
nvme_free_request(active_req);
}
}
/**
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_request *req, *tmp_req;
bool proc_found = false;
pid_t pid = getpid();
struct spdk_nvme_ctrlr_process *proc;
/*
* Check whether there is any pending admin request from
* other active processes.
*/
assert(nvme_qpair_is_admin_queue(qpair));
TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
if (proc->pid == pid) {
proc_found = true;
break;
}
}
if (proc_found == false) {
SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
assert(proc_found);
}
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
assert(req->pid == pid);
if (req->cb_fn) {
req->cb_fn(req->cb_arg, &req->cpl);
}
nvme_free_request(req);
}
}
static inline int
nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
{
return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
}
static bool
nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
volatile uint32_t *shadow_db,
volatile uint32_t *eventidx)
{
uint16_t old;
if (!shadow_db) {
return true;
}
old = *shadow_db;
*shadow_db = value;
if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
return false;
}
return true;
}
static void
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
tr->timed_out = 0;
if (spdk_unlikely(qpair->active_proc && qpair->active_proc->timeout_cb_fn != NULL)) {
tr->submit_tick = spdk_get_ticks();
}
req = tr->req;
pqpair->tr[tr->cid].active = true;
/* Copy the command from the tracker to the submission queue. */
nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
if (++pqpair->sq_tail == pqpair->num_entries) {
pqpair->sq_tail = 0;
}
if (pqpair->sq_tail == pqpair->sq_head) {
SPDK_ERRLOG("sq_tail is passing sq_head!\n");
}
spdk_wmb();
g_thread_mmio_ctrlr = pctrlr;
if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair,
pqpair->sq_tail,
pqpair->sq_shadow_tdbl,
pqpair->sq_eventidx))) {
spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
}
g_thread_mmio_ctrlr = NULL;
}
static void
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
struct spdk_nvme_cpl *cpl, bool print_on_error)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_request *req;
bool retry, error, was_active;
bool req_from_current_proc = true;
req = tr->req;
assert(req != NULL);
error = spdk_nvme_cpl_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < spdk_nvme_retry_count;
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, cpl);
}
was_active = pqpair->tr[cpl->cid].active;
pqpair->tr[cpl->cid].active = false;
assert(cpl->cid == req->cmd.cid);
if (retry) {
req->retries++;
nvme_pcie_qpair_submit_tracker(qpair, tr);
} else {
if (was_active) {
/* Only check admin requests from different processes. */
if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
req_from_current_proc = false;
nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
} else {
if (req->cb_fn) {
req->cb_fn(req->cb_arg, cpl);
}
}
}
if (req_from_current_proc == true) {
nvme_free_request(req);
}
tr->req = NULL;
TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
/*
* If the controller is in the middle of resetting, don't
* try to submit queued requests here - let the reset logic
* handle that instead.
*/
if (!STAILQ_EMPTY(&qpair->queued_req) &&
!qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
}
}
static void
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
static void
nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr, *temp;
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
SPDK_ERRLOG("aborting outstanding command\n");
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
}
}
static void
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
while (tr != NULL) {
assert(tr->req != NULL);
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
false);
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
} else {
tr = TAILQ_NEXT(tr, tq_list);
}
}
}
static void
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
static int
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_pcie_admin_qpair_destroy(qpair);
}
if (pqpair->cmd && !pqpair->sq_in_cmb) {
spdk_dma_free(pqpair->cmd);
}
if (pqpair->cpl) {
spdk_dma_free(pqpair->cpl);
}
if (pqpair->tr) {
spdk_dma_free(pqpair->tr);
}
spdk_dma_free(pqpair);
return 0;
}
static void
nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/*
* Manually abort each outstanding admin command. Do not retry
* admin commands found here, since they will be left over from
* a controller reset and its likely the context in which the
* command was issued no longer applies.
*/
nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
}
static void
nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/* Manually abort each outstanding I/O. */
nvme_pcie_qpair_abort_trackers(qpair, 0);
}
int
nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
pqpair->is_enabled = true;
if (nvme_qpair_is_io_queue(qpair)) {
nvme_pcie_io_qpair_enable(qpair);
} else {
nvme_pcie_admin_qpair_enable(qpair);
}
return 0;
}
static void
nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
static void
nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair)
{
}
int
nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
pqpair->is_enabled = false;
if (nvme_qpair_is_io_queue(qpair)) {
nvme_pcie_io_qpair_disable(qpair);
} else {
nvme_pcie_admin_qpair_disable(qpair);
}
return 0;
}
int
nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
return 0;
}
static int
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
/*
* TODO: create a create io completion queue command data
* structure.
*/
cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
/*
* 0x2 = interrupts enabled
* 0x1 = physically contiguous
*/
cmd->cdw11 = 0x1;
cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
/*
* TODO: create a create io submission queue command data
* structure.
*/
cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
/* 0x1 = physically contiguous */
cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
cmd->cdw10 = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
cmd->cdw10 = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
uint16_t qid)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_completion_poll_status status;
int rc;
status.done = false;
rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_create_io_cq failed!\n");
return -1;
}
status.done = false;
rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_create_io_sq failed!\n");
/* Attempt to delete the completion queue */
status.done = false;
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return -1;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
return -1;
}
if (ctrlr->shadow_doorbell) {
pqpair->sq_shadow_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_shadow_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
pqpair->sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
struct spdk_nvme_qpair *
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
struct nvme_pcie_qpair *pqpair;
struct spdk_nvme_qpair *qpair;
int rc;
assert(ctrlr != NULL);
pqpair = spdk_dma_zmalloc(sizeof(*pqpair), 64, NULL);
if (pqpair == NULL) {
return NULL;
}
pqpair->num_entries = opts->io_queue_size;
qpair = &pqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
if (rc != 0) {
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
rc = nvme_pcie_qpair_construct(qpair);
if (rc != 0) {
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid);
if (rc != 0) {
SPDK_ERRLOG("I/O queue creation failed\n");
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
int
nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
}
int
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_completion_poll_status status;
int rc;
assert(ctrlr != NULL);
if (ctrlr->is_removed) {
goto free;
}
/* Delete the I/O submission queue */
status.done = false;
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
return -1;
}
if (qpair->no_deletion_notification_needed == 0) {
/* Complete any I/O in the completion queue */
nvme_pcie_qpair_process_completions(qpair, 0);
/* Abort the rest of the I/O */
nvme_pcie_qpair_abort_trackers(qpair, 1);
}
/* Delete the completion queue */
status.done = false;
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
return -1;
}
free:
nvme_pcie_qpair_destroy(qpair);
return 0;
}
static void
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
/*
* Bad vtophys translation, so abort this request and return
* immediately.
*/
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_INVALID_FIELD,
1 /* do not retry */, true);
}
/*
* Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
*
* *prp_index will be updated to account for the number of PRP entries used.
*/
static int
nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
uint32_t page_size)
{
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
uintptr_t page_mask = page_size - 1;
uint64_t phys_addr;
uint32_t i;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
*prp_index, virt_addr, (uint32_t)len);
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
return -EINVAL;
}
i = *prp_index;
while (len) {
uint32_t seg_len;
/*
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
* so prp_index == count is valid.
*/
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
SPDK_ERRLOG("out of PRP entries\n");
return -EINVAL;
}
phys_addr = spdk_vtophys(virt_addr);
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
return -EINVAL;
}
if (i == 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
cmd->dptr.prp.prp1 = phys_addr;
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
} else {
if ((phys_addr & page_mask) != 0) {
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
return -EINVAL;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
tr->u.prp[i - 1] = phys_addr;
seg_len = page_size;
}
seg_len = spdk_min(seg_len, len);
virt_addr += seg_len;
len -= seg_len;
i++;
}
cmd->psdt = SPDK_NVME_PSDT_PRP;
if (i <= 1) {
cmd->dptr.prp.prp2 = 0;
} else if (i == 2) {
cmd->dptr.prp.prp2 = tr->u.prp[0];
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
} else {
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
}
*prp_index = i;
return 0;
}
/**
* Build PRP list describing physically contiguous payload buffer.
*/
static int
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
uint32_t prp_index = 0;
int rc;
rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.u.contig + req->payload_offset,
req->payload_size, qpair->ctrlr->page_size);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return rc;
}
return 0;
}
/**
* Build SGL list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
void *virt_addr;
uint64_t phys_addr;
uint32_t remaining_transfer_len, length;
struct spdk_nvme_sgl_descriptor *sgl;
uint32_t nseg = 0;
/*
* Build scattered payloads.
*/
assert(req->payload_size != 0);
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
assert(req->payload.u.sgl.next_sge_fn != NULL);
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
sgl = tr->u.sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
phys_addr = spdk_vtophys(virt_addr);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
length = spdk_min(remaining_transfer_len, length);
remaining_transfer_len -= length;
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.length = length;
sgl->address = phys_addr;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
}
if (nseg == 1) {
/*
* The whole transfer can be described by a single SGL descriptor.
* Use the special case described by the spec where SGL1's type is Data Block.
* This means the SGL in the tracker is not used at all, so copy the first (and only)
* SGL element into SGL1.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
} else {
/* For now we can only support 1 SGL segment in NVMe controller */
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
}
return 0;
}
/**
* Build PRP list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
void *virt_addr;
uint32_t remaining_transfer_len, length;
uint32_t prp_index = 0;
uint32_t page_size = qpair->ctrlr->page_size;
/*
* Build scattered payloads.
*/
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
assert(req->payload.u.sgl.next_sge_fn != NULL);
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
length = spdk_min(remaining_transfer_len, length);
/*
* Any incompatible sges should have been handled up in the splitting routine,
* but assert here as an additional check.
*
* All SGEs except last must end on a page boundary.
*/
assert((length == remaining_transfer_len) ||
_is_page_aligned((uintptr_t)virt_addr + length, page_size));
rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return rc;
}
remaining_transfer_len -= length;
}
return 0;
}
static inline bool
nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
if (!pqpair->is_enabled &&
!qpair->ctrlr->is_resetting) {
nvme_qpair_enable(qpair);
}
return pqpair->is_enabled;
}
int
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
struct nvme_tracker *tr;
int rc = 0;
void *md_payload;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
nvme_pcie_qpair_check_enabled(qpair);
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
tr = TAILQ_FIRST(&pqpair->free_tr);
if (tr == NULL || !pqpair->is_enabled) {
/*
* No tracker is available, or the qpair is disabled due to
* an in-progress controller-level reset.
*
* Put the request on the qpair's request queue to be
* processed when a tracker frees up via a command
* completion or when the controller reset is
* completed.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
goto exit;
}
TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
tr->req = req;
req->cmd.cid = tr->cid;
if (req->payload_size && req->payload.md) {
md_payload = req->payload.md + req->md_offset;
tr->req->cmd.mptr = spdk_vtophys(md_payload);
if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
rc = -EINVAL;
goto exit;
}
}
if (req->payload_size == 0) {
/* Null payload - leave PRP fields zeroed */
rc = 0;
} else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) {
rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
} else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) {
if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
} else {
rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
}
} else {
assert(0);
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
rc = -EINVAL;
}
if (rc < 0) {
goto exit;
}
nvme_pcie_qpair_submit_tracker(qpair, tr);
exit:
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return rc;
}
static void
nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct nvme_tracker *tr, *tmp;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
if (tr->timed_out) {
continue;
}
if (qpair == NULL &&
tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
continue;
}
if (tr->submit_tick + qpair->active_proc->timeout_ticks > t02) {
/* The trackers are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
tr->timed_out = 1;
qpair->active_proc->timeout_cb_fn(qpair->active_proc->timeout_cb_arg, ctrlr, qpair, tr->cid);
}
}
int32_t
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl;
uint32_t num_completions = 0;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
if (spdk_unlikely(!nvme_pcie_qpair_check_enabled(qpair))) {
/*
* qpair is not enabled, likely because a controller reset is
* is in progress. Ignore the interrupt - any I/O that was
* associated with this interrupt will get retried when the
* reset is complete.
*/
return 0;
}
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
/*
* max_completions == 0 means unlimited, but complete at most
* max_completions_cap batch of I/O at a time so that the completion
* queue doorbells don't wrap around.
*/
max_completions = pqpair->max_completions_cap;
}
while (1) {
cpl = &pqpair->cpl[pqpair->cq_head];
if (cpl->status.p != pqpair->phase) {
break;
}
#ifdef __PPC64__
/*
* This memory barrier prevents reordering of:
* - load after store from/to tr
* - load after load cpl phase and cpl cid
*/
spdk_mb();
#endif
tr = &pqpair->tr[cpl->cid];
pqpair->sq_head = cpl->sqhd;
if (tr->active) {
nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
} else {
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
nvme_qpair_print_completion(qpair, cpl);
assert(0);
}
if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
pqpair->cq_head = 0;
pqpair->phase = !pqpair->phase;
}
if (++num_completions == max_completions) {
break;
}
}
if (num_completions > 0) {
g_thread_mmio_ctrlr = pctrlr;
if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair, pqpair->cq_head,
pqpair->cq_shadow_hdbl,
pqpair->cq_eventidx))) {
spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
}
g_thread_mmio_ctrlr = NULL;
}
/* We don't want to expose the admin queue to the user,
* so when we're timing out admin commands set the
* qpair to NULL.
*/
if (!nvme_qpair_is_admin_queue(qpair) && spdk_unlikely(qpair->active_proc->timeout_cb_fn != NULL) &&
qpair->ctrlr->state == NVME_CTRLR_STATE_READY) {
/*
* User registered for timeout callback
*/
nvme_pcie_qpair_check_timeout(qpair);
}
/* Before returning, complete any pending admin request. */
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_pcie_qpair_complete_pending_admin_request(qpair);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return num_completions;
}