numam-spdk/lib/nvmf/rdma.c
Seth Howell a27a377ac4 nvmf/rdma: make disconnect qp from cm event safe.
The call to update_ibv_state could result in a segfault if the other
thread had already freed the qp and was just spinning on handling the
rdma event. By not updating the qpair state here, I don't think that we
lose any information about the qpair state. Especiallyy since just a
little bit later we update the qpair state to be in error.
There is nothing in the man pages about the cm events changing the ib
state although I imagine they are closely related. I just say that
because I believe that's why the update was originally in that spot.

fixes: GitHub issue #1110

Change-Id: I3f87ff009bc2019464ed7c6920dd71e2b286b3fd
Signed-off-by: Seth Howell <seth.howell@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/477877
Community-CI: Broadcom SPDK FC-NVMe CI <spdk-ci.pdl@broadcom.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Alexey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2019-12-24 08:00:04 +00:00

4113 lines
127 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>
#include "nvmf_internal.h"
#include "transport.h"
#include "spdk/config.h"
#include "spdk/thread.h"
#include "spdk/nvmf.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/trace.h"
#include "spdk/util.h"
#include "spdk_internal/assert.h"
#include "spdk_internal/log.h"
struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
/*
RDMA Connection Resource Defaults
*/
#define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES
#define NVMF_DEFAULT_RSP_SGE 1
#define NVMF_DEFAULT_RX_SGE 2
/* The RDMA completion queue size */
#define DEFAULT_NVMF_RDMA_CQ_SIZE 4096
#define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2)
/* Timeout for destroying defunct rqpairs */
#define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000
static int g_spdk_nvmf_ibv_query_mask =
IBV_QP_STATE |
IBV_QP_PKEY_INDEX |
IBV_QP_PORT |
IBV_QP_ACCESS_FLAGS |
IBV_QP_AV |
IBV_QP_PATH_MTU |
IBV_QP_DEST_QPN |
IBV_QP_RQ_PSN |
IBV_QP_MAX_DEST_RD_ATOMIC |
IBV_QP_MIN_RNR_TIMER |
IBV_QP_SQ_PSN |
IBV_QP_TIMEOUT |
IBV_QP_RETRY_CNT |
IBV_QP_RNR_RETRY |
IBV_QP_MAX_QP_RD_ATOMIC;
enum spdk_nvmf_rdma_request_state {
/* The request is not currently in use */
RDMA_REQUEST_STATE_FREE = 0,
/* Initial state when request first received */
RDMA_REQUEST_STATE_NEW,
/* The request is queued until a data buffer is available. */
RDMA_REQUEST_STATE_NEED_BUFFER,
/* The request is waiting on RDMA queue depth availability
* to transfer data from the host to the controller.
*/
RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
/* The request is currently transferring data from the host to the controller. */
RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
/* The request is ready to execute at the block device */
RDMA_REQUEST_STATE_READY_TO_EXECUTE,
/* The request is currently executing at the block device */
RDMA_REQUEST_STATE_EXECUTING,
/* The request finished executing at the block device */
RDMA_REQUEST_STATE_EXECUTED,
/* The request is waiting on RDMA queue depth availability
* to transfer data from the controller to the host.
*/
RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
/* The request is ready to send a completion */
RDMA_REQUEST_STATE_READY_TO_COMPLETE,
/* The request is currently transferring data from the controller to the host. */
RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
/* The request currently has an outstanding completion without an
* associated data transfer.
*/
RDMA_REQUEST_STATE_COMPLETING,
/* The request completed and can be marked free. */
RDMA_REQUEST_STATE_COMPLETED,
/* Terminator */
RDMA_REQUEST_NUM_STATES,
};
#define OBJECT_NVMF_RDMA_IO 0x40
#define TRACE_GROUP_NVMF_RDMA 0x4
#define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
#define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
#define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
#define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
#define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
#define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
#define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
#define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
#define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
#define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
#define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
#define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
#define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
#define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
#define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
#define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
#define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
#define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
{
spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_TX_H2C",
TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_EXECUTING",
TRACE_RDMA_REQUEST_STATE_EXECUTING,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_EXECUTED",
TRACE_RDMA_REQUEST_STATE_EXECUTED,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_COMPLETING",
TRACE_RDMA_REQUEST_STATE_COMPLETING,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_REQ_COMPLETED",
TRACE_RDMA_REQUEST_STATE_COMPLETED,
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
OWNER_NONE, OBJECT_NONE, 0, 0, "");
spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
OWNER_NONE, OBJECT_NONE, 0, 0, "type: ");
spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
OWNER_NONE, OBJECT_NONE, 0, 0, "type: ");
spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
OWNER_NONE, OBJECT_NONE, 0, 1, "state: ");
spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
OWNER_NONE, OBJECT_NONE, 0, 0, "");
spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
OWNER_NONE, OBJECT_NONE, 0, 0, "");
}
enum spdk_nvmf_rdma_wr_type {
RDMA_WR_TYPE_RECV,
RDMA_WR_TYPE_SEND,
RDMA_WR_TYPE_DATA,
};
struct spdk_nvmf_rdma_wr {
enum spdk_nvmf_rdma_wr_type type;
};
/* This structure holds commands as they are received off the wire.
* It must be dynamically paired with a full request object
* (spdk_nvmf_rdma_request) to service a request. It is separate
* from the request because RDMA does not appear to order
* completions, so occasionally we'll get a new incoming
* command when there aren't any free request objects.
*/
struct spdk_nvmf_rdma_recv {
struct ibv_recv_wr wr;
struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE];
struct spdk_nvmf_rdma_qpair *qpair;
/* In-capsule data buffer */
uint8_t *buf;
struct spdk_nvmf_rdma_wr rdma_wr;
uint64_t receive_tsc;
STAILQ_ENTRY(spdk_nvmf_rdma_recv) link;
};
struct spdk_nvmf_rdma_request_data {
struct spdk_nvmf_rdma_wr rdma_wr;
struct ibv_send_wr wr;
struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
};
struct spdk_nvmf_rdma_request {
struct spdk_nvmf_request req;
enum spdk_nvmf_rdma_request_state state;
struct spdk_nvmf_rdma_recv *recv;
struct {
struct spdk_nvmf_rdma_wr rdma_wr;
struct ibv_send_wr wr;
struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE];
} rsp;
struct spdk_nvmf_rdma_request_data data;
uint32_t iovpos;
uint32_t num_outstanding_data_wr;
uint64_t receive_tsc;
STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link;
};
enum spdk_nvmf_rdma_qpair_disconnect_flags {
RDMA_QP_DISCONNECTING = 1,
RDMA_QP_RECV_DRAINED = 1 << 1,
RDMA_QP_SEND_DRAINED = 1 << 2
};
struct spdk_nvmf_rdma_resource_opts {
struct spdk_nvmf_rdma_qpair *qpair;
/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
void *qp;
struct ibv_pd *pd;
uint32_t max_queue_depth;
uint32_t in_capsule_data_size;
bool shared;
};
struct spdk_nvmf_send_wr_list {
struct ibv_send_wr *first;
struct ibv_send_wr *last;
};
struct spdk_nvmf_recv_wr_list {
struct ibv_recv_wr *first;
struct ibv_recv_wr *last;
};
struct spdk_nvmf_rdma_resources {
/* Array of size "max_queue_depth" containing RDMA requests. */
struct spdk_nvmf_rdma_request *reqs;
/* Array of size "max_queue_depth" containing RDMA recvs. */
struct spdk_nvmf_rdma_recv *recvs;
/* Array of size "max_queue_depth" containing 64 byte capsules
* used for receive.
*/
union nvmf_h2c_msg *cmds;
struct ibv_mr *cmds_mr;
/* Array of size "max_queue_depth" containing 16 byte completions
* to be sent back to the user.
*/
union nvmf_c2h_msg *cpls;
struct ibv_mr *cpls_mr;
/* Array of size "max_queue_depth * InCapsuleDataSize" containing
* buffers to be used for in capsule data.
*/
void *bufs;
struct ibv_mr *bufs_mr;
/* The list of pending recvs to transfer */
struct spdk_nvmf_recv_wr_list recvs_to_post;
/* Receives that are waiting for a request object */
STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue;
/* Queue to track free requests */
STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue;
};
typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
struct spdk_nvmf_rdma_ibv_event_ctx {
struct spdk_nvmf_rdma_qpair *rqpair;
spdk_nvmf_rdma_qpair_ibv_event cb_fn;
/* Link to other ibv events associated with this qpair */
STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link;
};
struct spdk_nvmf_rdma_qpair {
struct spdk_nvmf_qpair qpair;
struct spdk_nvmf_rdma_port *port;
struct spdk_nvmf_rdma_poller *poller;
struct rdma_cm_id *cm_id;
struct ibv_srq *srq;
struct rdma_cm_id *listen_id;
/* The maximum number of I/O outstanding on this connection at one time */
uint16_t max_queue_depth;
/* The maximum number of active RDMA READ and ATOMIC operations at one time */
uint16_t max_read_depth;
/* The maximum number of RDMA SEND operations at one time */
uint32_t max_send_depth;
/* The current number of outstanding WRs from this qpair's
* recv queue. Should not exceed device->attr.max_queue_depth.
*/
uint16_t current_recv_depth;
/* The current number of active RDMA READ operations */
uint16_t current_read_depth;
/* The current number of posted WRs from this qpair's
* send queue. Should not exceed max_send_depth.
*/
uint32_t current_send_depth;
/* The maximum number of SGEs per WR on the send queue */
uint32_t max_send_sge;
/* The maximum number of SGEs per WR on the recv queue */
uint32_t max_recv_sge;
/* The list of pending send requests for a transfer */
struct spdk_nvmf_send_wr_list sends_to_post;
struct spdk_nvmf_rdma_resources *resources;
STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue;
STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue;
/* Number of requests not in the free state */
uint32_t qd;
TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link;
STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link;
STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link;
/* IBV queue pair attributes: they are used to manage
* qp state and recover from errors.
*/
enum ibv_qp_state ibv_state;
uint32_t disconnect_flags;
/* Poller registered in case the qpair doesn't properly
* complete the qpair destruct process and becomes defunct.
*/
struct spdk_poller *destruct_poller;
/* List of ibv async events */
STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events;
/* There are several ways a disconnect can start on a qpair
* and they are not all mutually exclusive. It is important
* that we only initialize one of these paths.
*/
bool disconnect_started;
/* Lets us know that we have received the last_wqe event. */
bool last_wqe_reached;
};
struct spdk_nvmf_rdma_poller_stat {
uint64_t completions;
uint64_t polls;
uint64_t requests;
uint64_t request_latency;
uint64_t pending_free_request;
uint64_t pending_rdma_read;
uint64_t pending_rdma_write;
};
struct spdk_nvmf_rdma_poller {
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_poll_group *group;
int num_cqe;
int required_num_wr;
struct ibv_cq *cq;
/* The maximum number of I/O outstanding on the shared receive queue at one time */
uint16_t max_srq_depth;
/* Shared receive queue */
struct ibv_srq *srq;
struct spdk_nvmf_rdma_resources *resources;
struct spdk_nvmf_rdma_poller_stat stat;
TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs;
STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv;
STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send;
TAILQ_ENTRY(spdk_nvmf_rdma_poller) link;
};
struct spdk_nvmf_rdma_poll_group_stat {
uint64_t pending_data_buffer;
};
struct spdk_nvmf_rdma_poll_group {
struct spdk_nvmf_transport_poll_group group;
struct spdk_nvmf_rdma_poll_group_stat stat;
TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers;
TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link;
/*
* buffers which are split across multiple RDMA
* memory regions cannot be used by this transport.
*/
STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf) retired_bufs;
};
struct spdk_nvmf_rdma_conn_sched {
struct spdk_nvmf_rdma_poll_group *next_admin_pg;
struct spdk_nvmf_rdma_poll_group *next_io_pg;
};
/* Assuming rdma_cm uses just one protection domain per ibv_context. */
struct spdk_nvmf_rdma_device {
struct ibv_device_attr attr;
struct ibv_context *context;
struct spdk_mem_map *map;
struct ibv_pd *pd;
int num_srq;
TAILQ_ENTRY(spdk_nvmf_rdma_device) link;
};
struct spdk_nvmf_rdma_port {
struct spdk_nvme_transport_id trid;
struct rdma_cm_id *id;
struct spdk_nvmf_rdma_device *device;
uint32_t ref;
TAILQ_ENTRY(spdk_nvmf_rdma_port) link;
};
struct spdk_nvmf_rdma_transport {
struct spdk_nvmf_transport transport;
struct spdk_nvmf_rdma_conn_sched conn_sched;
struct rdma_event_channel *event_channel;
struct spdk_mempool *data_wr_pool;
pthread_mutex_t lock;
/* fields used to poll RDMA/IB events */
nfds_t npoll_fds;
struct pollfd *poll_fds;
TAILQ_HEAD(, spdk_nvmf_rdma_device) devices;
TAILQ_HEAD(, spdk_nvmf_rdma_port) ports;
TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups;
};
static inline void
spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair);
static inline int
spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
{
switch (state) {
case IBV_QPS_RESET:
case IBV_QPS_INIT:
case IBV_QPS_RTR:
case IBV_QPS_RTS:
case IBV_QPS_SQD:
case IBV_QPS_SQE:
case IBV_QPS_ERR:
return 0;
default:
return -1;
}
}
static inline enum spdk_nvme_media_error_status_code
spdk_nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
enum spdk_nvme_media_error_status_code result;
switch (err_type)
{
case SPDK_DIF_REFTAG_ERROR:
result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
break;
case SPDK_DIF_APPTAG_ERROR:
result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
break;
case SPDK_DIF_GUARD_ERROR:
result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
break;
default:
SPDK_UNREACHABLE();
}
return result;
}
static enum ibv_qp_state
spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
enum ibv_qp_state old_state, new_state;
struct ibv_qp_attr qp_attr;
struct ibv_qp_init_attr init_attr;
int rc;
old_state = rqpair->ibv_state;
rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
g_spdk_nvmf_ibv_query_mask, &init_attr);
if (rc)
{
SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
return IBV_QPS_ERR + 1;
}
new_state = qp_attr.qp_state;
rqpair->ibv_state = new_state;
qp_attr.ah_attr.port_num = qp_attr.port_num;
rc = spdk_nvmf_rdma_check_ibv_state(new_state);
if (rc)
{
SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
/*
* IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
* IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
*/
return IBV_QPS_ERR + 1;
}
if (old_state != new_state)
{
spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
(uintptr_t)rqpair->cm_id, new_state);
}
return new_state;
}
static const char *str_ibv_qp_state[] = {
"IBV_QPS_RESET",
"IBV_QPS_INIT",
"IBV_QPS_RTR",
"IBV_QPS_RTS",
"IBV_QPS_SQD",
"IBV_QPS_SQE",
"IBV_QPS_ERR",
"IBV_QPS_UNKNOWN"
};
static int
spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair,
enum ibv_qp_state new_state)
{
struct ibv_qp_attr qp_attr;
struct ibv_qp_init_attr init_attr;
int rc;
enum ibv_qp_state state;
static int attr_mask_rc[] = {
[IBV_QPS_RESET] = IBV_QP_STATE,
[IBV_QPS_INIT] = (IBV_QP_STATE |
IBV_QP_PKEY_INDEX |
IBV_QP_PORT |
IBV_QP_ACCESS_FLAGS),
[IBV_QPS_RTR] = (IBV_QP_STATE |
IBV_QP_AV |
IBV_QP_PATH_MTU |
IBV_QP_DEST_QPN |
IBV_QP_RQ_PSN |
IBV_QP_MAX_DEST_RD_ATOMIC |
IBV_QP_MIN_RNR_TIMER),
[IBV_QPS_RTS] = (IBV_QP_STATE |
IBV_QP_SQ_PSN |
IBV_QP_TIMEOUT |
IBV_QP_RETRY_CNT |
IBV_QP_RNR_RETRY |
IBV_QP_MAX_QP_RD_ATOMIC),
[IBV_QPS_SQD] = IBV_QP_STATE,
[IBV_QPS_SQE] = IBV_QP_STATE,
[IBV_QPS_ERR] = IBV_QP_STATE,
};
rc = spdk_nvmf_rdma_check_ibv_state(new_state);
if (rc) {
SPDK_ERRLOG("QP#%d: bad state requested: %u\n",
rqpair->qpair.qid, new_state);
return rc;
}
rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
g_spdk_nvmf_ibv_query_mask, &init_attr);
if (rc) {
SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
assert(false);
}
qp_attr.cur_qp_state = rqpair->ibv_state;
qp_attr.qp_state = new_state;
rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr,
attr_mask_rc[new_state]);
if (rc) {
SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n",
rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno));
return rc;
}
state = spdk_nvmf_rdma_update_ibv_state(rqpair);
if (state != new_state) {
SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n",
rqpair->qpair.qid, str_ibv_qp_state[new_state],
str_ibv_qp_state[state]);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid,
str_ibv_qp_state[state]);
return 0;
}
static void
nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
struct spdk_nvmf_rdma_transport *rtransport)
{
struct spdk_nvmf_rdma_request_data *data_wr;
struct ibv_send_wr *next_send_wr;
uint64_t req_wrid;
rdma_req->num_outstanding_data_wr = 0;
data_wr = &rdma_req->data;
req_wrid = data_wr->wr.wr_id;
while (data_wr && data_wr->wr.wr_id == req_wrid) {
memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
data_wr->wr.num_sge = 0;
next_send_wr = data_wr->wr.next;
if (data_wr != &rdma_req->data) {
spdk_mempool_put(rtransport->data_wr_pool, data_wr);
}
data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
}
}
static void
nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
{
SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
if (req->req.cmd) {
SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
}
if (req->recv) {
SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
}
}
static void
nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
{
int i;
SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
for (i = 0; i < rqpair->max_queue_depth; i++) {
if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
}
}
}
static void
nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
{
if (resources->cmds_mr) {
ibv_dereg_mr(resources->cmds_mr);
}
if (resources->cpls_mr) {
ibv_dereg_mr(resources->cpls_mr);
}
if (resources->bufs_mr) {
ibv_dereg_mr(resources->bufs_mr);
}
spdk_free(resources->cmds);
spdk_free(resources->cpls);
spdk_free(resources->bufs);
free(resources->reqs);
free(resources->recvs);
free(resources);
}
static struct spdk_nvmf_rdma_resources *
nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
{
struct spdk_nvmf_rdma_resources *resources;
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_rdma_recv *rdma_recv;
struct ibv_qp *qp;
struct ibv_srq *srq;
uint32_t i;
int rc;
resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
if (!resources) {
SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
return NULL;
}
resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (opts->in_capsule_data_size > 0) {
resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
}
if (!resources->reqs || !resources->recvs || !resources->cmds ||
!resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
goto cleanup;
}
resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
opts->max_queue_depth * sizeof(*resources->cmds),
IBV_ACCESS_LOCAL_WRITE);
resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
opts->max_queue_depth * sizeof(*resources->cpls),
0);
if (opts->in_capsule_data_size) {
resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
opts->max_queue_depth *
opts->in_capsule_data_size,
IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
}
if (!resources->cmds_mr || !resources->cpls_mr ||
(opts->in_capsule_data_size &&
!resources->bufs_mr)) {
goto cleanup;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
resources->cmds_mr->lkey);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
resources->cpls_mr->lkey);
if (resources->bufs && resources->bufs_mr) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
resources->bufs, opts->max_queue_depth *
opts->in_capsule_data_size, resources->bufs_mr->lkey);
}
/* Initialize queues */
STAILQ_INIT(&resources->incoming_queue);
STAILQ_INIT(&resources->free_queue);
for (i = 0; i < opts->max_queue_depth; i++) {
struct ibv_recv_wr *bad_wr = NULL;
rdma_recv = &resources->recvs[i];
rdma_recv->qpair = opts->qpair;
/* Set up memory to receive commands */
if (resources->bufs) {
rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
opts->in_capsule_data_size));
}
rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
rdma_recv->wr.num_sge = 1;
if (rdma_recv->buf && resources->bufs_mr) {
rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
rdma_recv->sgl[1].length = opts->in_capsule_data_size;
rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
rdma_recv->wr.num_sge++;
}
rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
rdma_recv->wr.sg_list = rdma_recv->sgl;
if (opts->shared) {
srq = (struct ibv_srq *)opts->qp;
rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
} else {
qp = (struct ibv_qp *)opts->qp;
rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
}
if (rc) {
goto cleanup;
}
}
for (i = 0; i < opts->max_queue_depth; i++) {
rdma_req = &resources->reqs[i];
if (opts->qpair != NULL) {
rdma_req->req.qpair = &opts->qpair->qpair;
} else {
rdma_req->req.qpair = NULL;
}
rdma_req->req.cmd = NULL;
/* Set up memory to send responses */
rdma_req->req.rsp = &resources->cpls[i];
rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
rdma_req->rsp.wr.next = NULL;
rdma_req->rsp.wr.opcode = IBV_WR_SEND;
rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
/* Set up memory for data buffers */
rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
rdma_req->data.wr.next = NULL;
rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->data.wr.sg_list = rdma_req->data.sgl;
rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
/* Initialize request state to FREE */
rdma_req->state = RDMA_REQUEST_STATE_FREE;
STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
}
return resources;
cleanup:
nvmf_rdma_resources_destroy(resources);
return NULL;
}
static void
spdk_nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
{
struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
ctx->rqpair = NULL;
/* Memory allocated for ctx is freed in spdk_nvmf_rdma_qpair_process_ibv_event */
STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
}
}
static void
spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
{
struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp;
struct ibv_recv_wr *bad_recv_wr = NULL;
int rc;
spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
spdk_poller_unregister(&rqpair->destruct_poller);
if (rqpair->qd != 0) {
if (rqpair->srq == NULL) {
nvmf_rdma_dump_qpair_contents(rqpair);
}
SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
}
if (rqpair->poller) {
TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
if (rqpair->srq != NULL && rqpair->resources != NULL) {
/* Drop all received but unprocessed commands for this queue and return them to SRQ */
STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
if (rqpair == rdma_recv->qpair) {
STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
if (rc) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
}
}
}
}
}
if (rqpair->cm_id) {
if (rqpair->cm_id->qp != NULL) {
rdma_destroy_qp(rqpair->cm_id);
}
rdma_destroy_id(rqpair->cm_id);
if (rqpair->poller != NULL && rqpair->srq == NULL) {
rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
}
}
if (rqpair->srq == NULL && rqpair->resources != NULL) {
nvmf_rdma_resources_destroy(rqpair->resources);
}
spdk_nvmf_rdma_qpair_clean_ibv_events(rqpair);
free(rqpair);
}
static int
nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
{
struct spdk_nvmf_rdma_poller *rpoller;
int rc, num_cqe, required_num_wr;
/* Enlarge CQ size dynamically */
rpoller = rqpair->poller;
required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
num_cqe = rpoller->num_cqe;
if (num_cqe < required_num_wr) {
num_cqe = spdk_max(num_cqe * 2, required_num_wr);
num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
}
if (rpoller->num_cqe != num_cqe) {
if (required_num_wr > device->attr.max_cqe) {
SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
required_num_wr, device->attr.max_cqe);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
rc = ibv_resize_cq(rpoller->cq, num_cqe);
if (rc) {
SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
rpoller->num_cqe = num_cqe;
}
rpoller->required_num_wr = required_num_wr;
return 0;
}
static int
spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_qpair *rqpair;
int rc;
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_transport *transport;
struct spdk_nvmf_rdma_resource_opts opts;
struct spdk_nvmf_rdma_device *device;
struct ibv_qp_init_attr ibv_init_attr;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
device = rqpair->port->device;
memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
ibv_init_attr.qp_context = rqpair;
ibv_init_attr.qp_type = IBV_QPT_RC;
ibv_init_attr.send_cq = rqpair->poller->cq;
ibv_init_attr.recv_cq = rqpair->poller->cq;
if (rqpair->srq) {
ibv_init_attr.srq = rqpair->srq;
} else {
ibv_init_attr.cap.max_recv_wr = rqpair->max_queue_depth +
1; /* RECV operations + dummy drain WR */
}
ibv_init_attr.cap.max_send_wr = rqpair->max_queue_depth *
2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */
ibv_init_attr.cap.max_send_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
ibv_init_attr.cap.max_recv_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
goto error;
}
rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr);
if (rc) {
SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
goto error;
}
rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1),
ibv_init_attr.cap.max_send_wr);
rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
rqpair->sends_to_post.first = NULL;
rqpair->sends_to_post.last = NULL;
if (rqpair->poller->srq == NULL) {
rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
transport = &rtransport->transport;
opts.qp = rqpair->cm_id->qp;
opts.pd = rqpair->cm_id->pd;
opts.qpair = rqpair;
opts.shared = false;
opts.max_queue_depth = rqpair->max_queue_depth;
opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
rqpair->resources = nvmf_rdma_resources_create(&opts);
if (!rqpair->resources) {
SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
rdma_destroy_qp(rqpair->cm_id);
goto error;
}
} else {
rqpair->resources = rqpair->poller->resources;
}
rqpair->current_recv_depth = 0;
STAILQ_INIT(&rqpair->pending_rdma_read_queue);
STAILQ_INIT(&rqpair->pending_rdma_write_queue);
return 0;
error:
rdma_destroy_id(rqpair->cm_id);
rqpair->cm_id = NULL;
return -1;
}
/* Append the given recv wr structure to the resource structs outstanding recvs list. */
/* This function accepts either a single wr or the first wr in a linked list. */
static void
nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
{
struct ibv_recv_wr *last;
last = first;
while (last->next != NULL) {
last = last->next;
}
if (rqpair->resources->recvs_to_post.first == NULL) {
rqpair->resources->recvs_to_post.first = first;
rqpair->resources->recvs_to_post.last = last;
if (rqpair->srq == NULL) {
STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
}
} else {
rqpair->resources->recvs_to_post.last->next = first;
rqpair->resources->recvs_to_post.last = last;
}
}
/* Append the given send wr structure to the qpair's outstanding sends list. */
/* This function accepts either a single wr or the first wr in a linked list. */
static void
nvmf_rdma_qpair_queue_send_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *first)
{
struct ibv_send_wr *last;
last = first;
while (last->next != NULL) {
last = last->next;
}
if (rqpair->sends_to_post.first == NULL) {
rqpair->sends_to_post.first = first;
rqpair->sends_to_post.last = last;
STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
} else {
rqpair->sends_to_post.last->next = first;
rqpair->sends_to_post.last = last;
}
}
static int
request_transfer_in(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_rdma_qpair *rqpair;
qpair = req->qpair;
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
assert(rdma_req != NULL);
nvmf_rdma_qpair_queue_send_wrs(rqpair, &rdma_req->data.wr);
rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
return 0;
}
static int
request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
{
int num_outstanding_data_wr = 0;
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvme_cpl *rsp;
struct ibv_send_wr *first = NULL;
*data_posted = 0;
qpair = req->qpair;
rsp = &req->rsp->nvme_cpl;
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
/* Advance our sq_head pointer */
if (qpair->sq_head == qpair->sq_head_max) {
qpair->sq_head = 0;
} else {
qpair->sq_head++;
}
rsp->sqhd = qpair->sq_head;
/* queue the capsule for the recv buffer */
assert(rdma_req->recv != NULL);
nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
rdma_req->recv = NULL;
assert(rqpair->current_recv_depth > 0);
rqpair->current_recv_depth--;
/* Build the response which consists of optional
* RDMA WRITEs to transfer data, plus an RDMA SEND
* containing the response.
*/
first = &rdma_req->rsp.wr;
if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
first = &rdma_req->data.wr;
*data_posted = 1;
num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
}
nvmf_rdma_qpair_queue_send_wrs(rqpair, first);
/* +1 for the rsp wr */
rqpair->current_send_depth += num_outstanding_data_wr + 1;
return 0;
}
static int
spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
{
struct spdk_nvmf_rdma_accept_private_data accept_data;
struct rdma_conn_param ctrlr_event_data = {};
int rc;
accept_data.recfmt = 0;
accept_data.crqsize = rqpair->max_queue_depth;
ctrlr_event_data.private_data = &accept_data;
ctrlr_event_data.private_data_len = sizeof(accept_data);
if (id->ps == RDMA_PS_TCP) {
ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
}
/* Configure infinite retries for the initiator side qpair.
* When using a shared receive queue on the target side,
* we need to pass this value to the initiator to prevent the
* initiator side NIC from completing SEND requests back to the
* initiator with status rnr_retry_count_exceeded. */
if (rqpair->srq != NULL) {
ctrlr_event_data.rnr_retry_count = 0x7;
}
rc = rdma_accept(id, &ctrlr_event_data);
if (rc) {
SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
} else {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
}
return rc;
}
static void
spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
{
struct spdk_nvmf_rdma_reject_private_data rej_data;
rej_data.recfmt = 0;
rej_data.sts = error;
rdma_reject(id, &rej_data, sizeof(rej_data));
}
static int
nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
new_qpair_fn cb_fn, void *cb_arg)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_qpair *rqpair = NULL;
struct spdk_nvmf_rdma_port *port;
struct rdma_conn_param *rdma_param = NULL;
const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
uint16_t max_queue_depth;
uint16_t max_read_depth;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
rdma_param = &event->param.conn;
if (rdma_param->private_data == NULL ||
rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
SPDK_ERRLOG("connect request: no private data provided\n");
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
return -1;
}
private_data = rdma_param->private_data;
if (private_data->recfmt != 0) {
SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
event->id->verbs->device->name, event->id->verbs->device->dev_name);
port = event->listen_id->context;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
event->listen_id, event->listen_id->verbs, port);
/* Figure out the supported queue depth. This is a multi-step process
* that takes into account hardware maximums, host provided values,
* and our target's internal memory limits */
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
/* Start with the maximum queue depth allowed by the target */
max_queue_depth = rtransport->transport.opts.max_queue_depth;
max_read_depth = rtransport->transport.opts.max_queue_depth;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
rtransport->transport.opts.max_queue_depth);
/* Next check the local NIC's hardware limitations */
SPDK_DEBUGLOG(SPDK_LOG_RDMA,
"Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
/* Next check the remote NIC's hardware limitations */
SPDK_DEBUGLOG(SPDK_LOG_RDMA,
"Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
rdma_param->initiator_depth, rdma_param->responder_resources);
if (rdma_param->initiator_depth > 0) {
max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
}
/* Finally check for the host software requested values, which are
* optional. */
if (rdma_param->private_data != NULL &&
rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
max_queue_depth, max_read_depth);
rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
if (rqpair == NULL) {
SPDK_ERRLOG("Could not allocate new connection.\n");
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
return -1;
}
rqpair->port = port;
rqpair->max_queue_depth = max_queue_depth;
rqpair->max_read_depth = max_read_depth;
rqpair->cm_id = event->id;
rqpair->listen_id = event->listen_id;
rqpair->qpair.transport = transport;
STAILQ_INIT(&rqpair->ibv_events);
/* use qid from the private data to determine the qpair type
qid will be set to the appropriate value when the controller is created */
rqpair->qpair.qid = private_data->qid;
event->id->context = &rqpair->qpair;
cb_fn(&rqpair->qpair, cb_arg);
return 0;
}
static int
spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t size)
{
struct ibv_pd *pd = cb_ctx;
struct ibv_mr *mr;
int rc;
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (!g_nvmf_hooks.get_rkey) {
mr = ibv_reg_mr(pd, vaddr, size,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);
if (mr == NULL) {
SPDK_ERRLOG("ibv_reg_mr() failed\n");
return -1;
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
}
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
g_nvmf_hooks.get_rkey(pd, vaddr, size));
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
if (!g_nvmf_hooks.get_rkey) {
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
if (mr) {
ibv_dereg_mr(mr);
}
}
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
break;
default:
SPDK_UNREACHABLE();
}
return rc;
}
static int
spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
{
/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
return addr_1 == addr_2;
}
static inline void
nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
enum spdk_nvme_data_transfer xfer)
{
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
wr->opcode = IBV_WR_RDMA_WRITE;
wr->send_flags = 0;
wr->next = next;
} else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
wr->opcode = IBV_WR_RDMA_READ;
wr->send_flags = IBV_SEND_SIGNALED;
wr->next = NULL;
} else {
assert(0);
}
}
static int
nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_request *rdma_req,
uint32_t num_sgl_descriptors)
{
struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
struct spdk_nvmf_rdma_request_data *current_data_wr;
uint32_t i;
if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) {
SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
return -EINVAL;
}
if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
return -ENOMEM;
}
current_data_wr = &rdma_req->data;
for (i = 0; i < num_sgl_descriptors; i++) {
nvmf_rdma_setup_wr(&current_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
current_data_wr->wr.next = &work_requests[i]->wr;
current_data_wr = work_requests[i];
current_data_wr->wr.sg_list = current_data_wr->sgl;
current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
}
nvmf_rdma_setup_wr(&current_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
return 0;
}
static inline void
nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
{
struct ibv_send_wr *wr = &rdma_req->data.wr;
struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
wr->wr.rdma.rkey = sgl->keyed.key;
wr->wr.rdma.remote_addr = sgl->address;
nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
}
static inline void
nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
{
struct ibv_send_wr *wr = &rdma_req->data.wr;
struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
uint32_t i;
int j;
uint64_t remote_addr_offset = 0;
for (i = 0; i < num_wrs; ++i) {
wr->wr.rdma.rkey = sgl->keyed.key;
wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
for (j = 0; j < wr->num_sge; ++j) {
remote_addr_offset += wr->sg_list[j].length;
}
wr = wr->next;
}
}
/* This function is used in the rare case that we have a buffer split over multiple memory regions. */
static int
nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf)
{
struct spdk_nvmf_transport_poll_group *group = &rgroup->group;
struct spdk_nvmf_transport *transport = group->transport;
struct spdk_nvmf_transport_pg_cache_buf *old_buf;
void *new_buf;
if (!(STAILQ_EMPTY(&group->buf_cache))) {
group->buf_cache_count--;
new_buf = STAILQ_FIRST(&group->buf_cache);
STAILQ_REMOVE_HEAD(&group->buf_cache, link);
assert(*buf != NULL);
} else {
new_buf = spdk_mempool_get(transport->data_buf_pool);
}
if (*buf == NULL) {
return -ENOMEM;
}
old_buf = *buf;
STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link);
*buf = new_buf;
return 0;
}
static bool
nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov,
uint32_t *_lkey)
{
uint64_t translation_len;
uint32_t lkey;
translation_len = iov->iov_len;
if (!g_nvmf_hooks.get_rkey) {
lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
(uint64_t)iov->iov_base, &translation_len))->lkey;
} else {
lkey = spdk_mem_map_translate(device->map,
(uint64_t)iov->iov_base, &translation_len);
}
if (spdk_unlikely(translation_len < iov->iov_len)) {
return false;
}
*_lkey = lkey;
return true;
}
static bool
nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device,
struct iovec *iov, struct ibv_send_wr **_wr,
uint32_t *_remaining_data_block, uint32_t *_offset,
uint32_t *_num_extra_wrs,
const struct spdk_dif_ctx *dif_ctx)
{
struct ibv_send_wr *wr = *_wr;
struct ibv_sge *sg_ele = &wr->sg_list[wr->num_sge];
uint32_t lkey = 0;
uint32_t remaining, data_block_size, md_size, sge_len;
if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) {
/* This is a very rare case that can occur when using DPDK version < 19.05 */
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n");
return false;
}
if (spdk_likely(!dif_ctx)) {
sg_ele->lkey = lkey;
sg_ele->addr = (uintptr_t)(iov->iov_base);
sg_ele->length = iov->iov_len;
wr->num_sge++;
} else {
remaining = iov->iov_len - *_offset;
data_block_size = dif_ctx->block_size - dif_ctx->md_size;
md_size = dif_ctx->md_size;
while (remaining) {
if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
if (*_num_extra_wrs > 0 && wr->next) {
*_wr = wr->next;
wr = *_wr;
wr->num_sge = 0;
sg_ele = &wr->sg_list[wr->num_sge];
(*_num_extra_wrs)--;
} else {
break;
}
}
sg_ele->lkey = lkey;
sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset);
sge_len = spdk_min(remaining, *_remaining_data_block);
sg_ele->length = sge_len;
remaining -= sge_len;
*_remaining_data_block -= sge_len;
*_offset += sge_len;
sg_ele++;
wr->num_sge++;
if (*_remaining_data_block == 0) {
/* skip metadata */
*_offset += md_size;
/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
remaining -= spdk_min(remaining, md_size);
*_remaining_data_block = data_block_size;
}
if (remaining == 0) {
/* By subtracting the size of the last IOV from the offset, we ensure that we skip
the remaining metadata bits at the beginning of the next buffer */
*_offset -= iov->iov_len;
}
}
}
return true;
}
static int
nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup,
struct spdk_nvmf_rdma_device *device,
struct spdk_nvmf_rdma_request *rdma_req,
struct ibv_send_wr *wr,
uint32_t length,
uint32_t num_extra_wrs)
{
struct spdk_nvmf_request *req = &rdma_req->req;
struct spdk_dif_ctx *dif_ctx = NULL;
uint32_t remaining_data_block = 0;
uint32_t offset = 0;
if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
dif_ctx = &rdma_req->req.dif.dif_ctx;
remaining_data_block = dif_ctx->block_size - dif_ctx->md_size;
}
wr->num_sge = 0;
while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr,
&remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) {
if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) {
return -ENOMEM;
}
req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] +
NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK);
}
length -= req->iov[rdma_req->iovpos].iov_len;
rdma_req->iovpos++;
}
if (length) {
SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
return -EINVAL;
}
return 0;
}
static inline uint32_t
nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
{
/* estimate the number of SG entries and WRs needed to process the request */
uint32_t num_sge = 0;
uint32_t i;
uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
for (i = 0; i < num_buffers && length > 0; i++) {
uint32_t buffer_len = spdk_min(length, io_unit_size);
uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
if (num_sge_in_block * block_size > buffer_len) {
++num_sge_in_block;
}
num_sge += num_sge_in_block;
length -= buffer_len;
}
return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
}
static int
spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_device *device,
struct spdk_nvmf_rdma_request *rdma_req,
uint32_t length)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_request *req = &rdma_req->req;
struct ibv_send_wr *wr = &rdma_req->data.wr;
int rc;
uint32_t num_wrs = 1;
rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
rgroup = rqpair->poller->group;
/* rdma wr specifics */
nvmf_rdma_setup_request(rdma_req);
rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
length);
if (rc != 0) {
return rc;
}
assert(req->iovcnt <= rqpair->max_send_sge);
rdma_req->iovpos = 0;
if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
req->dif.dif_ctx.block_size);
if (num_wrs > 1) {
rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
if (rc != 0) {
goto err_exit;
}
}
}
rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1);
if (spdk_unlikely(rc != 0)) {
goto err_exit;
}
if (spdk_unlikely(num_wrs > 1)) {
nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
}
/* set the number of outstanding data WRs for this request. */
rdma_req->num_outstanding_data_wr = num_wrs;
return rc;
err_exit:
spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
nvmf_rdma_request_free_data(rdma_req, rtransport);
req->iovcnt = 0;
return rc;
}
static int
nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_device *device,
struct spdk_nvmf_rdma_request *rdma_req)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct ibv_send_wr *current_wr;
struct spdk_nvmf_request *req = &rdma_req->req;
struct spdk_nvme_sgl_descriptor *inline_segment, *desc;
uint32_t num_sgl_descriptors;
uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES];
uint32_t i;
int rc;
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
rgroup = rqpair->poller->group;
inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
return -ENOMEM;
}
desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
for (i = 0; i < num_sgl_descriptors; i++) {
if (spdk_likely(!req->dif.dif_insert_or_strip)) {
lengths[i] = desc->keyed.length;
} else {
req->dif.orig_length += desc->keyed.length;
lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
req->dif.elba_length += lengths[i];
}
desc++;
}
rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport,
lengths, num_sgl_descriptors);
if (rc != 0) {
nvmf_rdma_request_free_data(rdma_req, rtransport);
return rc;
}
/* The first WR must always be the embedded data WR. This is how we unwind them later. */
current_wr = &rdma_req->data.wr;
assert(current_wr != NULL);
req->length = 0;
rdma_req->iovpos = 0;
desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
for (i = 0; i < num_sgl_descriptors; i++) {
/* The descriptors must be keyed data block descriptors with an address, not an offset. */
if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
rc = -EINVAL;
goto err_exit;
}
current_wr->num_sge = 0;
rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0);
if (rc != 0) {
rc = -ENOMEM;
goto err_exit;
}
req->length += desc->keyed.length;
current_wr->wr.rdma.rkey = desc->keyed.key;
current_wr->wr.rdma.remote_addr = desc->address;
current_wr = current_wr->next;
desc++;
}
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
/* Go back to the last descriptor in the list. */
desc--;
if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
rdma_req->rsp.wr.imm_data = desc->keyed.key;
}
}
#endif
rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
return 0;
err_exit:
spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
nvmf_rdma_request_free_data(rdma_req, rtransport);
return rc;
}
static int
spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_device *device,
struct spdk_nvmf_rdma_request *rdma_req)
{
struct spdk_nvmf_request *req = &rdma_req->req;
struct spdk_nvme_cpl *rsp;
struct spdk_nvme_sgl_descriptor *sgl;
int rc;
uint32_t length;
rsp = &req->rsp->nvme_cpl;
sgl = &req->cmd->nvme_cmd.dptr.sgl1;
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
(sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
length = sgl->keyed.length;
if (length > rtransport->transport.opts.max_io_size) {
SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
length, rtransport->transport.opts.max_io_size);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
rdma_req->rsp.wr.imm_data = sgl->keyed.key;
}
}
#endif
/* fill request length and populate iovs */
req->length = length;
if (spdk_unlikely(req->dif.dif_insert_or_strip)) {
req->dif.orig_length = length;
length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
req->dif.elba_length = length;
}
rc = spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length);
if (spdk_unlikely(rc < 0)) {
if (rc == -EINVAL) {
SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
/* No available buffers. Queue this request up. */
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
return 0;
}
/* backward compatible */
req->data = req->iov[0].iov_base;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
req->iovcnt);
return 0;
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
uint64_t offset = sgl->address;
uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
offset, sgl->unkeyed.length);
if (offset > max_len) {
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
offset, max_len);
rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
return -1;
}
max_len -= (uint32_t)offset;
if (sgl->unkeyed.length > max_len) {
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
sgl->unkeyed.length, max_len);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
rdma_req->num_outstanding_data_wr = 0;
req->data = rdma_req->recv->buf + offset;
req->data_from_pool = false;
req->length = sgl->unkeyed.length;
req->iov[0].iov_base = req->data;
req->iov[0].iov_len = req->length;
req->iovcnt = 1;
return 0;
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
if (rc == -ENOMEM) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
return 0;
} else if (rc == -EINVAL) {
SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
/* backward compatible */
req->data = req->iov[0].iov_base;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
req->iovcnt);
return 0;
}
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
return -1;
}
static void
nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
struct spdk_nvmf_rdma_transport *rtransport)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_poll_group *rgroup;
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
if (rdma_req->req.data_from_pool) {
rgroup = rqpair->poller->group;
spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
}
nvmf_rdma_request_free_data(rdma_req, rtransport);
rdma_req->req.length = 0;
rdma_req->req.iovcnt = 0;
rdma_req->req.data = NULL;
rdma_req->rsp.wr.next = NULL;
rdma_req->data.wr.next = NULL;
memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
rqpair->qd--;
STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
rdma_req->state = RDMA_REQUEST_STATE_FREE;
}
static bool
spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_request *rdma_req)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
int rc;
struct spdk_nvmf_rdma_recv *rdma_recv;
enum spdk_nvmf_rdma_request_state prev_state;
bool progress = false;
int data_posted;
uint32_t num_blocks;
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
device = rqpair->port->device;
rgroup = rqpair->poller->group;
assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
/* If the queue pair is in an error state, force the request to the completed state
* to release resources. */
if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
}
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
}
/* The loop here is to allow for several back-to-back state changes. */
do {
prev_state = rdma_req->state;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
switch (rdma_req->state) {
case RDMA_REQUEST_STATE_FREE:
/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
* to escape this state. */
break;
case RDMA_REQUEST_STATE_NEW:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
rdma_recv = rdma_req->recv;
/* The first element of the SGL is the NVMe command */
rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
break;
}
if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
rdma_req->req.dif.dif_insert_or_strip = true;
}
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
rdma_req->rsp.wr.opcode = IBV_WR_SEND;
rdma_req->rsp.wr.imm_data = 0;
#endif
/* The next state transition depends on the data transfer needs of this request. */
rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
/* If no data to transfer, ready to execute. */
if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
break;
}
rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
break;
case RDMA_REQUEST_STATE_NEED_BUFFER:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
/* This request needs to wait in line to obtain a buffer */
break;
}
/* Try to get a data buffer */
rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
if (rc < 0) {
STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
break;
}
if (!rdma_req->req.data) {
/* No buffers available. */
rgroup->stat.pending_data_buffer++;
break;
}
STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
/* If data is transferring from host to controller and the data didn't
* arrive using in capsule data, we need to do a transfer from the host.
*/
if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
rdma_req->req.data_from_pool) {
STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
break;
}
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
break;
case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
/* This request needs to wait in line to perform RDMA */
break;
}
if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
|| rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
/* We can only have so many WRs outstanding. we have to wait until some finish. */
rqpair->poller->stat.pending_rdma_read++;
break;
}
/* We have already verified that this request is the head of the queue. */
STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
rc = request_transfer_in(&rdma_req->req);
if (!rc) {
rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
} else {
rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
}
break;
case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
* to escape this state. */
break;
case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
/* generate DIF for write operation */
num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
assert(num_blocks > 0);
rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
num_blocks, &rdma_req->req.dif.dif_ctx);
if (rc != 0) {
SPDK_ERRLOG("DIF generation failed\n");
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
spdk_nvmf_rdma_start_disconnect(rqpair);
break;
}
}
assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
/* set extended length before IO operation */
rdma_req->req.length = rdma_req->req.dif.elba_length;
}
rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
spdk_nvmf_request_exec(&rdma_req->req);
break;
case RDMA_REQUEST_STATE_EXECUTING:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
* to escape this state. */
break;
case RDMA_REQUEST_STATE_EXECUTED:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
} else {
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
}
if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) {
/* restore the original length */
rdma_req->req.length = rdma_req->req.dif.orig_length;
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
struct spdk_dif_error error_blk;
num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
&rdma_req->req.dif.dif_ctx, &error_blk);
if (rc) {
struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
error_blk.err_offset);
rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
rsp->status.sc = spdk_nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
}
}
}
break;
case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
/* This request needs to wait in line to perform RDMA */
break;
}
if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
rqpair->max_send_depth) {
/* We can only have so many WRs outstanding. we have to wait until some finish.
* +1 since each request has an additional wr in the resp. */
rqpair->poller->stat.pending_rdma_write++;
break;
}
/* We have already verified that this request is the head of the queue. */
STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
/* The data transfer will be kicked off from
* RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
*/
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
break;
case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
rc = request_transfer_out(&rdma_req->req, &data_posted);
assert(rc == 0); /* No good way to handle this currently */
if (rc) {
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
} else {
rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
RDMA_REQUEST_STATE_COMPLETING;
}
break;
case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
* to escape this state. */
break;
case RDMA_REQUEST_STATE_COMPLETING:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
* to escape this state. */
break;
case RDMA_REQUEST_STATE_COMPLETED:
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
nvmf_rdma_request_free(rdma_req, rtransport);
break;
case RDMA_REQUEST_NUM_STATES:
default:
assert(0);
break;
}
if (rdma_req->state != prev_state) {
progress = true;
}
} while (rdma_req->state != prev_state);
return progress;
}
/* Public API callbacks begin here */
#define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
#define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
#define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
#define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
#define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
#define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
#define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
#define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
#define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
#define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
#define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
static void
spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
{
opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
}
const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
.notify_cb = spdk_nvmf_rdma_mem_notify,
.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
};
static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
static struct spdk_nvmf_transport *
spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
{
int rc;
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_device *device, *tmp;
struct ibv_context **contexts;
uint32_t i;
int flag;
uint32_t sge_count;
uint32_t min_shared_buffers;
int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
pthread_mutexattr_t attr;
rtransport = calloc(1, sizeof(*rtransport));
if (!rtransport) {
return NULL;
}
if (pthread_mutexattr_init(&attr)) {
SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
free(rtransport);
return NULL;
}
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
pthread_mutexattr_destroy(&attr);
free(rtransport);
return NULL;
}
if (pthread_mutex_init(&rtransport->lock, &attr)) {
SPDK_ERRLOG("pthread_mutex_init() failed\n");
pthread_mutexattr_destroy(&attr);
free(rtransport);
return NULL;
}
pthread_mutexattr_destroy(&attr);
TAILQ_INIT(&rtransport->devices);
TAILQ_INIT(&rtransport->ports);
TAILQ_INIT(&rtransport->poll_groups);
rtransport->transport.ops = &spdk_nvmf_transport_rdma;
SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
" Transport opts: max_ioq_depth=%d, max_io_size=%d,\n"
" max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
" in_capsule_data_size=%d, max_aq_depth=%d,\n"
" num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n",
opts->max_queue_depth,
opts->max_io_size,
opts->max_qpairs_per_ctrlr,
opts->io_unit_size,
opts->in_capsule_data_size,
opts->max_aq_depth,
opts->num_shared_buffers,
opts->max_srq_depth,
opts->no_srq);
/* I/O unit size cannot be larger than max I/O size */
if (opts->io_unit_size > opts->max_io_size) {
opts->io_unit_size = opts->max_io_size;
}
if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
"the minimum number required to guarantee that forward progress can be made (%d)\n",
opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
if (min_shared_buffers > opts->num_shared_buffers) {
SPDK_ERRLOG("There are not enough buffers to satisfy"
"per-poll group caches for each thread. (%" PRIu32 ")"
"supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
sge_count = opts->max_io_size / opts->io_unit_size;
if (sge_count > NVMF_DEFAULT_TX_SGE) {
SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
rtransport->event_channel = rdma_create_event_channel();
if (rtransport->event_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
flag = fcntl(rtransport->event_channel->fd, F_GETFL);
if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
rtransport->event_channel->fd, spdk_strerror(errno));
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
sizeof(struct spdk_nvmf_rdma_request_data),
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!rtransport->data_wr_pool) {
SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
contexts = rdma_get_devices(NULL);
if (contexts == NULL) {
SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
i = 0;
rc = 0;
while (contexts[i] != NULL) {
device = calloc(1, sizeof(*device));
if (!device) {
SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
rc = -ENOMEM;
break;
}
device->context = contexts[i];
rc = ibv_query_device(device->context, &device->attr);
if (rc < 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
free(device);
break;
}
max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
}
/**
* The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
* The Soft-RoCE RXE driver does not currently support send with invalidate,
* but incorrectly reports that it does. There are changes making their way
* through the kernel now that will enable this feature. When they are merged,
* we can conditionally enable this feature.
*
* TODO: enable this for versions of the kernel rxe driver that support it.
*/
if (device->attr.vendor_id == 0) {
device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
}
#endif
/* set up device context async ev fd as NON_BLOCKING */
flag = fcntl(device->context->async_fd, F_GETFL);
rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
if (rc < 0) {
SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
free(device);
break;
}
TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
i++;
if (g_nvmf_hooks.get_ibv_pd) {
device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
} else {
device->pd = ibv_alloc_pd(device->context);
}
if (!device->pd) {
SPDK_ERRLOG("Unable to allocate protection domain.\n");
rc = -ENOMEM;
break;
}
assert(device->map == NULL);
device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
if (!device->map) {
SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
rc = -ENOMEM;
break;
}
assert(device->map != NULL);
assert(device->pd != NULL);
}
rdma_free_devices(contexts);
if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
/* divide and round up. */
opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
/* round up to the nearest 4k. */
opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
opts->io_unit_size);
}
if (rc < 0) {
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
/* Set up poll descriptor array to monitor events from RDMA and IB
* in a single poll syscall
*/
rtransport->npoll_fds = i + 1;
i = 0;
rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
if (rtransport->poll_fds == NULL) {
SPDK_ERRLOG("poll_fds allocation failed\n");
spdk_nvmf_rdma_destroy(&rtransport->transport);
return NULL;
}
rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
rtransport->poll_fds[i++].events = POLLIN;
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
rtransport->poll_fds[i].fd = device->context->async_fd;
rtransport->poll_fds[i++].events = POLLIN;
}
return &rtransport->transport;
}
static int
spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_port *port, *port_tmp;
struct spdk_nvmf_rdma_device *device, *device_tmp;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
TAILQ_REMOVE(&rtransport->ports, port, link);
rdma_destroy_id(port->id);
free(port);
}
if (rtransport->poll_fds != NULL) {
free(rtransport->poll_fds);
}
if (rtransport->event_channel != NULL) {
rdma_destroy_event_channel(rtransport->event_channel);
}
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
TAILQ_REMOVE(&rtransport->devices, device, link);
if (device->map) {
spdk_mem_map_free(&device->map);
}
if (device->pd) {
if (!g_nvmf_hooks.get_ibv_pd) {
ibv_dealloc_pd(device->pd);
}
}
free(device);
}
if (rtransport->data_wr_pool != NULL) {
if (spdk_mempool_count(rtransport->data_wr_pool) !=
(transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
spdk_mempool_count(rtransport->data_wr_pool),
transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
}
}
spdk_mempool_free(rtransport->data_wr_pool);
pthread_mutex_destroy(&rtransport->lock);
free(rtransport);
return 0;
}
static int
spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
struct spdk_nvme_transport_id *trid,
bool peer);
static int
spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_port *port_tmp, *port;
struct addrinfo *res;
struct addrinfo hints;
int family;
int rc;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
port = calloc(1, sizeof(*port));
if (!port) {
return -ENOMEM;
}
/* Selectively copy the trid. Things like NQN don't matter here - that
* mapping is enforced elsewhere.
*/
port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
port->trid.adrfam = trid->adrfam;
snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
switch (port->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
free(port);
return -EINVAL;
}
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_flags = AI_NUMERICSERV;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
if (rc) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
free(port);
return -EINVAL;
}
pthread_mutex_lock(&rtransport->lock);
assert(rtransport->event_channel != NULL);
TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
port_tmp->ref++;
freeaddrinfo(res);
free(port);
/* Already listening at this address */
pthread_mutex_unlock(&rtransport->lock);
return 0;
}
}
rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
freeaddrinfo(res);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return rc;
}
rc = rdma_bind_addr(port->id, res->ai_addr);
freeaddrinfo(res);
if (rc < 0) {
SPDK_ERRLOG("rdma_bind_addr() failed\n");
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return rc;
}
if (!port->id->verbs) {
SPDK_ERRLOG("ibv_context is null\n");
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return -1;
}
rc = rdma_listen(port->id, 10); /* 10 = backlog */
if (rc < 0) {
SPDK_ERRLOG("rdma_listen() failed\n");
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return rc;
}
TAILQ_FOREACH(device, &rtransport->devices, link) {
if (device->context == port->id->verbs) {
port->device = device;
break;
}
}
if (!port->device) {
SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
port->id->verbs);
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return -EINVAL;
}
SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n",
port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
port->ref = 1;
TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
pthread_mutex_unlock(&rtransport->lock);
return 0;
}
static int
spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *_trid)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_port *port, *tmp;
struct spdk_nvme_transport_id trid = {};
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
/* Selectively copy the trid. Things like NQN don't matter here - that
* mapping is enforced elsewhere.
*/
trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
trid.adrfam = _trid->adrfam;
snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
pthread_mutex_lock(&rtransport->lock);
TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
assert(port->ref > 0);
port->ref--;
if (port->ref == 0) {
TAILQ_REMOVE(&rtransport->ports, port, link);
rdma_destroy_id(port->id);
free(port);
}
break;
}
}
pthread_mutex_unlock(&rtransport->lock);
return 0;
}
static void
spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
{
struct spdk_nvmf_request *req, *tmp;
struct spdk_nvmf_rdma_request *rdma_req, *req_tmp;
struct spdk_nvmf_rdma_resources *resources;
/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
break;
}
}
/* Then RDMA writes since reads have stronger restrictions than writes */
STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
break;
}
}
/* The second highest priority is I/O waiting on memory buffers. */
STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
break;
}
}
resources = rqpair->resources;
while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
rdma_req = STAILQ_FIRST(&resources->free_queue);
STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
if (rqpair->srq != NULL) {
rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
rdma_req->recv->qpair->qd++;
} else {
rqpair->qd++;
}
rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
rdma_req->state = RDMA_REQUEST_STATE_NEW;
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
break;
}
}
if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
rqpair->poller->stat.pending_free_request++;
}
}
static void
_nvmf_rdma_qpair_disconnect(void *ctx)
{
struct spdk_nvmf_qpair *qpair = ctx;
spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
}
static void
_nvmf_rdma_try_disconnect(void *ctx)
{
struct spdk_nvmf_qpair *qpair = ctx;
struct spdk_nvmf_poll_group *group;
/* Read the group out of the qpair. This is normally set and accessed only from
* the thread that created the group. Here, we're not on that thread necessarily.
* The data member qpair->group begins it's life as NULL and then is assigned to
* a pointer and never changes. So fortunately reading this and checking for
* non-NULL is thread safe in the x86_64 memory model. */
group = qpair->group;
if (group == NULL) {
/* The qpair hasn't been assigned to a group yet, so we can't
* process a disconnect. Send a message to ourself and try again. */
spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
return;
}
spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
}
static inline void
spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
{
if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) {
_nvmf_rdma_try_disconnect(&rqpair->qpair);
}
}
static void nvmf_rdma_destroy_drained_qpair(void *ctx)
{
struct spdk_nvmf_rdma_qpair *rqpair = ctx;
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
struct spdk_nvmf_rdma_transport, transport);
/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
if (rqpair->current_send_depth != 0) {
return;
}
if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
return;
}
if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
return;
}
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
/* Qpair will be destroyed after nvmf layer closes this qpair */
if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) {
return;
}
spdk_nvmf_rdma_qpair_destroy(rqpair);
}
static int
nvmf_rdma_disconnect(struct rdma_cm_event *evt)
{
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_rdma_qpair *rqpair;
if (evt->id == NULL) {
SPDK_ERRLOG("disconnect request: missing cm_id\n");
return -1;
}
qpair = evt->id->context;
if (qpair == NULL) {
SPDK_ERRLOG("disconnect request: no active connection\n");
return -1;
}
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
spdk_nvmf_rdma_start_disconnect(rqpair);
return 0;
}
#ifdef DEBUG
static const char *CM_EVENT_STR[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
#endif /* DEBUG */
static void
spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct rdma_cm_event *event;
int rc;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
if (rtransport->event_channel == NULL) {
return;
}
while (1) {
rc = rdma_get_cm_event(rtransport->event_channel, &event);
if (rc == 0) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_RESOLVED:
case RDMA_CM_EVENT_ROUTE_ERROR:
/* No action required. The target never attempts to resolve routes. */
break;
case RDMA_CM_EVENT_CONNECT_REQUEST:
rc = nvmf_rdma_connect(transport, event, cb_fn, cb_arg);
if (rc < 0) {
SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
break;
}
break;
case RDMA_CM_EVENT_CONNECT_RESPONSE:
/* The target never initiates a new connection. So this will not occur. */
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
/* Can this happen? The docs say it can, but not sure what causes it. */
break;
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
/* These only occur on the client side. */
break;
case RDMA_CM_EVENT_ESTABLISHED:
/* TODO: Should we be waiting for this event anywhere? */
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_DEVICE_REMOVAL:
rc = nvmf_rdma_disconnect(event);
if (rc < 0) {
SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
break;
}
break;
case RDMA_CM_EVENT_MULTICAST_JOIN:
case RDMA_CM_EVENT_MULTICAST_ERROR:
/* Multicast is not used */
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
/* Not utilizing this event */
break;
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
/* For now, do nothing. The target never re-uses queue pairs. */
break;
default:
SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
break;
}
rdma_ack_cm_event(event);
} else {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
}
break;
}
}
}
static void
nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair)
{
spdk_nvmf_rdma_update_ibv_state(rqpair);
spdk_nvmf_rdma_start_disconnect(rqpair);
}
static void
nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
{
rqpair->last_wqe_reached = true;
nvmf_rdma_destroy_drained_qpair(rqpair);
}
static void
nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair)
{
spdk_nvmf_rdma_start_disconnect(rqpair);
}
static void
spdk_nvmf_rdma_qpair_process_ibv_event(void *ctx)
{
struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
if (event_ctx->rqpair) {
STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
if (event_ctx->cb_fn) {
event_ctx->cb_fn(event_ctx->rqpair);
}
}
free(event_ctx);
}
static int
spdk_nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
spdk_nvmf_rdma_qpair_ibv_event fn)
{
struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
if (!rqpair->qpair.group) {
return EINVAL;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
return ENOMEM;
}
ctx->rqpair = rqpair;
ctx->cb_fn = fn;
STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
return spdk_thread_send_msg(rqpair->qpair.group->thread, spdk_nvmf_rdma_qpair_process_ibv_event,
ctx);
}
static void
spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
{
int rc;
struct spdk_nvmf_rdma_qpair *rqpair = NULL;
struct ibv_async_event event;
rc = ibv_get_async_event(device->context, &event);
if (rc) {
SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
errno, spdk_strerror(errno));
return;
}
switch (event.event_type) {
case IBV_EVENT_QP_FATAL:
rqpair = event.element.qp->qp_context;
SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
(uintptr_t)rqpair->cm_id, event.event_type);
if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal)) {
SPDK_ERRLOG("Failed to send QP_FATAL event for rqpair %p\n", rqpair);
nvmf_rdma_handle_qp_fatal(rqpair);
}
break;
case IBV_EVENT_QP_LAST_WQE_REACHED:
/* This event only occurs for shared receive queues. */
rqpair = event.element.qp->qp_context;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair);
if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached)) {
SPDK_ERRLOG("Failed to send LAST_WQE_REACHED event for rqpair %p\n", rqpair);
rqpair->last_wqe_reached = true;
}
break;
case IBV_EVENT_SQ_DRAINED:
/* This event occurs frequently in both error and non-error states.
* Check if the qpair is in an error state before sending a message. */
rqpair = event.element.qp->qp_context;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair);
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
(uintptr_t)rqpair->cm_id, event.event_type);
if (spdk_nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) {
if (spdk_nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained)) {
SPDK_ERRLOG("Failed to send SQ_DRAINED event for rqpair %p\n", rqpair);
nvmf_rdma_handle_sq_drained(rqpair);
}
}
break;
case IBV_EVENT_QP_REQ_ERR:
case IBV_EVENT_QP_ACCESS_ERR:
case IBV_EVENT_COMM_EST:
case IBV_EVENT_PATH_MIG:
case IBV_EVENT_PATH_MIG_ERR:
SPDK_NOTICELOG("Async event: %s\n",
ibv_event_type_str(event.event_type));
rqpair = event.element.qp->qp_context;
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
(uintptr_t)rqpair->cm_id, event.event_type);
spdk_nvmf_rdma_update_ibv_state(rqpair);
break;
case IBV_EVENT_CQ_ERR:
case IBV_EVENT_DEVICE_FATAL:
case IBV_EVENT_PORT_ACTIVE:
case IBV_EVENT_PORT_ERR:
case IBV_EVENT_LID_CHANGE:
case IBV_EVENT_PKEY_CHANGE:
case IBV_EVENT_SM_CHANGE:
case IBV_EVENT_SRQ_ERR:
case IBV_EVENT_SRQ_LIMIT_REACHED:
case IBV_EVENT_CLIENT_REREGISTER:
case IBV_EVENT_GID_CHANGE:
default:
SPDK_NOTICELOG("Async event: %s\n",
ibv_event_type_str(event.event_type));
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
break;
}
ibv_ack_async_event(&event);
}
static void
spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn, void *cb_arg)
{
int nfds, i = 0;
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_device *device, *tmp;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
if (nfds <= 0) {
return;
}
/* The first poll descriptor is RDMA CM event */
if (rtransport->poll_fds[i++].revents & POLLIN) {
spdk_nvmf_process_cm_event(transport, cb_fn, cb_arg);
nfds--;
}
if (nfds == 0) {
return;
}
/* Second and subsequent poll descriptors are IB async events */
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
if (rtransport->poll_fds[i++].revents & POLLIN) {
spdk_nvmf_process_ib_event(device);
nfds--;
}
}
/* check all flagged fd's have been served */
assert(nfds == 0);
}
static void
spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_discovery_log_page_entry *entry)
{
entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
entry->adrfam = trid->adrfam;
entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
}
static void
spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
static struct spdk_nvmf_transport_poll_group *
spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_poller *poller;
struct spdk_nvmf_rdma_device *device;
struct ibv_srq_init_attr srq_init_attr;
struct spdk_nvmf_rdma_resource_opts opts;
int num_cqe;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
rgroup = calloc(1, sizeof(*rgroup));
if (!rgroup) {
return NULL;
}
TAILQ_INIT(&rgroup->pollers);
STAILQ_INIT(&rgroup->retired_bufs);
pthread_mutex_lock(&rtransport->lock);
TAILQ_FOREACH(device, &rtransport->devices, link) {
poller = calloc(1, sizeof(*poller));
if (!poller) {
SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
poller->device = device;
poller->group = rgroup;
TAILQ_INIT(&poller->qpairs);
STAILQ_INIT(&poller->qpairs_pending_send);
STAILQ_INIT(&poller->qpairs_pending_recv);
TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) {
poller->max_srq_depth = transport->opts.max_srq_depth;
device->num_srq++;
memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
srq_init_attr.attr.max_wr = poller->max_srq_depth;
srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
if (!poller->srq) {
SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
opts.qp = poller->srq;
opts.pd = device->pd;
opts.qpair = NULL;
opts.shared = true;
opts.max_queue_depth = poller->max_srq_depth;
opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
poller->resources = nvmf_rdma_resources_create(&opts);
if (!poller->resources) {
SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
}
/*
* When using an srq, we can limit the completion queue at startup.
* The following formula represents the calculation:
* num_cqe = num_recv + num_data_wr + num_send_wr.
* where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
*/
if (poller->srq) {
num_cqe = poller->max_srq_depth * 3;
} else {
num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
}
poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
if (!poller->cq) {
SPDK_ERRLOG("Unable to create completion queue\n");
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
poller->num_cqe = num_cqe;
}
TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
if (rtransport->conn_sched.next_admin_pg == NULL) {
rtransport->conn_sched.next_admin_pg = rgroup;
rtransport->conn_sched.next_io_pg = rgroup;
}
pthread_mutex_unlock(&rtransport->lock);
return &rgroup->group;
}
static struct spdk_nvmf_transport_poll_group *
spdk_nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_poll_group **pg;
struct spdk_nvmf_transport_poll_group *result;
rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
pthread_mutex_lock(&rtransport->lock);
if (TAILQ_EMPTY(&rtransport->poll_groups)) {
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
if (qpair->qid == 0) {
pg = &rtransport->conn_sched.next_admin_pg;
} else {
pg = &rtransport->conn_sched.next_io_pg;
}
assert(*pg != NULL);
result = &(*pg)->group;
*pg = TAILQ_NEXT(*pg, link);
if (*pg == NULL) {
*pg = TAILQ_FIRST(&rtransport->poll_groups);
}
pthread_mutex_unlock(&rtransport->lock);
return result;
}
static void
spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup;
struct spdk_nvmf_rdma_poller *poller, *tmp;
struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair;
struct spdk_nvmf_transport_pg_cache_buf *buf, *tmp_buf;
struct spdk_nvmf_rdma_transport *rtransport;
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
if (!rgroup) {
return;
}
/* free all retired buffers back to the transport so we don't short the mempool. */
STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) {
STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link);
assert(group->transport != NULL);
spdk_mempool_put(group->transport->data_buf_pool, buf);
}
TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
TAILQ_REMOVE(&rgroup->pollers, poller, link);
TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
spdk_nvmf_rdma_qpair_destroy(qpair);
}
if (poller->srq) {
nvmf_rdma_resources_destroy(poller->resources);
ibv_destroy_srq(poller->srq);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
}
if (poller->cq) {
ibv_destroy_cq(poller->cq);
}
free(poller);
}
if (rgroup->group.transport == NULL) {
/* Transport can be NULL when spdk_nvmf_rdma_poll_group_create()
* calls this function directly in a failure path. */
free(rgroup);
return;
}
rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
pthread_mutex_lock(&rtransport->lock);
next_rgroup = TAILQ_NEXT(rgroup, link);
TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
if (next_rgroup == NULL) {
next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
}
if (rtransport->conn_sched.next_admin_pg == rgroup) {
rtransport->conn_sched.next_admin_pg = next_rgroup;
}
if (rtransport->conn_sched.next_io_pg == rgroup) {
rtransport->conn_sched.next_io_pg = next_rgroup;
}
pthread_mutex_unlock(&rtransport->lock);
free(rgroup);
}
static void
spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
{
if (rqpair->cm_id != NULL) {
spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
}
spdk_nvmf_rdma_qpair_destroy(rqpair);
}
static int
spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_poller *poller;
int rc;
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
device = rqpair->port->device;
TAILQ_FOREACH(poller, &rgroup->pollers, link) {
if (poller->device == device) {
break;
}
}
if (!poller) {
SPDK_ERRLOG("No poller found for device.\n");
return -1;
}
TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
rqpair->poller = poller;
rqpair->srq = rqpair->poller->srq;
rc = spdk_nvmf_rdma_qpair_initialize(qpair);
if (rc < 0) {
SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
return -1;
}
rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
if (rc) {
/* Try to reject, but we probably can't */
spdk_nvmf_rdma_qpair_reject_connection(rqpair);
return -1;
}
spdk_nvmf_rdma_update_ibv_state(rqpair);
return 0;
}
static int
spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
struct spdk_nvmf_rdma_transport, transport);
nvmf_rdma_request_free(rdma_req, rtransport);
return 0;
}
static int
spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
struct spdk_nvmf_rdma_transport, transport);
struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req,
struct spdk_nvmf_rdma_request, req);
struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
struct spdk_nvmf_rdma_qpair, qpair);
if (rqpair->ibv_state != IBV_QPS_ERR) {
/* The connection is alive, so process the request as normal */
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
} else {
/* The connection is dead. Move the request directly to the completed state. */
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
}
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
return 0;
}
static int
spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx)
{
struct spdk_nvmf_rdma_qpair *rqpair = ctx;
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
struct spdk_nvmf_rdma_transport, transport);
SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n",
rqpair->qpair.qid);
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
spdk_nvmf_rdma_qpair_destroy(rqpair);
return 0;
}
static void
spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
return;
}
rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
/* This happens only when the qpair is disconnected before
* it is added to the poll group. Since there is no poll group,
* the RDMA qp has not been initialized yet and the RDMA CM
* event has not yet been acknowledged, so we need to reject it.
*/
if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
spdk_nvmf_rdma_qpair_reject_connection(rqpair);
return;
}
if (rqpair->ibv_state != IBV_QPS_ERR) {
spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR);
}
rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
}
static struct spdk_nvmf_rdma_qpair *
get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
{
struct spdk_nvmf_rdma_qpair *rqpair;
/* @todo: improve QP search */
TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
if (wc->qp_num == rqpair->cm_id->qp->qp_num) {
return rqpair;
}
}
SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
return NULL;
}
#ifdef DEBUG
static int
spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
{
return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
}
#endif
static void
_poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
int rc)
{
struct spdk_nvmf_rdma_recv *rdma_recv;
struct spdk_nvmf_rdma_wr *bad_rdma_wr;
SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
while (bad_recv_wr != NULL) {
bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
rdma_recv->qpair->current_recv_depth++;
bad_recv_wr = bad_recv_wr->next;
SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
spdk_nvmf_rdma_start_disconnect(rdma_recv->qpair);
}
}
static void
_qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
{
SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
while (bad_recv_wr != NULL) {
bad_recv_wr = bad_recv_wr->next;
rqpair->current_recv_depth++;
}
spdk_nvmf_rdma_start_disconnect(rqpair);
}
static void
_poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_poller *rpoller)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct ibv_recv_wr *bad_recv_wr;
int rc;
if (rpoller->srq) {
if (rpoller->resources->recvs_to_post.first != NULL) {
rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr);
if (rc) {
_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
}
rpoller->resources->recvs_to_post.first = NULL;
rpoller->resources->recvs_to_post.last = NULL;
}
} else {
while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
assert(rqpair->resources->recvs_to_post.first != NULL);
rc = ibv_post_recv(rqpair->cm_id->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr);
if (rc) {
_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
}
rqpair->resources->recvs_to_post.first = NULL;
rqpair->resources->recvs_to_post.last = NULL;
STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
}
}
}
static void
_qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
{
struct spdk_nvmf_rdma_wr *bad_rdma_wr;
struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL;
SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
for (; bad_wr != NULL; bad_wr = bad_wr->next) {
bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
assert(rqpair->current_send_depth > 0);
rqpair->current_send_depth--;
switch (bad_rdma_wr->type) {
case RDMA_WR_TYPE_DATA:
cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
if (bad_wr->opcode == IBV_WR_RDMA_READ) {
assert(rqpair->current_read_depth > 0);
rqpair->current_read_depth--;
}
break;
case RDMA_WR_TYPE_SEND:
cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
break;
default:
SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
prev_rdma_req = cur_rdma_req;
continue;
}
if (prev_rdma_req == cur_rdma_req) {
/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
continue;
}
switch (cur_rdma_req->state) {
case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
break;
case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
case RDMA_REQUEST_STATE_COMPLETING:
cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
break;
default:
SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
cur_rdma_req->state, rqpair);
continue;
}
spdk_nvmf_rdma_request_process(rtransport, cur_rdma_req);
prev_rdma_req = cur_rdma_req;
}
if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
/* Disconnect the connection. */
spdk_nvmf_rdma_start_disconnect(rqpair);
}
}
static void
_poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_poller *rpoller)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct ibv_send_wr *bad_wr = NULL;
int rc;
while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
assert(rqpair->sends_to_post.first != NULL);
rc = ibv_post_send(rqpair->cm_id->qp, rqpair->sends_to_post.first, &bad_wr);
/* bad wr always points to the first wr that failed. */
if (rc) {
_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
}
rqpair->sends_to_post.first = NULL;
rqpair->sends_to_post.last = NULL;
STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
}
}
static int
spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_poller *rpoller)
{
struct ibv_wc wc[32];
struct spdk_nvmf_rdma_wr *rdma_wr;
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_rdma_recv *rdma_recv;
struct spdk_nvmf_rdma_qpair *rqpair;
int reaped, i;
int count = 0;
bool error = false;
uint64_t poll_tsc = spdk_get_ticks();
/* Poll for completing operations. */
reaped = ibv_poll_cq(rpoller->cq, 32, wc);
if (reaped < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -1;
}
rpoller->stat.polls++;
rpoller->stat.completions += reaped;
for (i = 0; i < reaped; i++) {
rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
switch (rdma_wr->type) {
case RDMA_WR_TYPE_SEND:
rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
if (!wc[i].status) {
count++;
assert(wc[i].opcode == IBV_WC_SEND);
assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
} else {
SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
}
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
/* +1 for the response wr */
rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
rdma_req->num_outstanding_data_wr = 0;
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
break;
case RDMA_WR_TYPE_RECV:
/* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */
rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
if (rpoller->srq != NULL) {
rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
/* It is possible that there are still some completions for destroyed QP
* associated with SRQ. We just ignore these late completions and re-post
* receive WRs back to SRQ.
*/
if (spdk_unlikely(NULL == rdma_recv->qpair)) {
struct ibv_recv_wr *bad_wr;
int rc;
rdma_recv->wr.next = NULL;
rc = ibv_post_srq_recv(rpoller->srq,
&rdma_recv->wr,
&bad_wr);
if (rc) {
SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
}
continue;
}
}
rqpair = rdma_recv->qpair;
assert(rqpair != NULL);
if (!wc[i].status) {
assert(wc[i].opcode == IBV_WC_RECV);
if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
spdk_nvmf_rdma_start_disconnect(rqpair);
break;
}
}
rdma_recv->wr.next = NULL;
rqpair->current_recv_depth++;
rdma_recv->receive_tsc = poll_tsc;
rpoller->stat.requests++;
STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
break;
case RDMA_WR_TYPE_DATA:
rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
assert(rdma_req->num_outstanding_data_wr > 0);
rqpair->current_send_depth--;
rdma_req->num_outstanding_data_wr--;
if (!wc[i].status) {
assert(wc[i].opcode == IBV_WC_RDMA_READ);
rqpair->current_read_depth--;
/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
if (rdma_req->num_outstanding_data_wr == 0) {
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
}
} else {
/* If the data transfer fails still force the queue into the error state,
* if we were performing an RDMA_READ, we need to force the request into a
* completed state since it wasn't linked to a send. However, in the RDMA_WRITE
* case, we should wait for the SEND to complete. */
SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
rqpair->current_read_depth--;
if (rdma_req->num_outstanding_data_wr == 0) {
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
}
}
}
break;
default:
SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
continue;
}
/* Handle error conditions */
if (wc[i].status) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n",
rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
error = true;
if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
/* Disconnect the connection. */
spdk_nvmf_rdma_start_disconnect(rqpair);
} else {
nvmf_rdma_destroy_drained_qpair(rqpair);
}
continue;
}
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
nvmf_rdma_destroy_drained_qpair(rqpair);
}
}
if (error == true) {
return -1;
}
/* submit outstanding work requests. */
_poller_submit_recvs(rtransport, rpoller);
_poller_submit_sends(rtransport, rpoller);
return count;
}
static int
spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_poller *rpoller;
int count, rc;
rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
count = 0;
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
if (rc < 0) {
return rc;
}
count += rc;
}
return count;
}
static int
spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
struct spdk_nvme_transport_id *trid,
bool peer)
{
struct sockaddr *saddr;
uint16_t port;
trid->trtype = SPDK_NVME_TRANSPORT_RDMA;
if (peer) {
saddr = rdma_get_peer_addr(id);
} else {
saddr = rdma_get_local_addr(id);
}
switch (saddr->sa_family) {
case AF_INET: {
struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
inet_ntop(AF_INET, &saddr_in->sin_addr,
trid->traddr, sizeof(trid->traddr));
if (peer) {
port = ntohs(rdma_get_dst_port(id));
} else {
port = ntohs(rdma_get_src_port(id));
}
snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
break;
}
case AF_INET6: {
struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
inet_ntop(AF_INET6, &saddr_in->sin6_addr,
trid->traddr, sizeof(trid->traddr));
if (peer) {
port = ntohs(rdma_get_dst_port(id));
} else {
port = ntohs(rdma_get_src_port(id));
}
snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
break;
}
default:
return -1;
}
return 0;
}
static int
spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct spdk_nvmf_rdma_qpair *rqpair;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
}
static int
spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct spdk_nvmf_rdma_qpair *rqpair;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
}
static int
spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct spdk_nvmf_rdma_qpair *rqpair;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
}
void
spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
{
g_nvmf_hooks = *hooks;
}
static int
spdk_nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt,
struct spdk_nvmf_transport_poll_group_stat **stat)
{
struct spdk_io_channel *ch;
struct spdk_nvmf_poll_group *group;
struct spdk_nvmf_transport_poll_group *tgroup;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_poller *rpoller;
struct spdk_nvmf_rdma_device_stat *device_stat;
uint64_t num_devices = 0;
if (tgt == NULL || stat == NULL) {
return -EINVAL;
}
ch = spdk_get_io_channel(tgt);
group = spdk_io_channel_get_ctx(ch);;
spdk_put_io_channel(ch);
TAILQ_FOREACH(tgroup, &group->tgroups, link) {
if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) {
*stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat));
if (!*stat) {
SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n");
return -ENOMEM;
}
(*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA;
rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group);
/* Count devices to allocate enough memory */
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
++num_devices;
}
(*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat));
if (!(*stat)->rdma.devices) {
SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n");
free(*stat);
return -ENOMEM;
}
(*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer;
(*stat)->rdma.num_devices = num_devices;
num_devices = 0;
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
device_stat = &(*stat)->rdma.devices[num_devices++];
device_stat->name = ibv_get_device_name(rpoller->device->context->device);
device_stat->polls = rpoller->stat.polls;
device_stat->completions = rpoller->stat.completions;
device_stat->requests = rpoller->stat.requests;
device_stat->request_latency = rpoller->stat.request_latency;
device_stat->pending_free_request = rpoller->stat.pending_free_request;
device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read;
device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write;
}
return 0;
}
}
return -ENOENT;
}
static void
spdk_nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat)
{
if (stat) {
free(stat->rdma.devices);
}
free(stat);
}
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
.type = SPDK_NVME_TRANSPORT_RDMA,
.opts_init = spdk_nvmf_rdma_opts_init,
.create = spdk_nvmf_rdma_create,
.destroy = spdk_nvmf_rdma_destroy,
.listen = spdk_nvmf_rdma_listen,
.stop_listen = spdk_nvmf_rdma_stop_listen,
.accept = spdk_nvmf_rdma_accept,
.listener_discover = spdk_nvmf_rdma_discover,
.poll_group_create = spdk_nvmf_rdma_poll_group_create,
.get_optimal_poll_group = spdk_nvmf_rdma_get_optimal_poll_group,
.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
.poll_group_add = spdk_nvmf_rdma_poll_group_add,
.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
.req_free = spdk_nvmf_rdma_request_free,
.req_complete = spdk_nvmf_rdma_request_complete,
.qpair_fini = spdk_nvmf_rdma_close_qpair,
.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
.poll_group_get_stat = spdk_nvmf_rdma_poll_group_get_stat,
.poll_group_free_stat = spdk_nvmf_rdma_poll_group_free_stat,
};
SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)