31bf5d795e
Change-Id: I6e58baaeb09580b5f70e1acf5323376ca0b26bbf Signed-off-by: Ziye Yang <optimistyzy@gmail.com> Reviewed-on: https://review.gerrithub.io/407382 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2132 lines
56 KiB
C
2132 lines
56 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* Copyright (c) 2017, IBM Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NVMe over PCIe transport
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/likely.h"
|
|
#include "nvme_internal.h"
|
|
#include "nvme_uevent.h"
|
|
|
|
/*
|
|
* Number of completion queue entries to process before ringing the
|
|
* completion queue doorbell.
|
|
*/
|
|
#define NVME_MIN_COMPLETIONS (1)
|
|
#define NVME_MAX_COMPLETIONS (128)
|
|
|
|
#define NVME_ADMIN_ENTRIES (128)
|
|
|
|
/*
|
|
* NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
|
|
* segment.
|
|
*/
|
|
#define NVME_MAX_SGL_DESCRIPTORS (253)
|
|
|
|
#define NVME_MAX_PRP_LIST_ENTRIES (506)
|
|
|
|
struct nvme_pcie_enum_ctx {
|
|
spdk_nvme_probe_cb probe_cb;
|
|
void *cb_ctx;
|
|
struct spdk_pci_addr pci_addr;
|
|
bool has_pci_addr;
|
|
};
|
|
|
|
/* PCIe transport extensions for spdk_nvme_ctrlr */
|
|
struct nvme_pcie_ctrlr {
|
|
struct spdk_nvme_ctrlr ctrlr;
|
|
|
|
/** NVMe MMIO register space */
|
|
volatile struct spdk_nvme_registers *regs;
|
|
|
|
/** NVMe MMIO register size */
|
|
uint64_t regs_size;
|
|
|
|
/* BAR mapping address which contains controller memory buffer */
|
|
void *cmb_bar_virt_addr;
|
|
|
|
/* BAR physical address which contains controller memory buffer */
|
|
uint64_t cmb_bar_phys_addr;
|
|
|
|
/* Controller memory buffer size in Bytes */
|
|
uint64_t cmb_size;
|
|
|
|
/* Current offset of controller memory buffer, relative to start of BAR virt addr */
|
|
uint64_t cmb_current_offset;
|
|
|
|
/* Last valid offset into CMB, this differs if CMB memory registration occurs or not */
|
|
uint64_t cmb_max_offset;
|
|
|
|
void *cmb_mem_register_addr;
|
|
size_t cmb_mem_register_size;
|
|
|
|
bool cmb_io_data_supported;
|
|
|
|
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
|
|
uint32_t doorbell_stride_u32;
|
|
|
|
/* Opaque handle to associated PCI device. */
|
|
struct spdk_pci_device *devhandle;
|
|
|
|
/* File descriptor returned from spdk_pci_device_claim(). Closed when ctrlr is detached. */
|
|
int claim_fd;
|
|
|
|
/* Flag to indicate the MMIO register has been remapped */
|
|
bool is_remapped;
|
|
};
|
|
|
|
struct nvme_tracker {
|
|
TAILQ_ENTRY(nvme_tracker) tq_list;
|
|
|
|
struct nvme_request *req;
|
|
uint16_t cid;
|
|
|
|
uint16_t rsvd1: 14;
|
|
uint16_t timed_out: 1;
|
|
uint16_t active: 1;
|
|
|
|
uint32_t rsvd2;
|
|
|
|
/* The value of spdk_get_ticks() when the tracker was submitted to the hardware. */
|
|
uint64_t submit_tick;
|
|
|
|
uint64_t prp_sgl_bus_addr;
|
|
|
|
union {
|
|
uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
|
|
struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
|
|
} u;
|
|
};
|
|
/*
|
|
* struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
|
|
* and so that there is no padding required to meet alignment requirements.
|
|
*/
|
|
SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
|
|
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
|
|
|
|
/* PCIe transport extensions for spdk_nvme_qpair */
|
|
struct nvme_pcie_qpair {
|
|
/* Submission queue tail doorbell */
|
|
volatile uint32_t *sq_tdbl;
|
|
|
|
/* Completion queue head doorbell */
|
|
volatile uint32_t *cq_hdbl;
|
|
|
|
/* Submission queue shadow tail doorbell */
|
|
volatile uint32_t *sq_shadow_tdbl;
|
|
|
|
/* Completion queue shadow head doorbell */
|
|
volatile uint32_t *cq_shadow_hdbl;
|
|
|
|
/* Submission queue event index */
|
|
volatile uint32_t *sq_eventidx;
|
|
|
|
/* Completion queue event index */
|
|
volatile uint32_t *cq_eventidx;
|
|
|
|
/* Submission queue */
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
/* Completion queue */
|
|
struct spdk_nvme_cpl *cpl;
|
|
|
|
TAILQ_HEAD(, nvme_tracker) free_tr;
|
|
TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
|
|
|
|
/* Array of trackers indexed by command ID. */
|
|
struct nvme_tracker *tr;
|
|
|
|
uint16_t num_entries;
|
|
|
|
uint16_t max_completions_cap;
|
|
|
|
uint16_t sq_tail;
|
|
uint16_t cq_head;
|
|
uint16_t sq_head;
|
|
|
|
uint8_t phase;
|
|
|
|
bool is_enabled;
|
|
|
|
/*
|
|
* Base qpair structure.
|
|
* This is located after the hot data in this structure so that the important parts of
|
|
* nvme_pcie_qpair are in the same cache line.
|
|
*/
|
|
struct spdk_nvme_qpair qpair;
|
|
|
|
/*
|
|
* Fields below this point should not be touched on the normal I/O path.
|
|
*/
|
|
|
|
bool sq_in_cmb;
|
|
|
|
uint64_t cmd_bus_addr;
|
|
uint64_t cpl_bus_addr;
|
|
};
|
|
|
|
static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx,
|
|
struct spdk_pci_addr *pci_addr);
|
|
static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair);
|
|
static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
|
|
|
|
__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
|
|
static volatile uint16_t g_signal_lock;
|
|
static bool g_sigset = false;
|
|
static int hotplug_fd = -1;
|
|
|
|
static void
|
|
nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
|
|
{
|
|
void *map_address;
|
|
|
|
if (!__sync_bool_compare_and_swap(&g_signal_lock, 0, 1)) {
|
|
return;
|
|
}
|
|
|
|
assert(g_thread_mmio_ctrlr != NULL);
|
|
|
|
if (!g_thread_mmio_ctrlr->is_remapped) {
|
|
map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
|
|
if (map_address == MAP_FAILED) {
|
|
SPDK_ERRLOG("mmap failed\n");
|
|
g_signal_lock = 0;
|
|
return;
|
|
}
|
|
memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
|
|
g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
|
|
g_thread_mmio_ctrlr->is_remapped = true;
|
|
}
|
|
g_signal_lock = 0;
|
|
return;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_setup_signal(void)
|
|
{
|
|
struct sigaction sa;
|
|
|
|
sa.sa_sigaction = nvme_sigbus_fault_sighandler;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigaction(SIGBUS, &sa, NULL);
|
|
}
|
|
|
|
static int
|
|
_nvme_pcie_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb,
|
|
spdk_nvme_remove_cb remove_cb)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr, *tmp;
|
|
struct spdk_uevent event;
|
|
struct spdk_pci_addr pci_addr;
|
|
union spdk_nvme_csts_register csts;
|
|
|
|
while (spdk_get_uevent(hotplug_fd, &event) > 0) {
|
|
if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
|
|
event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
|
|
if (event.action == SPDK_NVME_UEVENT_ADD) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
|
|
event.traddr);
|
|
if (spdk_process_is_primary()) {
|
|
if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
|
|
nvme_pcie_ctrlr_attach(probe_cb, cb_ctx, &pci_addr);
|
|
}
|
|
}
|
|
} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
|
|
struct spdk_nvme_transport_id trid;
|
|
|
|
memset(&trid, 0, sizeof(trid));
|
|
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
|
|
|
|
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
|
|
if (ctrlr == NULL) {
|
|
return 0;
|
|
}
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
|
|
event.traddr);
|
|
|
|
nvme_ctrlr_fail(ctrlr, true);
|
|
|
|
/* get the user app to clean up and stop I/O */
|
|
if (remove_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
remove_cb(cb_ctx, ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This is a work around for vfio-attached device hot remove detection. */
|
|
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
|
|
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
|
|
if (csts.raw == 0xffffffffU) {
|
|
nvme_ctrlr_fail(ctrlr, true);
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
remove_cb(cb_ctx, ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline struct nvme_pcie_ctrlr *
|
|
nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
|
|
return (struct nvme_pcie_ctrlr *)((uintptr_t)ctrlr - offsetof(struct nvme_pcie_ctrlr, ctrlr));
|
|
}
|
|
|
|
static inline struct nvme_pcie_qpair *
|
|
nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
|
|
return (struct nvme_pcie_qpair *)((uintptr_t)qpair - offsetof(struct nvme_pcie_qpair, qpair));
|
|
}
|
|
|
|
static volatile void *
|
|
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
assert(value != NULL);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
|
|
g_thread_mmio_ctrlr = NULL;
|
|
if (~(*value) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
assert(value != NULL);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
|
|
g_thread_mmio_ctrlr = NULL;
|
|
if (~(*value) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
|
|
aqa->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
|
|
&cmbloc->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
|
|
&cmbsz->raw);
|
|
}
|
|
|
|
uint32_t
|
|
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
/*
|
|
* For commands requiring more than 2 PRP entries, one PRP will be
|
|
* embedded in the command (prp1), and the rest of the PRP entries
|
|
* will be in a list pointed to by the command (prp2). This means
|
|
* that real max number of PRP entries we support is 506+1, which
|
|
* results in a max xfer size of 506*ctrlr->page_size.
|
|
*/
|
|
return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
|
|
}
|
|
|
|
uint16_t
|
|
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return NVME_MAX_SGL_DESCRIPTORS;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr;
|
|
uint32_t bir;
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
|
|
uint64_t mem_register_start, mem_register_end;
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
|
|
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
goto exit;
|
|
}
|
|
|
|
if (!cmbsz.bits.sz) {
|
|
goto exit;
|
|
}
|
|
|
|
bir = cmbloc.bits.bir;
|
|
/* Values 0 2 3 4 5 are valid for BAR */
|
|
if (bir > 5 || bir == 1) {
|
|
goto exit;
|
|
}
|
|
|
|
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
|
|
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
|
|
/* controller memory buffer size in Bytes */
|
|
size = unit_size * cmbsz.bits.sz;
|
|
/* controller memory buffer offset from BAR in Bytes */
|
|
offset = unit_size * cmbloc.bits.ofst;
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
|
|
&bar_phys_addr, &bar_size);
|
|
if ((rc != 0) || addr == NULL) {
|
|
goto exit;
|
|
}
|
|
|
|
if (offset > bar_size) {
|
|
goto exit;
|
|
}
|
|
|
|
if (size > bar_size - offset) {
|
|
goto exit;
|
|
}
|
|
|
|
pctrlr->cmb_bar_virt_addr = addr;
|
|
pctrlr->cmb_bar_phys_addr = bar_phys_addr;
|
|
pctrlr->cmb_size = size;
|
|
pctrlr->cmb_current_offset = offset;
|
|
pctrlr->cmb_max_offset = offset + size;
|
|
|
|
if (!cmbsz.bits.sqs) {
|
|
pctrlr->ctrlr.opts.use_cmb_sqs = false;
|
|
}
|
|
|
|
/* If only SQS is supported use legacy mapping */
|
|
if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) {
|
|
return;
|
|
}
|
|
|
|
/* If CMB is less than 4MiB in size then abort CMB mapping */
|
|
if (pctrlr->cmb_size < (1ULL << 22)) {
|
|
goto exit;
|
|
}
|
|
|
|
mem_register_start = (((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + 0x1fffff) & ~(0x200000 - 1));
|
|
mem_register_end = ((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size);
|
|
mem_register_end &= ~(uint64_t)(0x200000 - 1);
|
|
pctrlr->cmb_mem_register_addr = (void *)mem_register_start;
|
|
pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start;
|
|
|
|
rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
|
|
if (rc) {
|
|
SPDK_ERRLOG("spdk_mem_register() failed\n");
|
|
goto exit;
|
|
}
|
|
pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr);
|
|
pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr);
|
|
pctrlr->cmb_io_data_supported = true;
|
|
|
|
return;
|
|
exit:
|
|
pctrlr->cmb_bar_virt_addr = NULL;
|
|
pctrlr->ctrlr.opts.use_cmb_sqs = false;
|
|
return;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
void *addr = pctrlr->cmb_bar_virt_addr;
|
|
|
|
if (addr) {
|
|
if (pctrlr->cmb_mem_register_addr) {
|
|
spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get_cmbloc() failed\n");
|
|
return -EIO;
|
|
}
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
|
|
uint64_t *offset)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
uint64_t round_offset;
|
|
|
|
round_offset = pctrlr->cmb_current_offset;
|
|
round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
|
|
|
|
/* CMB may only consume part of the BAR, calculate accordingly */
|
|
if (round_offset + length > pctrlr->cmb_max_offset) {
|
|
SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
|
|
return -1;
|
|
}
|
|
|
|
*offset = round_offset;
|
|
pctrlr->cmb_current_offset = round_offset + length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *
|
|
nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
uint64_t offset;
|
|
|
|
if (pctrlr->cmb_bar_virt_addr == NULL) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!pctrlr->cmb_io_data_supported) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size);
|
|
return NULL;
|
|
}
|
|
|
|
return pctrlr->cmb_bar_virt_addr + offset;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
|
|
{
|
|
/*
|
|
* Do nothing for now.
|
|
* TODO: Track free space so buffers may be reused.
|
|
*/
|
|
SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr;
|
|
uint64_t phys_addr, size;
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
|
|
&phys_addr, &size);
|
|
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
|
|
if ((pctrlr->regs == NULL) || (rc != 0)) {
|
|
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
|
|
rc, pctrlr->regs);
|
|
return -1;
|
|
}
|
|
|
|
pctrlr->regs_size = size;
|
|
nvme_pcie_ctrlr_map_cmb(pctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
void *addr = (void *)pctrlr->regs;
|
|
|
|
if (pctrlr->ctrlr.is_removed) {
|
|
return rc;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
|
|
return -1;
|
|
}
|
|
|
|
if (addr) {
|
|
/* NOTE: addr may have been remapped here. We're relying on DPDK to call
|
|
* munmap internally.
|
|
*/
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair;
|
|
int rc;
|
|
|
|
pqpair = spdk_dma_zmalloc(sizeof(*pqpair), 64, NULL);
|
|
if (pqpair == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pqpair->num_entries = NVME_ADMIN_ENTRIES;
|
|
|
|
ctrlr->adminq = &pqpair->qpair;
|
|
|
|
rc = nvme_qpair_init(ctrlr->adminq,
|
|
0, /* qpair ID */
|
|
ctrlr,
|
|
SPDK_NVME_QPRIO_URGENT,
|
|
NVME_ADMIN_ENTRIES);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
return nvme_pcie_qpair_construct(ctrlr->adminq);
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
static int
|
|
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
|
|
{
|
|
struct spdk_nvme_transport_id trid = {};
|
|
struct nvme_pcie_enum_ctx *enum_ctx = ctx;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_pci_addr pci_addr;
|
|
|
|
pci_addr = spdk_pci_device_get_addr(pci_dev);
|
|
|
|
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
|
|
|
|
/* Verify that this controller is not already attached */
|
|
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
|
|
if (ctrlr) {
|
|
if (spdk_process_is_primary()) {
|
|
/* Already attached */
|
|
return 0;
|
|
} else {
|
|
return nvme_ctrlr_add_process(ctrlr, pci_dev);
|
|
}
|
|
}
|
|
|
|
/* check whether user passes the pci_addr */
|
|
if (enum_ctx->has_pci_addr &&
|
|
(spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
|
|
return 1;
|
|
}
|
|
|
|
return nvme_ctrlr_probe(&trid, pci_dev,
|
|
enum_ctx->probe_cb, enum_ctx->cb_ctx);
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_scan(const struct spdk_nvme_transport_id *trid,
|
|
void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb,
|
|
spdk_nvme_remove_cb remove_cb,
|
|
bool direct_connect)
|
|
{
|
|
struct nvme_pcie_enum_ctx enum_ctx = {};
|
|
|
|
enum_ctx.probe_cb = probe_cb;
|
|
enum_ctx.cb_ctx = cb_ctx;
|
|
|
|
if (strlen(trid->traddr) != 0) {
|
|
if (spdk_pci_addr_parse(&enum_ctx.pci_addr, trid->traddr)) {
|
|
return -1;
|
|
}
|
|
enum_ctx.has_pci_addr = true;
|
|
}
|
|
|
|
if (hotplug_fd < 0) {
|
|
hotplug_fd = spdk_uevent_connect();
|
|
if (hotplug_fd < 0) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
|
|
}
|
|
} else {
|
|
_nvme_pcie_hotplug_monitor(cb_ctx, probe_cb, remove_cb);
|
|
}
|
|
|
|
if (enum_ctx.has_pci_addr == false) {
|
|
return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx);
|
|
} else {
|
|
return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr)
|
|
{
|
|
struct nvme_pcie_enum_ctx enum_ctx;
|
|
|
|
enum_ctx.probe_cb = probe_cb;
|
|
enum_ctx.cb_ctx = cb_ctx;
|
|
|
|
return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, pci_addr);
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts,
|
|
void *devhandle)
|
|
{
|
|
struct spdk_pci_device *pci_dev = devhandle;
|
|
struct nvme_pcie_ctrlr *pctrlr;
|
|
union spdk_nvme_cap_register cap;
|
|
uint32_t cmd_reg;
|
|
int rc, claim_fd;
|
|
struct spdk_pci_id pci_id;
|
|
struct spdk_pci_addr pci_addr;
|
|
|
|
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
|
|
SPDK_ERRLOG("could not parse pci address\n");
|
|
return NULL;
|
|
}
|
|
|
|
claim_fd = spdk_pci_device_claim(&pci_addr);
|
|
if (claim_fd < 0) {
|
|
SPDK_ERRLOG("could not claim device %s\n", trid->traddr);
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr = spdk_dma_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL);
|
|
if (pctrlr == NULL) {
|
|
SPDK_ERRLOG("could not allocate ctrlr\n");
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr->is_remapped = false;
|
|
pctrlr->ctrlr.is_removed = false;
|
|
pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
pctrlr->devhandle = devhandle;
|
|
pctrlr->ctrlr.opts = *opts;
|
|
pctrlr->claim_fd = claim_fd;
|
|
memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid));
|
|
|
|
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
|
|
if (rc != 0) {
|
|
spdk_dma_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Enable PCI busmaster and disable INTx */
|
|
spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
|
|
cmd_reg |= 0x404;
|
|
spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
|
|
|
|
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
|
|
SPDK_ERRLOG("get_cap() failed\n");
|
|
spdk_dma_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap);
|
|
|
|
/* Doorbell stride is 2 ^ (dstrd + 2),
|
|
* but we want multiples of 4, so drop the + 2 */
|
|
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
|
|
|
|
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
pci_id = spdk_pci_device_get_id(pci_dev);
|
|
pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
|
|
|
|
rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Construct the primary process properties */
|
|
rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
if (g_sigset != true) {
|
|
nvme_pcie_ctrlr_setup_signal();
|
|
g_sigset = true;
|
|
}
|
|
|
|
return &pctrlr->ctrlr;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
|
|
union spdk_nvme_aqa_register aqa;
|
|
|
|
if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
|
|
SPDK_ERRLOG("set_asq() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
|
|
SPDK_ERRLOG("set_acq() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
aqa.raw = 0;
|
|
/* acqs and asqs are 0-based. */
|
|
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
|
|
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
|
|
|
|
if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
|
|
SPDK_ERRLOG("set_aqa() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
|
|
|
|
close(pctrlr->claim_fd);
|
|
|
|
if (ctrlr->adminq) {
|
|
nvme_pcie_qpair_destroy(ctrlr->adminq);
|
|
}
|
|
|
|
nvme_ctrlr_destruct_finish(ctrlr);
|
|
|
|
nvme_ctrlr_free_processes(ctrlr);
|
|
|
|
nvme_pcie_ctrlr_free_bars(pctrlr);
|
|
|
|
if (devhandle) {
|
|
spdk_pci_device_detach(devhandle);
|
|
}
|
|
|
|
spdk_dma_free(pctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
|
|
{
|
|
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
|
|
tr->cid = cid;
|
|
tr->active = false;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
pqpair->sq_tail = pqpair->cq_head = 0;
|
|
|
|
/*
|
|
* First time through the completion queue, HW will set phase
|
|
* bit on completions to 1. So set this to 1 here, indicating
|
|
* we're looking for a 1 to know which entries have completed.
|
|
* we'll toggle the bit each time when the completion queue
|
|
* rolls over.
|
|
*/
|
|
pqpair->phase = 1;
|
|
|
|
memset(pqpair->cmd, 0,
|
|
pqpair->num_entries * sizeof(struct spdk_nvme_cmd));
|
|
memset(pqpair->cpl, 0,
|
|
pqpair->num_entries * sizeof(struct spdk_nvme_cpl));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr;
|
|
uint16_t i;
|
|
volatile uint32_t *doorbell_base;
|
|
uint64_t phys_addr = 0;
|
|
uint64_t offset;
|
|
uint16_t num_trackers;
|
|
size_t page_size = sysconf(_SC_PAGESIZE);
|
|
|
|
/*
|
|
* Limit the maximum number of completions to return per call to prevent wraparound,
|
|
* and calculate how many trackers can be submitted at once without overflowing the
|
|
* completion queue.
|
|
*/
|
|
pqpair->max_completions_cap = pqpair->num_entries / 4;
|
|
pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
|
|
pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
|
|
num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
|
|
|
|
SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
|
|
pqpair->max_completions_cap, num_trackers);
|
|
|
|
assert(num_trackers != 0);
|
|
|
|
pqpair->sq_in_cmb = false;
|
|
|
|
/* cmd and cpl rings must be aligned on page size boundaries. */
|
|
if (ctrlr->opts.use_cmb_sqs) {
|
|
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
|
|
page_size, &offset) == 0) {
|
|
pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
|
|
pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
|
|
pqpair->sq_in_cmb = true;
|
|
}
|
|
}
|
|
if (pqpair->sq_in_cmb == false) {
|
|
pqpair->cmd = spdk_dma_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
|
|
page_size,
|
|
&pqpair->cmd_bus_addr);
|
|
if (pqpair->cmd == NULL) {
|
|
SPDK_ERRLOG("alloc qpair_cmd failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
pqpair->cpl = spdk_dma_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl),
|
|
page_size,
|
|
&pqpair->cpl_bus_addr);
|
|
if (pqpair->cpl == NULL) {
|
|
SPDK_ERRLOG("alloc qpair_cpl failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
|
|
pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
|
|
pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
|
|
|
|
/*
|
|
* Reserve space for all of the trackers in a single allocation.
|
|
* struct nvme_tracker must be padded so that its size is already a power of 2.
|
|
* This ensures the PRP list embedded in the nvme_tracker object will not span a
|
|
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
|
|
*/
|
|
pqpair->tr = spdk_dma_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), &phys_addr);
|
|
if (pqpair->tr == NULL) {
|
|
SPDK_ERRLOG("nvme_tr failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
TAILQ_INIT(&pqpair->free_tr);
|
|
TAILQ_INIT(&pqpair->outstanding_tr);
|
|
|
|
for (i = 0; i < num_trackers; i++) {
|
|
tr = &pqpair->tr[i];
|
|
nvme_qpair_construct_tracker(tr, i, phys_addr);
|
|
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
|
|
phys_addr += sizeof(struct nvme_tracker);
|
|
}
|
|
|
|
nvme_pcie_qpair_reset(qpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
|
|
{
|
|
/* dst and src are known to be non-overlapping and 64-byte aligned. */
|
|
#if defined(__AVX__)
|
|
__m256i *d256 = (__m256i *)dst;
|
|
const __m256i *s256 = (const __m256i *)src;
|
|
|
|
_mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0]));
|
|
_mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1]));
|
|
#elif defined(__SSE2__)
|
|
__m128i *d128 = (__m128i *)dst;
|
|
const __m128i *s128 = (const __m128i *)src;
|
|
|
|
_mm_store_si128(&d128[0], _mm_load_si128(&s128[0]));
|
|
_mm_store_si128(&d128[1], _mm_load_si128(&s128[1]));
|
|
_mm_store_si128(&d128[2], _mm_load_si128(&s128[2]));
|
|
_mm_store_si128(&d128[3], _mm_load_si128(&s128[3]));
|
|
#else
|
|
*dst = *src;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_request *active_req = req;
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
bool pending_on_proc = false;
|
|
|
|
/*
|
|
* The admin request is from another process. Move to the per
|
|
* process list for that process to handle it later.
|
|
*/
|
|
assert(nvme_qpair_is_admin_queue(qpair));
|
|
assert(active_req->pid != getpid());
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
if (active_proc->pid == active_req->pid) {
|
|
/* Saved the original completion information */
|
|
memcpy(&active_req->cpl, cpl, sizeof(*cpl));
|
|
STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
|
|
pending_on_proc = true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pending_on_proc == false) {
|
|
SPDK_ERRLOG("The owning process (pid %d) is not found. Drop the request.\n",
|
|
active_req->pid);
|
|
|
|
nvme_free_request(active_req);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_request *req, *tmp_req;
|
|
bool proc_found = false;
|
|
pid_t pid = getpid();
|
|
struct spdk_nvme_ctrlr_process *proc;
|
|
|
|
/*
|
|
* Check whether there is any pending admin request from
|
|
* other active processes.
|
|
*/
|
|
assert(nvme_qpair_is_admin_queue(qpair));
|
|
|
|
TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
|
|
if (proc->pid == pid) {
|
|
proc_found = true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (proc_found == false) {
|
|
SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
|
|
assert(proc_found);
|
|
}
|
|
|
|
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
|
|
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
|
|
|
|
assert(req->pid == pid);
|
|
|
|
if (req->cb_fn) {
|
|
req->cb_fn(req->cb_arg, &req->cpl);
|
|
}
|
|
|
|
nvme_free_request(req);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
|
|
{
|
|
return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
|
|
}
|
|
|
|
static bool
|
|
nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
|
|
volatile uint32_t *shadow_db,
|
|
volatile uint32_t *eventidx)
|
|
{
|
|
uint16_t old;
|
|
|
|
if (!shadow_db) {
|
|
return true;
|
|
}
|
|
|
|
old = *shadow_db;
|
|
*shadow_db = value;
|
|
|
|
if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
struct nvme_request *req;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
|
|
|
|
tr->timed_out = 0;
|
|
if (spdk_unlikely(qpair->active_proc && qpair->active_proc->timeout_cb_fn != NULL)) {
|
|
tr->submit_tick = spdk_get_ticks();
|
|
}
|
|
|
|
req = tr->req;
|
|
pqpair->tr[tr->cid].active = true;
|
|
|
|
/* Copy the command from the tracker to the submission queue. */
|
|
nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
|
|
|
|
if (++pqpair->sq_tail == pqpair->num_entries) {
|
|
pqpair->sq_tail = 0;
|
|
}
|
|
|
|
if (pqpair->sq_tail == pqpair->sq_head) {
|
|
SPDK_ERRLOG("sq_tail is passing sq_head!\n");
|
|
}
|
|
|
|
spdk_wmb();
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair,
|
|
pqpair->sq_tail,
|
|
pqpair->sq_shadow_tdbl,
|
|
pqpair->sq_eventidx))) {
|
|
spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
|
|
}
|
|
g_thread_mmio_ctrlr = NULL;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
|
|
struct spdk_nvme_cpl *cpl, bool print_on_error)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_request *req;
|
|
bool retry, error, was_active;
|
|
bool req_from_current_proc = true;
|
|
|
|
req = tr->req;
|
|
|
|
assert(req != NULL);
|
|
|
|
error = spdk_nvme_cpl_is_error(cpl);
|
|
retry = error && nvme_completion_is_retry(cpl) &&
|
|
req->retries < spdk_nvme_retry_count;
|
|
|
|
if (error && print_on_error) {
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
nvme_qpair_print_completion(qpair, cpl);
|
|
}
|
|
|
|
was_active = pqpair->tr[cpl->cid].active;
|
|
pqpair->tr[cpl->cid].active = false;
|
|
|
|
assert(cpl->cid == req->cmd.cid);
|
|
|
|
if (retry) {
|
|
req->retries++;
|
|
nvme_pcie_qpair_submit_tracker(qpair, tr);
|
|
} else {
|
|
if (was_active) {
|
|
/* Only check admin requests from different processes. */
|
|
if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
|
|
req_from_current_proc = false;
|
|
nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
|
|
} else {
|
|
if (req->cb_fn) {
|
|
req->cb_fn(req->cb_arg, cpl);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (req_from_current_proc == true) {
|
|
nvme_free_request(req);
|
|
}
|
|
|
|
tr->req = NULL;
|
|
|
|
TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
|
|
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
|
|
|
|
/*
|
|
* If the controller is in the middle of resetting, don't
|
|
* try to submit queued requests here - let the reset logic
|
|
* handle that instead.
|
|
*/
|
|
if (!STAILQ_EMPTY(&qpair->queued_req) &&
|
|
!qpair->ctrlr->is_resetting) {
|
|
req = STAILQ_FIRST(&qpair->queued_req);
|
|
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
|
|
nvme_qpair_submit_request(qpair, req);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
|
|
bool print_on_error)
|
|
{
|
|
struct spdk_nvme_cpl cpl;
|
|
|
|
memset(&cpl, 0, sizeof(cpl));
|
|
cpl.sqid = qpair->id;
|
|
cpl.cid = tr->cid;
|
|
cpl.status.sct = sct;
|
|
cpl.status.sc = sc;
|
|
cpl.status.dnr = dnr;
|
|
nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr, *temp;
|
|
|
|
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
|
|
SPDK_ERRLOG("aborting outstanding command\n");
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
|
|
SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr;
|
|
|
|
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
|
|
while (tr != NULL) {
|
|
assert(tr->req != NULL);
|
|
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
|
|
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
|
|
false);
|
|
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
|
|
} else {
|
|
tr = TAILQ_NEXT(tr, tq_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
nvme_pcie_admin_qpair_abort_aers(qpair);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
nvme_pcie_admin_qpair_destroy(qpair);
|
|
}
|
|
if (pqpair->cmd && !pqpair->sq_in_cmb) {
|
|
spdk_dma_free(pqpair->cmd);
|
|
}
|
|
if (pqpair->cpl) {
|
|
spdk_dma_free(pqpair->cpl);
|
|
}
|
|
if (pqpair->tr) {
|
|
spdk_dma_free(pqpair->tr);
|
|
}
|
|
|
|
spdk_dma_free(pqpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
/*
|
|
* Manually abort each outstanding admin command. Do not retry
|
|
* admin commands found here, since they will be left over from
|
|
* a controller reset and its likely the context in which the
|
|
* command was issued no longer applies.
|
|
*/
|
|
nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
/* Manually abort each outstanding I/O. */
|
|
nvme_pcie_qpair_abort_trackers(qpair, 0);
|
|
}
|
|
|
|
int
|
|
nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
pqpair->is_enabled = true;
|
|
if (nvme_qpair_is_io_queue(qpair)) {
|
|
nvme_pcie_io_qpair_enable(qpair);
|
|
} else {
|
|
nvme_pcie_admin_qpair_enable(qpair);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
nvme_pcie_admin_qpair_abort_aers(qpair);
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
}
|
|
|
|
int
|
|
nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
pqpair->is_enabled = false;
|
|
if (nvme_qpair_is_io_queue(qpair)) {
|
|
nvme_pcie_io_qpair_disable(qpair);
|
|
} else {
|
|
nvme_pcie_admin_qpair_disable(qpair);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
|
|
|
|
/*
|
|
* TODO: create a create io completion queue command data
|
|
* structure.
|
|
*/
|
|
cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
|
|
/*
|
|
* 0x2 = interrupts enabled
|
|
* 0x1 = physically contiguous
|
|
*/
|
|
cmd->cdw11 = 0x1;
|
|
cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
|
|
|
|
/*
|
|
* TODO: create a create io submission queue command data
|
|
* structure.
|
|
*/
|
|
cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
|
|
/* 0x1 = physically contiguous */
|
|
cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
|
|
cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
|
|
cmd->cdw10 = qpair->id;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
|
|
if (req == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
|
|
cmd->cdw10 = qpair->id;
|
|
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
|
|
uint16_t qid)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_completion_poll_status status;
|
|
int rc;
|
|
|
|
status.done = false;
|
|
rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("nvme_create_io_cq failed!\n");
|
|
return -1;
|
|
}
|
|
|
|
status.done = false;
|
|
rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("nvme_create_io_sq failed!\n");
|
|
/* Attempt to delete the completion queue */
|
|
status.done = false;
|
|
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return -1;
|
|
}
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (ctrlr->shadow_doorbell) {
|
|
pqpair->sq_shadow_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
|
|
pqpair->cq_shadow_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
|
|
pqpair->sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
|
|
pqpair->cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
|
|
}
|
|
nvme_pcie_qpair_reset(qpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_qpair *
|
|
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
|
|
const struct spdk_nvme_io_qpair_opts *opts)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair;
|
|
struct spdk_nvme_qpair *qpair;
|
|
int rc;
|
|
|
|
assert(ctrlr != NULL);
|
|
|
|
pqpair = spdk_dma_zmalloc(sizeof(*pqpair), 64, NULL);
|
|
if (pqpair == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pqpair->num_entries = opts->io_queue_size;
|
|
|
|
qpair = &pqpair->qpair;
|
|
|
|
rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
|
|
if (rc != 0) {
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_pcie_qpair_construct(qpair);
|
|
if (rc != 0) {
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return NULL;
|
|
}
|
|
|
|
rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid);
|
|
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("I/O queue creation failed\n");
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return NULL;
|
|
}
|
|
|
|
return qpair;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
|
|
}
|
|
|
|
int
|
|
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int rc;
|
|
|
|
assert(ctrlr != NULL);
|
|
|
|
if (ctrlr->is_removed) {
|
|
goto free;
|
|
}
|
|
|
|
/* Delete the I/O submission queue */
|
|
status.done = false;
|
|
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
return -1;
|
|
}
|
|
|
|
if (qpair->no_deletion_notification_needed == 0) {
|
|
/* Complete any I/O in the completion queue */
|
|
nvme_pcie_qpair_process_completions(qpair, 0);
|
|
|
|
/* Abort the rest of the I/O */
|
|
nvme_pcie_qpair_abort_trackers(qpair, 1);
|
|
}
|
|
|
|
/* Delete the completion queue */
|
|
status.done = false;
|
|
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
return -1;
|
|
}
|
|
|
|
free:
|
|
nvme_pcie_qpair_destroy(qpair);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
/*
|
|
* Bad vtophys translation, so abort this request and return
|
|
* immediately.
|
|
*/
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
|
|
SPDK_NVME_SC_INVALID_FIELD,
|
|
1 /* do not retry */, true);
|
|
}
|
|
|
|
/*
|
|
* Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
|
|
*
|
|
* *prp_index will be updated to account for the number of PRP entries used.
|
|
*/
|
|
static int
|
|
nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
|
|
uint32_t page_size)
|
|
{
|
|
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
|
|
uintptr_t page_mask = page_size - 1;
|
|
uint64_t phys_addr;
|
|
uint32_t i;
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
|
|
*prp_index, virt_addr, (uint32_t)len);
|
|
|
|
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
i = *prp_index;
|
|
while (len) {
|
|
uint32_t seg_len;
|
|
|
|
/*
|
|
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
|
|
* so prp_index == count is valid.
|
|
*/
|
|
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
|
|
SPDK_ERRLOG("out of PRP entries\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
phys_addr = spdk_vtophys(virt_addr);
|
|
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
|
|
SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (i == 0) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
|
|
cmd->dptr.prp.prp1 = phys_addr;
|
|
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
|
|
} else {
|
|
if ((phys_addr & page_mask) != 0) {
|
|
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
|
|
tr->u.prp[i - 1] = phys_addr;
|
|
seg_len = page_size;
|
|
}
|
|
|
|
seg_len = spdk_min(seg_len, len);
|
|
virt_addr += seg_len;
|
|
len -= seg_len;
|
|
i++;
|
|
}
|
|
|
|
cmd->psdt = SPDK_NVME_PSDT_PRP;
|
|
if (i <= 1) {
|
|
cmd->dptr.prp.prp2 = 0;
|
|
} else if (i == 2) {
|
|
cmd->dptr.prp.prp2 = tr->u.prp[0];
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
|
|
} else {
|
|
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
|
|
}
|
|
|
|
*prp_index = i;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Build PRP list describing physically contiguous payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr)
|
|
{
|
|
uint32_t prp_index = 0;
|
|
int rc;
|
|
|
|
rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.u.contig + req->payload_offset,
|
|
req->payload_size, qpair->ctrlr->page_size);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Build SGL list describing scattered payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr)
|
|
{
|
|
int rc;
|
|
void *virt_addr;
|
|
uint64_t phys_addr;
|
|
uint32_t remaining_transfer_len, length;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
uint32_t nseg = 0;
|
|
|
|
/*
|
|
* Build scattered payloads.
|
|
*/
|
|
assert(req->payload_size != 0);
|
|
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
|
|
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
|
|
assert(req->payload.u.sgl.next_sge_fn != NULL);
|
|
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
|
|
|
|
sgl = tr->u.sgl;
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
|
|
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
|
|
|
|
remaining_transfer_len = req->payload_size;
|
|
|
|
while (remaining_transfer_len > 0) {
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -1;
|
|
}
|
|
|
|
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -1;
|
|
}
|
|
|
|
phys_addr = spdk_vtophys(virt_addr);
|
|
if (phys_addr == SPDK_VTOPHYS_ERROR) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -1;
|
|
}
|
|
|
|
length = spdk_min(remaining_transfer_len, length);
|
|
remaining_transfer_len -= length;
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
sgl->unkeyed.length = length;
|
|
sgl->address = phys_addr;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
}
|
|
|
|
if (nseg == 1) {
|
|
/*
|
|
* The whole transfer can be described by a single SGL descriptor.
|
|
* Use the special case described by the spec where SGL1's type is Data Block.
|
|
* This means the SGL in the tracker is not used at all, so copy the first (and only)
|
|
* SGL element into SGL1.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
|
|
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
|
|
} else {
|
|
/* For now we can only support 1 SGL segment in NVMe controller */
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
|
|
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Build PRP list describing scattered payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr)
|
|
{
|
|
int rc;
|
|
void *virt_addr;
|
|
uint32_t remaining_transfer_len, length;
|
|
uint32_t prp_index = 0;
|
|
uint32_t page_size = qpair->ctrlr->page_size;
|
|
|
|
/*
|
|
* Build scattered payloads.
|
|
*/
|
|
assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL);
|
|
assert(req->payload.u.sgl.reset_sgl_fn != NULL);
|
|
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
|
|
|
|
remaining_transfer_len = req->payload_size;
|
|
while (remaining_transfer_len > 0) {
|
|
assert(req->payload.u.sgl.next_sge_fn != NULL);
|
|
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &virt_addr, &length);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -1;
|
|
}
|
|
|
|
length = spdk_min(remaining_transfer_len, length);
|
|
|
|
/*
|
|
* Any incompatible sges should have been handled up in the splitting routine,
|
|
* but assert here as an additional check.
|
|
*
|
|
* All SGEs except last must end on a page boundary.
|
|
*/
|
|
assert((length == remaining_transfer_len) ||
|
|
_is_page_aligned((uintptr_t)virt_addr + length, page_size));
|
|
|
|
rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return rc;
|
|
}
|
|
|
|
remaining_transfer_len -= length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
if (!pqpair->is_enabled &&
|
|
!qpair->ctrlr->is_resetting) {
|
|
nvme_qpair_enable(qpair);
|
|
}
|
|
return pqpair->is_enabled;
|
|
}
|
|
|
|
int
|
|
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
int rc = 0;
|
|
void *md_payload;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
|
|
nvme_pcie_qpair_check_enabled(qpair);
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
tr = TAILQ_FIRST(&pqpair->free_tr);
|
|
|
|
if (tr == NULL || !pqpair->is_enabled) {
|
|
/*
|
|
* No tracker is available, or the qpair is disabled due to
|
|
* an in-progress controller-level reset.
|
|
*
|
|
* Put the request on the qpair's request queue to be
|
|
* processed when a tracker frees up via a command
|
|
* completion or when the controller reset is
|
|
* completed.
|
|
*/
|
|
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
|
|
goto exit;
|
|
}
|
|
|
|
TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
|
|
TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
|
|
tr->req = req;
|
|
req->cmd.cid = tr->cid;
|
|
|
|
if (req->payload_size && req->payload.md) {
|
|
md_payload = req->payload.md + req->md_offset;
|
|
tr->req->cmd.mptr = spdk_vtophys(md_payload);
|
|
if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
rc = -EINVAL;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
if (req->payload_size == 0) {
|
|
/* Null payload - leave PRP fields zeroed */
|
|
rc = 0;
|
|
} else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) {
|
|
rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
|
|
} else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) {
|
|
if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
|
|
rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
|
|
} else {
|
|
rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
|
|
}
|
|
} else {
|
|
assert(0);
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
if (rc < 0) {
|
|
goto exit;
|
|
}
|
|
|
|
nvme_pcie_qpair_submit_tracker(qpair, tr);
|
|
|
|
exit:
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
uint64_t t02;
|
|
struct nvme_tracker *tr, *tmp;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
|
|
t02 = spdk_get_ticks();
|
|
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
|
|
if (tr->timed_out) {
|
|
continue;
|
|
}
|
|
|
|
if (qpair == NULL &&
|
|
tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
|
|
continue;
|
|
}
|
|
|
|
if (tr->submit_tick + qpair->active_proc->timeout_ticks > t02) {
|
|
/* The trackers are in order, so as soon as one has not timed out,
|
|
* stop iterating.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
tr->timed_out = 1;
|
|
qpair->active_proc->timeout_cb_fn(qpair->active_proc->timeout_cb_arg, ctrlr, qpair, tr->cid);
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
|
|
struct nvme_tracker *tr;
|
|
struct spdk_nvme_cpl *cpl;
|
|
uint32_t num_completions = 0;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
|
|
if (spdk_unlikely(!nvme_pcie_qpair_check_enabled(qpair))) {
|
|
/*
|
|
* qpair is not enabled, likely because a controller reset is
|
|
* is in progress. Ignore the interrupt - any I/O that was
|
|
* associated with this interrupt will get retried when the
|
|
* reset is complete.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
|
|
/*
|
|
* max_completions == 0 means unlimited, but complete at most
|
|
* max_completions_cap batch of I/O at a time so that the completion
|
|
* queue doorbells don't wrap around.
|
|
*/
|
|
max_completions = pqpair->max_completions_cap;
|
|
}
|
|
|
|
while (1) {
|
|
cpl = &pqpair->cpl[pqpair->cq_head];
|
|
|
|
if (cpl->status.p != pqpair->phase) {
|
|
break;
|
|
}
|
|
#ifdef __PPC64__
|
|
/*
|
|
* This memory barrier prevents reordering of:
|
|
* - load after store from/to tr
|
|
* - load after load cpl phase and cpl cid
|
|
*/
|
|
spdk_mb();
|
|
#endif
|
|
|
|
tr = &pqpair->tr[cpl->cid];
|
|
pqpair->sq_head = cpl->sqhd;
|
|
|
|
if (tr->active) {
|
|
nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
|
|
} else {
|
|
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
|
|
nvme_qpair_print_completion(qpair, cpl);
|
|
assert(0);
|
|
}
|
|
|
|
if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
|
|
pqpair->cq_head = 0;
|
|
pqpair->phase = !pqpair->phase;
|
|
}
|
|
|
|
if (++num_completions == max_completions) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_completions > 0) {
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair, pqpair->cq_head,
|
|
pqpair->cq_shadow_hdbl,
|
|
pqpair->cq_eventidx))) {
|
|
spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
|
|
}
|
|
g_thread_mmio_ctrlr = NULL;
|
|
}
|
|
|
|
/* We don't want to expose the admin queue to the user,
|
|
* so when we're timing out admin commands set the
|
|
* qpair to NULL.
|
|
*/
|
|
if (!nvme_qpair_is_admin_queue(qpair) && spdk_unlikely(qpair->active_proc->timeout_cb_fn != NULL) &&
|
|
qpair->ctrlr->state == NVME_CTRLR_STATE_READY) {
|
|
/*
|
|
* User registered for timeout callback
|
|
*/
|
|
nvme_pcie_qpair_check_timeout(qpair);
|
|
}
|
|
|
|
/* Before returning, complete any pending admin request. */
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_pcie_qpair_complete_pending_admin_request(qpair);
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
return num_completions;
|
|
}
|